Design, synthesis and antiplatelet aggregation activity of 3-acetyl-7-hydroxycoumarin derivatives
-
摘要:
为寻找安全有效的抗血小板聚集药物,以间苯二酚为起始原料,经Vilsmeier-Haack反应、Knoevenagel反应制备先导化合物3-乙酰基-7-羟基-香豆素;再对其7-位羟基进行氨基烷基醚化,3-位酮羰基肟化,得到25个目标化合物(6a~6y)。所合成的目标化合物的结构经过高分辨质谱、核磁共振氢谱和红外光谱确证。采用Bron比浊法分别测试了目标化合物对二磷酸腺苷(ADP)、胶原、花生四烯酸(AA)和凝血酶诱导的血小板聚集的抑制作用。结果表明,合成的目标化合物对4种诱导剂诱导的血小板聚集均具有一定的抑制活性,部分化合物的活性远优于阳性对照药阿司匹林。其中,目标化合物6a、6b对4种诱导剂诱导的血小板聚集均有较强的抑制活性,且具有较好的水溶性和脂水分配系数(溶解度为3.46和3.85 mg/mL,脂水分配系数为2.56和2.85),有望成为具有多靶点抗血小板聚集作用的临床前候选化合物。
-
关键词:
- 3-乙酰基-7-羟基-香豆素 /
- 肟 /
- 水溶性 /
- 抗血小板聚集
Abstract:In order to search for coumarin-based anti-platelet aggregation compounds with high efficacy and good druggability, twenty-five 3-acetyl-7-hydroxy-coumarin oxime derivatives (6a-6y) were synthesized via Vilsmeier-Haack reaction, Knoevenagel reaction, Williamson reaction, electrophilic substitution reaction and oximation reaction from resorcinol. Their structures were confirmed by HRMS and 1H NMR spectra. The anti-platelet aggregation activity of the target compounds was evaluated using Born’s turbidimetric method. The results revealed that most of them could significantly inhibit platelet aggregation induced by adenosine diphosphate (ADP), collagen, arachidonic acid (AA) and thrombin. Among them, the target compounds 6a and 6b not only had strong inhibitory activity on platelet aggregation induced by the four inducers, but also exhibited good water solubility (3.46 mg/mL and 3.85 mg/mL, respectively) and lipid-water partition coefficient (2.56 and 2.85, respectively) and were expected to become a preclinical candidate compound with multi-target action against platelet aggregation.
-
Keywords:
- 3-acetyl-7-hydroxy-coumarin /
- oxime /
- aqueous solubility /
- anti-platelet aggregation
-
-
1. Synthetic routes of target compounds 6a-6y
Reagents and conditions: (i) (1) DMF, POCl3, MeCN, ~0℃, 6 h; (2) H2O, 80℃, 0.5 h; (ii) Ethyl acetoacetate, HAc, piperidine, EtOH, 30℃, 10 h; (iii) Br-(CH2)n-Br, DMF, K2CO3, 50℃, 4 h; (iv) Amines(morpholine, piperidine,N-methyl piperazine, N-ethyl piperazine, N- (2-hydroxyethyl) piperazine), MeCN, 60℃, 2 h; (v) NH2OH,HCI, EtOH, pyridine, 60℃
