3, 3-Dimethyl-1-butanol attenuates ulcerative colitis and secondary liver injury by reducing trimethylamine production
-
摘要:
溃疡性结肠炎(ulcerative colitis,UC)是多种因素导致的肠道慢性疾病,严重的肠炎会引起肝脏损伤。肠道炎症诱发菌群紊乱,导致肠道中过多的胆碱转化为三甲胺;宿主中过低的胆碱生物利用度是造成肝脏损伤的重要原因。3,3-二甲基-1-丁醇(3,3-dimethyl-1-butanol,DMB)作为胆碱的结构类似物,可有效抑制肠道中胆碱转化为三甲胺,本研究旨在探究DMB能否通过减少肠道内的胆碱的不良转化来改善UC小鼠结肠炎症及继发性肝损伤。采用葡聚糖硫酸钠诱导的结肠炎模型,造模结束后,评估结肠及肝组织病理,检测肝功能相关生化指标,使用超高效液相色谱串联质谱法检测UC所致的体内胆碱代谢变化。结果表明,DMB能够减轻UC小鼠体重下降指数,缓解结肠炎症,减少肝脏损伤,对小鼠的血清、肠道内容物与肝脏进行胆碱相关代谢物的检测,发现DMB能够有效抑制肠道中胆碱转化为三甲胺,提高宿主的胆碱利用度,有效缓解结肠炎的恶化,从而减少由于严重的肠道病变导致的肝脏受损。
Abstract:Ulcerative colitis (UC) is a chronic intestinal disease caused by a variety of factors. Severe intestinal inflammation can also cause liver injury. Based on the previous research, microbial dysbiosis in the inflammatory state leads to the conversion of excess choline into trimethylamine (TMA) by the intestinal flora, which competes with the host for the use of the nutrient choline, and induces liver injury. 3, 3-dimethyl-1-butanol (DMB), a structural analogue of choline, can reduce TMA levels from choline conversion. The aim of this study was to investigate the protective effect and possible mechanism of DMB on UC and secondary liver injury. Dextran sulfate sodium-induced acute colitis model in mice was established. The weight of mice, and collected serum, liver and intestinal contents after mice sacrifice were measured. The morphological changes of colon and liver were observed; liver function was detected with the kit of biochemical indexes; UHPLC-MS/MS was applied to detect changes in choline metabolism in vivo. The experimental results showed that DMB could attenuate body weight loss index, improve colonic inflammation, and reduce liver injury in UC mice. The detection of choline-related metabolites in serum, intestinal contents and liver showed that DMB could effectively inhibit the production of trimethylamine in the intestine, improve the availability of host choline, effectively alleviate colitis deterioration, and reduce liver damage caused by severe intestinal lesions.
-
Keywords:
- choline metabolism /
- colitis /
- gut microbiota metabolism /
- trimethylamine
-
-
Figure 1. Pathways for the choline metabolism; 3,3-dimethyl-1-butanol(DMB) suppress trimethylamine(TMA) levels from choline conversion
ChAT:Choline acetyltransferase;CHDH:Choline dehydrogenase;CK:Choline kinase;CPT:Choline phosphotransferase;CT:Phosphocholine cytidylytransferase; FMO3:Flavin monooxygenase; PLD:Phospholipase D
Figure 2. Influence of oral DMB on colitis mice
A: Percentage change chart of body weight; B: Mean colon length of each group; C: Representative images in each group; D: DAI score of each group (*P < 0.05, **P < 0.01, ***P < 0.001 vs control group; #P < 0.05, ##P < 0.01, ###P < 0.001 vs model group; n ≥ 6 )
Figure 4. DMB intervention ameliorated secondary liver injury
