• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

基于聚乙烯亚胺修饰磁性纳米粒的分散固相萃取/高效液相色谱法测定水中非甾体抗炎药

汤晓航, 宋会林, 姚丽莹, 秦国文, 王星晨, 柳文媛, 纪顺利

汤晓航,宋会林,姚丽莹,等. 基于聚乙烯亚胺修饰磁性纳米粒的分散固相萃取/高效液相色谱法测定水中非甾体抗炎药[J]. 中国药科大学学报,2024,55(4):485 − 492. DOI: 10.11665/j.issn.1000-5048.2023081802
引用本文: 汤晓航,宋会林,姚丽莹,等. 基于聚乙烯亚胺修饰磁性纳米粒的分散固相萃取/高效液相色谱法测定水中非甾体抗炎药[J]. 中国药科大学学报,2024,55(4):485 − 492. DOI: 10.11665/j.issn.1000-5048.2023081802
TANG Xiaohang, SONG Huilin, YAO Liying, et al. Determination of non-steroidal anti-inflammatory drugs in the environmental water samples by a polyvinylimide-modified magnetic nanoparticles-based solid phase extraction coupled with high-performance liquid chromatography[J]. J China Pharm Univ, 2024, 55(4): 485 − 492. DOI: 10.11665/j.issn.1000-5048.2023081802
Citation: TANG Xiaohang, SONG Huilin, YAO Liying, et al. Determination of non-steroidal anti-inflammatory drugs in the environmental water samples by a polyvinylimide-modified magnetic nanoparticles-based solid phase extraction coupled with high-performance liquid chromatography[J]. J China Pharm Univ, 2024, 55(4): 485 − 492. DOI: 10.11665/j.issn.1000-5048.2023081802

基于聚乙烯亚胺修饰磁性纳米粒的分散固相萃取/高效液相色谱法测定水中非甾体抗炎药

基金项目: 国家自然科学基金项目(No. 81703472);安徽省高等学校自然科学类研究项目(No.2023AH052394)
详细信息
    通讯作者:

    纪顺利: Tel:17715279164 E-mail:jishunli_sx@126.com

  • 中图分类号: R917

Determination of non-steroidal anti-inflammatory drugs in the environmental water samples by a polyvinylimide-modified magnetic nanoparticles-based solid phase extraction coupled with high-performance liquid chromatography

Funds: This study was supported by the National Natural Science Foundation of China (No. 81703472) and the Natural Science Research Project for Anhui Universities (No.2023AH052394)
  • 摘要:

    环境水样中非甾体抗炎药(NSAIDs)的长期存在不仅会影响水生生物的生命安全,扰乱生态系统环境,而且会对人类健康构成严重威胁。采用溶剂热法首先制备了氨基功能化Fe3O4纳米粒子(Fe3O4-NH2)。随后,通过室温下水溶液中的席夫碱反应,以戊二醛为交联剂,将具有支链结构的聚乙烯亚胺(PEI)成功地接枝到Fe3O4纳米粒子上,合成了一种可回收的PEI接枝磁性纳米吸附剂(Fe3O4@PEI)并将其应用于环境水中NSAIDs的检测。通过各种表征手段研究了Fe3O4@PEI的组成特性,并对影响NSAIDs萃取效果的参数进行了优化。Fe3O4@PEI对4种NSAIDs具有高吸附性,与高效液相色谱联用可对环境水样中的酮洛芬、萘普生、双氯芬酸和托芬那酸4种NSAIDs进行定量分析,在1~500 µg/mL范围内,色谱峰面积与质量浓度呈良好的线性关系,样品在3种不同添加水平下的加标回收率在85.6%~107.8%,日内精密度均小于7.8%(n=6),日间精密度均小于9.5%(n=3)。该方法操作简单、准确高效,可用于环境水样中非甾体抗炎药的测定。

    Abstract:

    The long-term presence of non-steroidal anti-inflammatory drugs (NSAIDs) in the environmental water samples not only affects the life safety of aquatic organisms and disturbs the ecoenvironment, but also poses a serious threat to human health. In this study, amino-functionalized Fe3O4 nanoparticles (Fe3O4-NH2) were firstly prepared by solvothermal method. Subsequently, polyethyleneimine (PEI) with a branched chain structure was successfully grafted onto Fe3O4 nanoparticles by Schiff base reaction in aqueous solution at room temperature using glutaraldehyde as a cross-linking agent, and a recyclable PEI-grafted magnetic nano-sorbent (Fe3O4@PEI) was synthesized and applied for the detection of NSAIDs in the environmental water samples. The compositional properties of Fe3O4@PEI were investigated by different characterization methods and the parameters affecting the extraction of NSAIDs were optimized. Due to high adsorption of Fe3O4@PEI for NSAIDs, the quantitative analysis of four NSAIDs in the environmental water samples, ketoprofen, naproxen, diclofenac and tolfenamic acid, was performed in combination with high-performance liquid chromatography. A good linear relationship between the chromatographic peak area and concentration was observed in the range of 1−500 µg/mL. The recoveries of the samples at three different spiked levels ranged from 85.6% to 107.8%; the intra-day precision was less than 7.8% (n=6); and the inter-day precision was less than 9.5% (n=3). The method is simple, rapid, accurate and reliable, and can be used for the analysis of NSAIDs in the environmental water samples.

  • Figure  1.   Results of characterization of relevant materialsResults of characterization of relevant materials A:Ninhydrin colorimetry(a. Fe3O4; b. Fe3O4-NH2; c. Fe3O4-CHO; d. Fe3O4@PEI); B:SEM diagram of Fe3O4@PEI, inset is particle size distribution of Fe3O4@PEI; C: VSM diagram for Fe3O4-NH2 and Fe3O4@PEI; D:XRD pattern of Fe3O4@PEI, inset is its physical image

    Figure  2.   Selection of adsorbent and optimization of preparation conditions($\bar{x} \pm s,\;n=3 $) A:Selection of adsorbent; B:Effect of concentration of PEI on extraction efficiencies of NSAIDs KPF: Ketoprofen; NPX: Naproxen; DCF: Dclofenac; TOL: Tolfenamic acid

    Figure  3.   Optimization of sample pretreatment conditions($\bar{x} \pm s,\;n=3 $) A:Effect of adsorption time on extraction efficiencies of NSAIDs; B:Effect of pH on extraction efficiencies of NSAIDs; C:Effect of amount of adsorbent on extraction efficiencies of NSAIDs; D:Effect of various elute agents on extraction efficiencies of NSAIDs; E:Effect of desorption time on extraction efficiencies of NSAIDs

    Figure  4.   Specificity of Fe3O4@PEI to NSAIDs in water sample (a) injection after MSPE treatment (blank water sample), Inset: magnified chromatogram of (a); (b) injection after MSPE treatment (50 mL of water sample with 10 µg/L standard solution)1: KPF, 2: NPX, 3: DCF, 4: TOL

    Table  1   Linear ranges, linear equations, correlation coefficients (r2) and limits of quantitation(LOQ) for 4 analytes

    Analyte Linear range/ (μg/L) Regression equation r2 LOQ/(μg/L)
    KPF 1−500 y = 49.26x+30.06 0.9997 0.69
    NPX 1−500 y = 48.33x+47.74 0.9989 0.56
    DCF 1−500 y = 108.22x+81.74 0.9996 0.29
    TOL 1−500 y = 19.31x+117.16 0.9988 0.75
    下载: 导出CSV
  • [1]

    Sharma VK, Mamontov E, Tyagi M. Effects of NSAIDs on the nanoscopic dynamics of lipid membrane[J]. Biochim Biophys Acta Biomembr, 2020, 1862(2): 183100. doi: 10.1016/j.bbamem.2019.183100

    [2]

    Ma LY. Transformation and residual determination non-steroidal anti-inflammatory drugs[D]. Wuhan: Huazhong University of Science and Technology, 2017.