Table 1 Yield, melting point, HRMS data and 1HNMR data of compounds 6a–6y
Compd. Yield/% Melting/℃ HRMS m/z [M+H]+ 1H NMR(400 MHz),δ 6a 76.6 210.0–211.5 333.1472 11.35 (1H, s, NOH), 8.04 (1H, s, Ar-H), 7.71 (1H, d, J=8.7 Hz, Ar-H), 7.04 (1H, s, Ar-H), 6.98(1H, d, J=2.3 Hz, Ar-H), 4.21(2H, t, J=5.7 Hz,OCH2), 3.64–3.52(4H, m, OCH2), 2.72 (2H, t, J=5.6 Hz, NCH2), 2.48 (4H, d, J=4.1 Hz, NCH2), 2.07 (3H,s, CH3) 6b 69.7 197.2–200.4 347.1627 11.34 (1H, s,NOH), 8.04 (1H, s, Ar-H), 7.71 (1H, d, J=8.6 Hz, Ar-H), 7.00 (1H, s, Ar-H), 6.95 (1H, d, J = 8.8 Hz, Ar-H), 4.13 ( 2H, t, J = 6.2 Hz,OCH2), 3.59–3.55 (4H, m, OCH2), 2.43–2.38 (6H, m,NCH2), 2.06 (3H, s,CH3), 1.90–1.86 (2H, m,CH2) 6c 72.5 181.3–182.5 361.1786 11.34 (1H, s, NOH), 8.04 (1H, s, Ar-H), 7.71 (1H, d, J = 8.6 Hz, Ar-H), 7.00 (1H, s, Ar-H), 6.95 (1H, d, J = 8.8 Hz, Ar-H), 4.13 (2H, t, J = 6.2 Hz, OCH2), 3.59–3.55 (4H, m, OCH2), 2.43–2.38 (6H, m,NCH2), 2.06 ( 3H, s,CH3), 1.90–1.86 (4H, m, CH2) 6d 80.5 176.4–177.3 375.2172 11.35(1H, s, NOH), 8.04 (1H, s, Ar-H), 7.71 (1H, d, J = 8.6 Hz, Ar-H), 7.04 (1H, s, Ar-H), 6.98 (1H, d, J = 2.2 Hz, Ar-H), 4.21 (2H, t, J = 5.6 Hz, OCH2), 3.64–3.52 (4H, m, OCH2), 2.72 (2H, t, J = 5.6 Hz, NCH2), 2.48 (4H, d, J = 4.0 Hz, NCH2), 2.07 (3H, s, CH3),1.92–1.88 (6H, m, CH2) 6e 76.0 161.8–162.7 389.2097 11.35 (1H, s, NOH), 8.04 (1H, s, Ar-H), 7.71 (1H, d, J = 8.6 Hz, Ar-H), 7.04 (s, 1H), 6.98 (1H, d, J=2.2Hz, Ar-H), 4.21 (2H, t, J=5.6 Hz, OCH2), 3.64–3.52(4H, m, OCH2), 2.72 (2H, t, J=5.6 Hz, NCH2), 2.48 (4H, d, J=4.0 Hz, NCH2), 2.07(3H, s, CH3),1.92–1.88 (8H, m, CH2) 6f 80.6 193.0–194.5 331.1682 11.38 (1H, s, NOH), 8.01 (1H, s, Ar-H), 7.71 (1H, d, J = 8.6 Hz,Ar-H), 7.02 (1H, d, J = 2.2 Hz, Ar-H), 6.97 (1H, s, Ar-H), 4.09 (2H,t, J = 7.2 Hz, OCH2), 2.86 (2H, t, J = 8.4 Hz, NCH2), 2.32 (4H, t, J = 7.6 Hz, NCH2), 2.06 (3H, s, CH3), 1.30–1.22 (6H, m, CH2) 6g 82.6 183.4–184.5 345.2186 11.34 (1H, s, NOH), 8.04 (1H, s, Ar-H), 7.71 (1H, d, J = 8.6 Hz,Ar-H), 6.51 (1H, d, J = 8.4 Hz, Ar-H), 6.44 (1H, s, Ar-H), 4.13 (2H,t, J = 