A: Hematoxylin and eosin staining of liver tissues of each group; B: Alanine transaminase(ALT), aspartate aminotransferase(AST) and alkaline phosphatase(AKP) activity in plasma*P < 0.05, **P < 0.01, ***P < 0.001 vs control group; #P < 0.05, ##P < 0.01, ###P < 0.001, vs model group; n ≥ 6 per group
Table 1 MRM transition parameters, LLOD, LLOQ, and RSD for the targeted analytes in choline metabolism
Analyte MRM DPa CEb Sensitivity LLOD/
(ng/mL)RSD LLOQ/
(ng/mL)RSD TMA 60.1>45.1 25 20 2 16.95 5 10.34 TMAO 75.9>59.1 40 30 0.5 16.39 2 7.74 CHO 104.0>45.0 100 35 0.005 19.05 0.05 14.24 CHO-D9 (IS) 113.1>69.0 100 35 ACH 147.2>88.0 70 20 0.05 14.69 0.1 14.91 Bet 118.1>59.1 120 30 0.1 8.46 0.5 7.97 PC 758.2>86.0 130 40 5 14.56 10 12.66 DMPC (IS) 678.4>86.0 130 40 a:Declustering potential;b:Collision energy
TMA: Trimethylamine; TMAO: Trimethylamine N-oxide; CHO: Choline; Bet: Betaine; PC: Phosphatidylcholine; ACH: Acetylcholine; CHO-D9: Chloride-(trimethy-d9) choline; DMPC: 1 2-Dimyristoyl-sn-glycero-3-phosphocholineTable 2 Solvent-only and matrix-matched calibration curves and R2 of samples
Compd. Solvent-only Matrix-matched Dynamic range/
(ng/mL)Calibration curves R2 Calibration curves R2 Intestinal contents TMA y = 0.0017x + 0.0057 0.995 3 y = 0.0015x + 0.0349 0.998 0 3.75−375 TMAO y = 0.0143x + 0.037 0.998 9 y = 0.0130x + 0.0393 0.998 0 1.25−125 CHO y = 0.0115x – 0.0073 0.999 7 y = 0.0112x + 1.9279 0.9978 5−500 ACH y = 0.0028x – 0.001 0.998 0 y = 0.0027x + 0.0025 0.9931 0.5−50 Bet y = 0.0383x + 0.0576 0.9993 y = 0.0343x + 0.9758 0.999 0 1−100 PC y = 0.7703x + 0.0217 0.9975 y = 0.5176x + 1.1683 0.9939 12.5−12500 Liver TMA y = 0.0095x + 0.0038 0.9997 y = 0.0089x + 0.1968 0.9972 1.25−125 TMAO y = 0.0162x + 0.0402 0.9988 y = 0.0150x + 0.0329 0.9988 1.25−125 CHO y = 0.0116x + 0.0227 0.9999 y = 0.0118x + 1.8986 0.9976 10−1000 ACH y = 0.0013x – 0.0007 0.9992 y = 0.0013x + 0.0021 0.9937 1.25−125 Bet y = 0.0181x + 0.0481 0.9993 y = 0.0176x + 5.1867 0.9955 4−400 PC y = 0.4209x + 0.1404 0.9943 y = 0.3533x + 11.624 0.9918 300−30000 Serum TMA y = 0.0057x + 0.0197 0.9955 y = 0.0053x + 0.0192 0.998 0 1.8−180 TMAO y = 0.0159x + 0.0761 0.9982 y = 0.0150x + 0.0502 0.9998 2.25−225 CHO y = 0.0129x + 0.0068 0.9999 y = 0.0134x + 0.9229 0.9995 6.75−675 ACH y = 0.0028x – 0.0006 0.9981 y = 0.0028x + 0.0005 0.998 0 0.9−90 Bet y = 0.0395x + 0.1593 0.9986 y = 0.0371x + 0.8011 0.9997 4.5−450 PC y = 0.0006x + 0.0775 0.995 0 y = 0.0004x + 3.3674 0.9967 90−9000 Table 3 Methodological observations including precision and accuracy, recovery and matrix effects results
Analyte Added/
(ng/mL)Matrix effect Recovery Intraday Interday t-value Mean/% RSD/% Accuracy/% Precision/% Accuracy/% Precision/% Intestinal contents 15 101.01 8.87 −6.23 6.60 −3.61 14.45 TMA 112.5 0.270 3 100.50 4.12 9.05 5.27 8.29 5.21 187.5 105.43 6.29 9.60 7.95 10.40 9.62 5 90.90 10.79 4.12 6.33 2.30 6.03 TMAO 37.5 0.1574 102.91 4.94 7.61 7.39 6.44 6.95 62.5 105.53 7.33 3.58 2.92 4.43 4.52 20 103.49 6.02 −9.57 3.31 −6.62 2.92 CHO 150 0.0221 97.78 9.96 −8.75 4.37 −9.17 3.24 250 90.76 6.10 −2.45 4.87 −5.47 5.08 2 105.14 6.73 −1.71 13.33 5.14 4.67 ACH 15 0.0493 101.74 5.70 1.74 