    [3]

    Spencer JA, Konetchy D, Ahmadzadeh A. Review: Influences of non-steroidal anti-inflammatory drugs on dairy cattle reproductive performance[J]. Applied Animal Science, 2020, 36(3): 397-406. doi: 10.15232/aas.2019-01969

    [4]

    Rastogi A, Tiwari MK, Ghangrekar MM. A review on environmental occurrence, toxicity and microbial degradation of non-steroidal anti-inflammatory drugs (NSAIDs)[J]. J Environ Manage, 2021, 300: 113694. doi: 10.1016/j.jenvman.2021.113694

    [5]

    Svensson Grape E, Chacón-García AJ, Rojas S, et al. Removal of pharmaceutical pollutants from effluent by a plant-based metal–organic framework[J]. Nat Water, 2023, 1: 433-442. doi: 10.1038/s44221-023-00070-z

    [6]

    Racamonde I, Rodil R, Quintana JB, et al. Fabric phase sorptive extraction: a new sorptive microextraction technique for the determination of non-steroidal anti-inflammatory drugs from environmental water samples[J]. Anal Chim Acta, 2015, 865: 22-30. doi: 10.1016/j.aca.2015.01.036

    [7]

    Ji Y, Du ZX, Zhang HJ, et al. Rapid analysis of non-steroidal anti-inflammatory drugs in tap water and drinks by ionic liquid dispersive liquid–liquid microextraction coupled to ultra-high performance supercritical fluid chromatography[J]. Anal Methods, 2014, 6(18): 7294-7304. doi: 10.1039/C4AY01305K

    [8]

    Jian NG, Qian LL, Wang CM, et al. Novel nanofibers mat as an efficient, fast and reusable adsorbent for solid phase extraction of non-steroidal anti-inflammatory drugs in environmental water[J]. J Hazard Mater, 2019, 363: 81-89. doi: 10.1016/j.jhazmat.2018.09.052

    [9]

    Wang R, Li WQ, Chen ZL. Solid phase microextraction with poly(deep eutectic solvent) monolithic column online coupled to HPLC for determination of non-steroidal anti-inflammatory drugs[J]. Anal Chim Acta, 2018, 1018: 111-118. doi: 10.1016/j.aca.2018.02.024

    [10]

    Zang LJ, He M, Wu ZK, et al. Imine-linked covalent organic frameworks coated stir bar sorptive extraction of non-steroidal anti-inflammatory drugs from environmental water followed by high performance liquid chromatography-ultraviolet detection[J]. J Chromatogr A, 2021, 1659: 462647. doi: 10.1016/j.chroma.2021.462647

    [11]

    Worawit C, Cocovi-Solberg DJ, Varanusupakul P, et al. In-line carbon nanofiber reinforced hollow fiber-mediated liquid phase microextraction using a 3D printed extraction platform as a front end to liquid chromatography for automatic sample preparation and analysis: a proof of concept study[J]. Talanta, 2018, 185: 611-619. doi: 10.1016/j.talanta.2018.04.007

    [12]

    Han XF, Chen J, Li Z, et al. Combustion fabrication of magne-tic porous carbon as a novel magnetic solid-phase extraction adsorbent for the determination of non-steroidal anti-inflammatory drugs[J]. Anal Chim Acta, 2019, 1078: 78-89. doi: 10.1016/j.aca.2019.06.022

    [13]

    Chen ZL, Zhang YN, Guo JZ, et al. Enhanced removal of Cr(VI) by polyethyleneimine-modified bamboo hydrochar[J]. Environ Sci Pollut Res Int, 2023, 30(41): 94185-94194. doi: 10.1007/s11356-023-29085-5

图(4)  /  表(1)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  34
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-17
  • 刊出日期:  2024-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