6.2 Hz, OCH2), 3.59–3.55 (4H, m, OCH2), 2.43–2.38 (6H, m, NCH2), 2.06 (3H, s, CH3), 1.90–1.86 (2H,m, CH2), 1.29– 1.21 (6H,m, CH2) 6h 81.6 179.2–180.7 359.1994 11.36 (1H, s, NOH), 8.05 (1H, s, Ar-H), 7.72 (1H, d, J = 8.6 Hz,Ar-H), 7.03 (1H, d, J = 2.2 Hz, Ar-H), 6.95 (1H, s, Ar-H), 4.09 (2H,t, J = 7.2 Hz, OCH2), 2.86 (2H, t, J = 8.4 Hz,NCH2), 2.32 (4H, t, J = 7.6 Hz, NCH2), 2.06 (3H, s, CH3), 1.38–1.34 (2H,m, CH2), 1.32–1.22 (8H, m, CH2) 6i 73.1 171.8–172.8 373.2287 11.35 (1H, s, NOH), 8.05 (1H, s, Ar-H)), 7.72 (1H, d, J = 8.6 Hz,Ar-H), 7.02 (1H, d, J = 2.2 Hz, Ar-H), 6.97 (1H, s, Ar-H), 4.07 (2H,t, J = 7.2 Hz, OCH2), 2.90 (2H, t, J = 8.4 Hz, NCH2), 2.30 (4H, t, J = 7.6 Hz, NCH2), 2.06 (3H, s, CH3), 1.40–1.32 (2H,m, CH2), 1.28–1.22 (10H,m, CH2) 6j 73.5 162.3–163.9 387.2305 11.35 (1H, s, NOH), 8.05 (1H, s, Ar-H), 7.72 (1H, d, J = 8.6 Hz,Ar-H), 7.02 (1H, d, J = 2.2 Hz, Ar-H), 6.97 (1H, s, Ar-H), 4.09 (2H,t, J = 7.2 Hz, OCH2), 2.86 (2H, t, J = 8.4 Hz, NCH2), 2.32 (4H, t, J = 7.6 Hz, NCH2), 2.06 (3H, s, CH3), 1.37–1.31 (2H,m, CH2), 1.30–1.22 (12H,m, CH2) 6k 70.0 212.6–213.9 346.2051 11.37 (1H, s, NOH), 8.05 (1H, s, Ar-H), 7.72 (1H, d, J = 8.6 Hz,Ar-H), 7.04 (1H, d, J = 8.2 Hz, Ar-H), 6.98 (1H, s, Ar-H), 4.22 (2H,t, J = 6.8Hz, OCH2), 3.07–3.02 (8H, m, NCH2), 2.82 (2H, t, J = 8.4 Hz,NCH2), 2.70 (3H, s, NCH3), 2.06 (3H, s, CH3) 6l 81.9 175.0–177.4 360.1952 11.37 (1H, s, NOH), 8.05 (1H, s, Ar-H), 7.71 (1H, d, J = 8.4 Hz,Ar-H), 7.03 (1H, d, J = 8.6 Hz, Ar-H), 6.98 (1H, s, Ar-H), 4.22 (2H,t, J = 6.8Hz, OCH2), 3.07–3.02 (8H, m, NCH2), 2.82 (2H, t, J = 8.4 Hz,NCH2), 2.70 (3H, s, NCH3), 2.06 (3H, s, NCH3), 1.78–1.66 (2H,m, CH2) 6m 68.1 164.2–165.5 374.2109 11.37 (1H, s, NOH), 8.05 (1H, s, Ar-H), 7.71 (1H, d, J = 8.4 Hz,Ar-H), 7.03 (1H, d, J = 8.6 Hz, Ar-H), 6.96 (1H, s, Ar-H), 4.24 (2H, t, J = 6.8Hz, OCH2), 3.07–3.02 (8H, m, NCH2), 2.82 (2H, t, J = 8.4 Hz,NCH2), 2.72 (3H, s, NCH3), 1.78–1.66 (2H,m, CH2), 1.56–1.48 (2H, m, CH2) 6n 73.2 151.3–152.0 388.2263 11.37 (1H, s, NOH), 8.04 (1H, s, Ar-H), 7.71 (1H, d, J = 8.4 Hz,Ar-H), 7.02 (1H, d, J = 8.6 Hz, Ar-H), 6.96 (1H, s, Ar-H), 4.09 (2H, t, J = 6.8Hz, OCH2), 2.89–2.51 (8H, m, NCH2), 2.46 (2H, t, J = 8.4 Hz,NCH2), 2.40 (3H, s, NCH3), 1.75–1.64 (2H,m, CH2), 1.54–1.43 (4H, m, CH2) 6o 71.8 142.0–143.5 402.2414 11.35(1H, s, NOH), 8.04 (1H, s, Ar-H), 7.71 (1H, d, J = 8.6 Hz, Ar-H), 7.00 (1H, d, J = 8.6 Hz, Ar-H), 6.96 (1H, s, Ar-H), 4.07 (2H, t, J = 6.8Hz, OCH2), 2.50–2.16 (8H, m, NCH2), 2.15(2H, t, J = 8.4 Hz, NCH2), 2.07 (3H, s, NCH3), 1.78–1.68 (2H,m,CH2), 1.36–1.28(6H, m,CH2) 6p 72.1 167.0–168.4 360.1952 11.34(1H, s, NOH), 8.05(1H, s, Ar-H), 7.71 (1H, d, J = 8.6 Hz,Ar-H), 7.02 (1H, d, J = 8.6 Hz, Ar-H), 6.97 (1H, s, Ar-H), 4.11 (2H, t, J = 6.4Hz, OCH2), 2.64–2.48 (12H, m, NCH2), 2.06(3H, s, NCH3), 1.08 (3H, t, J = 7.2 Hz, CH3) 6q 74.0 150.8–151.7 374.2109 111.34(1H, s, NOH), 8.05(1H, s, Ar-H), 7.71 (1H, d, J = 8.6 Hz,Ar-H), 7.02 (1H, d, J = 8.2 Hz, Ar-H), 6.97 (1H, s, Ar-H), 4.11 (2H, t, J = 6.4Hz, OCH2), 2.64–2.48 (12H, m, NCH2), 2.06(3H, s, NCH3), 1.84–1.78 (m, 2H,CH2), 1.08 (3H, t, J = 7.2 Hz, CH3) 6r 75.6 135.8–136.9 388.2263 11.36(1H, s, NOH), 8.04(1H, s, Ar-H), 7.71 (1H, d, J = 8.6 Hz,Ar-H), 7.01 (1H, d, J = 8.2 Hz, Ar-H), 6.97 (1H, s, Ar-H), 4.11 (2H, t, J = 6.4Hz, OCH2), 2.64–2.48 (10H, m,NCH2), 2.06(3H, s, NCH3), 1.79–1.70 (m, 2H,CH2),1.62–1.54 (2H, m,CH2), 1.25–1.10 (2H, m, CH2), 1.08 (3H, t, J = 7.2 Hz, CH3) 6s 75.1 130.4–131.8 402.2413 11.36(1H, s, NOH), 8.04(1H, s, Ar-H), 7.71 (1H, d, J = 8.6 Hz,Ar-H), 7.01 (1H, d, J = 8.2 Hz, Ar-H), 6.97 (1H, s, Ar-H), 4.11 (2H, t, J = 6.4Hz, OCH2), 2.64–2.48 (10H, m, NCH2), 2.06(3H, s, NCH3), 1.80–1.70 (m, 2H,CH2),1.68–1.59 (4H, m,CH2), 1.25–1.10 (2H, m, CH2), 1.08 (3H, t, J = 7.2 Hz, CH3) 6t 75.9 127.3–128.4 416.2572 11.36(1H, s, NOH), 8.04(1H, s, Ar-H), 7.71 (1H, d, J = 8.6 Hz,Ar-H), 7.01 (1H, d, J = 8.2 Hz, Ar-H), 6.97 (1H, s, Ar-H), 4.11 (2H, t, J = 6.4Hz, OCH2), 2.64–2.48 (10H, m, NCH2), 2.06(3H, s, NCH3), 1.79–1.70 (m, 2H,CH2),1.62–1.54 (4H, m,CH2), 1.24–1.14 (2H, m, CH2), 1.08 (3H, t, J = 7.2 Hz, CH3) 6u 76.3 192.9–193.9 376.1892 11.37(1H, s, NOH), 7.98(1H, s, Ar-H), 7.67 (1H, d, J = 8.6 Hz,Ar-H), 6.97(1H, d, J = 8.6 