5.33 1.74 5.37 25 116.08 4.01 18.63 3.69 17.33 4.45 4 89.97 9.39 −17.39 2.62 −14.80 2.64 BET 30 0.2426 97.01 4.44 −1.92 1.76 1.97 3.97 50 101.98 6.18 3.11 4.42 −2.73 2.17 50 95.34 9.21 14.74 7.99 −9.03 8.34 PC 375 0.3543 86.83 6.45 −0.83 8.41 4.89 8.25 625 108.79 9.52 −5.41 3.40 −12.20 2.45 Liver 5 102.47 10.80 −18.76 8.67 −9.70 5.82 TMA 37.5 0.1256 89.42 7.39 −1.78 5.43 −0.49 4.72 62.5 100.64 5.70 −13.82 12.16 −16.83 11.10 5 97.05 7.78 7.09 5.16 8.26 4.79 TMAO 37.5 0.1275 96.94 4.75 −3.98 5.12 −2.98 4.21 62.5 93.64 3.49 −3.90 3.65 −4.63 3.05 40 112.08 5.20 17.38 6.02 11.81 2.68 CHO 300 0.0248 101.53 2.61 −5.49 1.76 −5.32 1.80 500 101.44 2.09 −9.76 1.80 −9.39 1.71 5 114.08 6.74 17.77 7.92 14.91 5.56 ACH 37.5 0.0160 98.90 9.06 −2.11 8.36 −1.26 8.33 2 96.19 5.70 −7.23 12.01 −6.09 12.78 16 87.37 8.87 4.21 3.15 13.73 3.27 BET 120 0.0392 102.23 5.56 −4.06 3.93 −5.54 3.65 200 94.45 9.36 −2.06 3.01 2.23 1.63 1200 104.40 11.21 −8.68 11.10 −14.11 11.17 PC 9000 0.1895 89.23 6.76 0.25 9.22 −8.62 8.02 15000 100.80 13.85 7.64 6.81 0.97 6.05 Serum 7.2 80.61 9.82 −8.49 7.33 −11.82 4.36 TMA 54 0.1574 89.53 1.90 −8.46 1.73 −8.36 1.91 90 96.75 4.49 −2.05 4.26 −0.62 2.45 9 94.67 6.13 −4.87 4.39 −3.41 3.55 TMAO 67.5 0.2001 97.22 2.93 −2.71 2.79 −3.37 2.42 112.5 99.08 1.48 −0.87 1.44 −0.75 1.53 27 90.24 12.61 −9.60 5.87 7.13 10.52 CHO 202.5 0.0580 97.89 2.75 −0.67 2.02 0.17 1.21 337.5 99.75 2.07 0.60 1.70 0.85 1.76 3.6 82.76 10.97 −17.24 10.35 −17.42 7.98 ACH 27 0.0000 97.06 3.61 −2.93 3.59 −4.00 2.26 45 97.24 5.02 −2.75 5.00 −2.86 5.16 18 95.90 5.94 −4.09 2.63 −3.40 2.73 BET 135 0.1404 99.76 2.40 −0.23 2.07 −0.49 2.17 225 101.85 2.44 1.85 2.23 1.77 2.44 360 86.66 4.24 −10.91 3.58 4.86 3.27 PC 2700 0.5438 95.69 9.71 0.03 2.25 2.25 1.90 4500 111.36 11.95 14.75 5.98 18.58 5.36 -
[1] Ordas I, Eckmann L, Talamini M, et al. Ulcerative colitis[J]. Lancet, 2012, 380(9853): 1606-1619. doi: 10.1016/S0140-6736(12)60150-0
[2] Al-Horani R, Spanudakis E, Hamad B. The market for ulcerative colitis[J]. Nat Rev Drug Discov, 2022, 21(1): 15-16. doi: 10.1038/d41573-021-00194-5
[3] Knight C, Murray KF. Hepatobiliary associations with inflammatory bowel disease[J]. Expert Rev Gastroenterol Hepatol, 2009, 3(6): 681-691. doi: 10.1586/egh.09.53
[4] Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity[J]. Nature, 2012, 482(7384): 179-185. doi: 10.1038/nature10809
[5] Spencer MD, Hamp TJ, Reid RW, et al. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency[J]. Gastroenterology, 2011, 140(3): 976-986. doi: 10.1053/j.gastro.2010.11.049
[6] Pogribny IP, Beland FA. DNA hypomethylation in the origin and pathogenesis of human diseases[J]. Cell Mol Life Sci, 2009, 66(14): 2249-2261. doi: 10.1007/s00018-009-0015-5
[7] Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation[J]. Nat Rev Cancer, 2011, 11: 835-848. doi: 10.1038/nrc3162
[8] Chittim CL, Martinez Del CA, Balskus EP. Gut bacterial phospholipase Ds support disease-associated metabolism by generating choline[J]. Nat Microbiol, 2019, 4(1): 155-163.