Hz, Ar-H), 6.94 (1H, s, Ar-H), 4.09 (2H, t, J = 6.4Hz, OCH2),3.47 (2H, t, J = 8.2 Hz, OHCH2) 2.51–2.49 (4H, m, NCH2), 2.45–2.33 (8H, m, NCH2),2.02(3H, s, NCH3) 6v 74.3 183.4–184.5 390.2049 11.37(1H, s, NOH), 7.98(1H, s, Ar-H), 7.67 (1H, d, J = 8.6 Hz,Ar-H), 6.97(1H, d, J = 8.6 Hz, Ar-H), 6.94 (1H, s, Ar-H), 4.09 (2H, t, J = 6.4Hz, OCH2),3.47 (2H, t, J = 8.2 Hz, OHCH2) 2.51–2.49 (4H, m, NCH2), 2.45–2.33 (8H, m, NCH2),2.02(3H, s, NCH3),1.87–1.76 (2H, m, CH2) 6w 73.2 173.5–174.7 404.2221 11.37(1H, s, NOH), 7.98(1H, s, Ar-H), 7.67 (1H, d, J = 8.6 Hz,Ar-H), 6.97(1H, d, J = 8.6 Hz, Ar-H), 6.94 (1H, s, Ar-H), 4.09 (2H, t, J = 6.4Hz, OCH2),3.47 (2H, t, J = 8.2 Hz, OHCH2) 2.51–2.49 (4H, m, NCH2), 2.45–2.33 (8H, m, NCH2),2.02(3H, s, NCH3), 1.87–1.76 (2H, m, CH2) 1.48–1.42 (2H, m, CH2) 6x 74.1 170.3–171.2 418.2369 11.36(1H, s, NOH), 8.04(1H, s, Ar-H), 7.72 (1H, d, J = 8.6 Hz,Ar-H), 7.04(1H, d, J = 8.6 Hz, Ar-H), 6.94 (1H, s, Ar-H), 4.09 (2H, t, J = 6.4Hz, OCH2),3.47 (2H, t, J = 8.2 Hz, OHCH2) 2.51–2.49 (4H, m, NCH2), 2.45–2.33 (8H, m, NCH2),2.06(3H, s, NCH3), 1.88–1.54 (2H, m, CH2) 1.48–1.42 (4H, m, CH2) 6y 74.0 165.4–166.9 432.2369 11.36(1H, s, NOH), 8.04(1H, s, Ar-H), 7.72 (1H, d, J = 8.6 Hz,Ar-H), 7.01(1H, d, J = 8.6 Hz, Ar-H), 6.97 (1H, s, Ar-H), 4.10 (2H, t, J = 6.2Hz, OCH2),3.47 (2H, t, J = 8.2 Hz, OHCH2) 2.51–2.49 (4H, m, NCH2), 2.45–2.33 (8H, m, NCH2),2.06(3H, s, NCH3),1.88–1.54 (2H, m, CH2) 1.48–1.42 (6H, m, CH2) Table 2 Inhibition of platelet aggregation induced by different inducers by target compound of 100 μg/mL
Compd. n X Inhibition/% Adenosine diphosphate Collagen Arachidonic acid Thrombin 6a 2 O 76.10 71.86 73.85 61.67 6b 3 O 81.04 73.33 66.46 92.21 6c 4 O 50.71 75.88 45.23 70.90 6d 5 O 30.03 27.22 81.68 76.17 6e 6 O 76.17 48.33 82.72 80.40 6f 2 CH2 85.91 41.21 61.67 64.26 6g 3 CH2 82.91 76.95 35.69 28.15 6h 4 CH2 84.58 83.08 77.38 55.93 6i 5 CH2 66.29 81.09 40.62 74.91 6J 6 CH2 94.39 69.15 54.46 23.70 6k 2 NCH3 71.63 71.36 30.03 88.33 6l 3 NCH3 47.53 64.68 62.68 89.70 6m 4 NCH3 71.96 70.32 59.28 25.19 6n 5 NCH3 62.55 85.24 73.30 55.93 6o 6 NCH3 64.69 65.83 93.54 49.63 6p 2 NCH2CH3 70.29 85.07 83.77 70.23 6q 3 NCH2CH3 88.58 76.95 71.38 74.91 6r 4 NCH2CH3 68.96 70.65 76.00 44.26 6s 5 NCH2CH3 79.57 51.74 81.15 55.19 6t 6 NCH2CH3 78.77 72.14 62.77 34.32 6u 2 NCH2CH2OH 71.96 76.45 62.08 68.41 6v 3 NCH2CH2OH 72.50 77.89 88.70 67.02 6w 4 NCH2CH2OH 75.03 87.73 75.03 39.97 6x 5 NCH2CH2OH 80.17 89.22 94.83 31.48 6y 6 NCH2CH2OH 62.68 81.59 23.79 84.05 Aspirin — — 35.08 48.83 39.27 52.51 Table 3 IC50 values of some target compounds against platelet aggregation in vitro
Compd. IC50/(μmol/L) Adenosine diphosphate Collagen Arachidonic acid Thrombin 6a 2.12 1.91 0.13 18.41 6b 0.35 0.73 0.82 0.41 6c 0.51 — 0.45 — 6d NT NT 0.98 — 6e 0.33 NT 0.54 22.16 6f 5.15×10-2 NT 49.40 5.07 6g 21.93 1.33×10-2 NT NT 6h 2.14 2.40×10-2 0.31 109.37 6i 22.85 0.11 — 2.19 6J 121.0 0.36 91.80 NT 6k 130.9 6.79 NT 1.97 6l — 4.91 2.31×10-3 — 6m — 1.00×10-2 52.79 NT 6n 16.64 1.26×10-2 1.29 93.42 6o 1.04×10-3 2.01 1.20×10-4 NT 6p 1.25×10-3 0.15 0.36 — 6q 2.09 1.90×10-3 0.38 10.41 6r 3.02 0.53 0.14 NT 6s 2.22 NT 0.49 46.71 6t 2.15 0.84 97.89 — 6u 0.90 2.79 12.28 0.58 6v 2.42×10-2 0.177 6.95 7.66 6w 4.58×10-3 0.14 3.84×10-2 — 6x 3.07×10-3 0.28 NT — 6y 1.92×10-3 0.39 NT 9.97×10-3 Aspirin 89.12 2.91 0.32 25.35 "NT" indicates that the compound was not tested, and "—" indicates that the curve of the measured compound has a poor fit and no IC50 is obtained Table 4 Solubility and cLogP value of some compounds
Compd. Solubility
/(mg/mL)cLogP Compd. Solubility
/(mg/mL)cLogP 6a 3.46 2.55 6u 7.18 2.83 6b 3.85 2.86 6v 8.67 3.13 6h 8.86 4.18 6w 13.31 3.24 6o 4.53 3.09 6x 5.87 3.76 6p 7.26 2.19 6y 9.42 4.19 6q 3.72 2.48 3 0.14 1.14 -
[1] National Cardiovascular Center. China Cardiovascular Health and Disease Report 2019[M]. Beijing: Science Press(科学出版社), 2020: 104-105. [2] Chen R, Xie ML, Zhou J. Experimental study of the inhibition of thrombosis and platelet aggregation[J]. Chin Pharmacol Bull(中国药理学通报), 2005, 21(4): 440-443. [3] Gao LL, Wang F, Chen YJ, et al. The antithrombotic activity of natural and synthetic coumarins[J]. Fitoterapia, 2021, 154: 104947.