[9] Teodoro JS, Rolo AP, Duarte FV, et al. Differential alterations in mitochondrial function induced by a choline-deficient diet: understanding fatty liver disease progression[J]. Mitochondrion, 2008, 8(5/6): 367-376.
[10] Zeisel SH. Dietary choline deficiency causes DNA strand breaks and alters epigenetic marks on DNA and histones[J]. Mutat Res, 2012, 733(1/2): 34-38.
[11] Hosseinkhani F, Heinken A, Thiele I, et al. The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases[J]. Gut Microbes, 2021, 13(1): 1-22.
[12] Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis[J]. Cell, 2015, 163(7): 1585-1595. doi: 10.1016/j.cell.2015.11.055
[13] Hamamoto N, Maemura K, Hirata I, et al. Inhibition of dextran sulphate sodium (DSS) -induced colitis in mice by intra colonically administered antibodies against adhesion molecules (endothelial leucocyte adhesion molecule-1 (ELAM-1) or intercellular adhesion molecule-1 (ICAM-1))[J]. Clin Exp Immunol, 1999, 117(3): 462-468.
[14] Morris GP, Beck PL, Herridge MS, et al. Hapten-induced model of chronic inflammation and ulceration in the rat colon[J]. Gastroenterology, 1989, 96(3): 795-803. doi: 10.1016/0016-5085(89)90904-9
[15] Wang XN, Liu JQ, Shi ZQ, et al. Orthogonal label and label-free dual pretreatment for targeted profiling of neurotransmitters in enteric nervous system[J]. Anal Chim Acta, 2020, 1139: 68-78. doi: 10.1016/j.aca.2020.09.031
[16] Zheng J, Mandal R, Wishart DS. A sensitive, high-throughput LC-MS/MS method for measuring catecholamines in low volume serum[J]. Anal Chim Acta, 2018, 1037: 159-167. doi: 10.1016/j.aca.2018.01.021
[17] Goh YQ, Cheam G, Wang Y. Understanding choline bioavailability and utilization: first step toward personalizing choline nutrition[J]. J Agric Food Chem, 2021, 69(37): 10774-10789. doi: 10.1021/acs.jafc.1c03077
[18] Stremmel W, Merle U, Zahn A, et al. Retarded release phosphatidylcholine benefits patients with chronic active ulcerative colitis[J]. Gut, 2005, 54(7): 966-971. doi: 10.1136/gut.2004.052316
[19] Corbin KD, Zeisel SH. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression[J]. Curr Opin Gastroenterol, 2012, 28(2): 159-165. doi: 10.1097/MOG.0b013e32834e7b4b
[20] Wang G, Kong B, Shuai W, et al. 3, 3-Dimethyl-1-butanol attenuates cardiac remodeling in pressure-overload-induced heart failure mice[J]. J Nutr Biochem, 2020, 78: 108341. doi: 10.1016/j.jnutbio.2020.108341
[21] Hsu CN, Chang-Chien GP, Lin S, et al. Targeting on gut microbial metabolite trimethylamine-n-oxide and short-chain fatty acid to prevent maternal high-fructose-diet-induced developmental programming of hypertension in adult male offspring[J]. Mol Nutr Food Res, 2019, 63(18): e1900073. doi: 10.1002/mnfr.201900073
[22] González-Correa C, Moleón J, Miñano S, et al. Trimethylamine n-oxide promotes autoimmunity and a loss of vascular function in toll-like receptor 7-driven lupus mice[J]. Antioxidants (Basel), 2021, 11(1): 84. doi: 10.3390/antiox11010084
[23] Romano KA, Martinez-Del Campo A, Kasahara K, et al. Metabolic, epigenetic, and trans generational effects of gut bacterial choline consumption[J]. Cell Host Microb, 2017, 22(3): 279-290. doi: 10.1016/j.chom.2017.07.021
[24] Randrianarisoa E, Lehn-Stefan A, Wang X, et al. Relationship of serum trimethylamine n-oxide (tmao) levels with early atherosclerosis in humans[J]. Sci Rep, 2016, 27(6): 26745.
-
期刊类型引用(2)
1. 曾庆儒,谢玲,龚小会,陈晨,苏正,杨博. 白酒酒糟在不同领域综合利用的研究进展. 酿酒. 2025(01): 47-52 . 百度学术
2. 王风青,陈燕梅,郑佳,宋洪宁,杨灿,刘军,刘根侨,李仲玄. 白酒固态酿造副产物丢糟在动物养殖中的应用研究. 中国饲料. 2024(21): 175-180+202 . 百度学术
其他类型引用(0)