[4] Zeng GQ, Lin F, Wang XS, et al. Effects of imperatorin and isoimperatorin on platelet aggregation and levels of TXB2 and cAMP in rabbit platelets[J]. Acad J Second Mil Med Univ(第二军医大学学报), 1993, 14(4): 369-370. [5] Hirsch GE, Viecili PRN, de Almeida AS, et al. Natural products with antiplatelet action[J]. Curr Pharm Des, 2017, 23(8): 1228-1246.
[6] Chia YC, Chang FR, Wang JC, et al. Antiplatelet aggregation coumarins from the leaves of Murraya omphalocarpa[J]. Molecules, 2008, 13(1): 122-128.
[7] Kathuria A, Priya N, Chand K, et al. Substrate specificity of acetoxy derivatives of coumarins and quinolones towards Calreticulin mediated transacetylation: investigations on antiplatelet function[J]. Bioorg Med Chem, 2012, 20(4): 1624-1638.
[8] Zaragozá C, Monserrat J, Mantecón C, et al. Antiplatelet activity of flavonoid and coumarin drugs[J]. Vascul Pharmacol, 2016, 87: 139-149.
[9] Vilar S, Quezada E, Santana L, et al. Design, synthesis, and vasorelaxant and platelet antiaggregatory activities of coumarin-resveratrol hybrids[J]. Bioorg Med Chem Lett, 2006, 16(2): 257-261.
[10] Roma G, Di Braccio M, Grossi G, et al. Synthesis and in vitro antiplatelet activity of new 4-(1-piperazinyl)coumarin derivatives. Human platelet phosphodiesterase 3 inhibitory properties of the two most effective compounds described and molecular modeling study on their interactions with phosphodiesterase 3A catalytic site[J]. J Med Chem, 2007, 50(12): 2886-2895.
[11] He LQ, Huang P, Gao LL, et al. Synthesis and biological evaluation of novel coumarin derivatives as antiplatelet agents[J]. Heterocycles, 2016, 92(3): 511.
[12] Gao LL. Studies on the design and synthesis of novel coumarin heterocompounds and their antiplatelet aggregation activity[D]. AnHui: AHUCM(安徽中医药大学), 2015. [13] Dai WG, Zhang Z, Huang C, et al. Synthesis and anti-platelet aggregation activity of ethyl coumarin-3-carboxylate derivatives[J]. Chem World (化学世界), 2019, 60(5): 295-299. [14] Shang FY, Dai WG, He B, et al. Synthesis and anti-platelet aggregation activity of 7-nitratoalkoxyl-3-acetyl-coumarin[J]. Chem World (化学世界), 2022, 63(1): 17-21. [15] Shang FY, Ding L, He LQ, et al. Syntheses and anti-platelet aggregation activities of 7-hydroxy-3-acetyl coumarin mannich base derivatives[J]. Chemistry (化学通报), 2022, 85(4): 480-484. [16] Gao Y, Yin W, Liu JC, et al. Design, synthesis and antiplatelet evaluation of tetramethylpyrazine/chalcone hybrids[J]. J China Pharm Univ (中国药科大学学报), 2017, 48(1): 23-30. [17] Dai WG, Tan HZ, Gu HX, et al. Design, synthesis and anti-platelet aggregation activity of paeonol oxime derivatives[J]. J China Pharm Univ (中国药科大学学报), 2022, 53(5): 535-541. -
其他相关附件
-
DOCX格式
尚飞杨-补充材料 点击下载(14KB)
-