Determination of non-steroidal anti-inflammatory drugs in the environmental water samples by a polyvinylimide-modified magnetic nanoparticles-based solid phase extraction coupled with high-performance liquid chromatography
-
摘要:
环境水样中非甾体抗炎药(NSAIDs)的长期存在不仅会影响水生生物的生命安全,扰乱生态系统环境,而且会对人类健康构成严重威胁。采用溶剂热法首先制备了氨基功能化Fe3O4纳米粒子(Fe3O4-NH2)。随后,通过室温下水溶液中的席夫碱反应,以戊二醛为交联剂,将具有支链结构的聚乙烯亚胺(PEI)成功地接枝到Fe3O4纳米粒子上,合成了一种可回收的PEI接枝磁性纳米吸附剂(Fe3O4@PEI)并将其应用于环境水中NSAIDs的检测。通过各种表征手段研究了Fe3O4@PEI的组成特性,并对影响NSAIDs萃取效果的参数进行了优化。Fe3O4@PEI对4种NSAIDs具有高吸附性,与高效液相色谱联用可对环境水样中的酮洛芬、萘普生、双氯芬酸和托芬那酸4种NSAIDs进行定量分析,在1~500 µg/mL范围内,色谱峰面积与质量浓度呈良好的线性关系,样品在3种不同添加水平下的加标回收率在85.6%~107.8%,日内精密度均小于7.8%(n=6),日间精密度均小于9.5%(n=3)。该方法操作简单、准确高效,可用于环境水样中非甾体抗炎药的测定。
Abstract:The long-term presence of non-steroidal anti-inflammatory drugs (NSAIDs) in the environmental water samples not only affects the life safety of aquatic organisms and disturbs the ecoenvironment, but also poses a serious threat to human health. In this study, amino-functionalized Fe3O4 nanoparticles (Fe3O4-NH2) were firstly prepared by solvothermal method. Subsequently, polyethyleneimine (PEI) with a branched chain structure was successfully grafted onto Fe3O4 nanoparticles by Schiff base reaction in aqueous solution at room temperature using glutaraldehyde as a cross-linking agent, and a recyclable PEI-grafted magnetic nano-sorbent (Fe3O4@PEI) was synthesized and applied for the detection of NSAIDs in the environmental water samples. The compositional properties of Fe3O4@PEI were investigated by different characterization methods and the parameters affecting the extraction of NSAIDs were optimized. Due to high adsorption of Fe3O4@PEI for NSAIDs, the quantitative analysis of four NSAIDs in the environmental water samples, ketoprofen, naproxen, diclofenac and tolfenamic acid, was performed in combination with high-performance liquid chromatography. A good linear relationship between the chromatographic peak area and concentration was observed in the range of 1−500 µg/mL. The recoveries of the samples at three different spiked levels ranged from 85.6% to 107.8%; the intra-day precision was less than 7.8% (n=6); and the inter-day precision was less than 9.5% (n=3). The method is simple, rapid, accurate and reliable, and can be used for the analysis of NSAIDs in the environmental water samples.
-
-
Figure 1. Results of characterization of relevant materialsResults of characterization of relevant materials A:Ninhydrin colorimetry(a. Fe3O4; b. Fe3O4-NH2; c. Fe3O4-CHO; d. Fe3O4@PEI); B:SEM diagram of Fe3O4@PEI, inset is particle size distribution of Fe3O4@PEI; C: VSM diagram for Fe3O4-NH2 and Fe3O4@PEI; D:XRD pattern of Fe3O4@PEI, inset is its physical image
Figure 3. Optimization of sample pretreatment conditions($\bar{x} \pm s,\;n=3 $) A:Effect of adsorption time on extraction efficiencies of NSAIDs; B:Effect of pH on extraction efficiencies of NSAIDs; C:Effect of amount of adsorbent on extraction efficiencies of NSAIDs; D:Effect of various elute agents on extraction efficiencies of NSAIDs; E:Effect of desorption time on extraction efficiencies of NSAIDs
Table 1 Linear ranges, linear equations, correlation coefficients (r2) and limits of quantitation(LOQ) for 4 analytes
Analyte Linear range/ (μg/L) Regression equation r2 LOQ/(μg/L) KPF 1−500 y = 49.26x+30.06 0.9997 0.69 NPX 1−500 y = 48.33x+47.74 0.9989 0.56 DCF 1−500 y = 108.22x+81.74 0.9996 0.29 TOL 1−500 y = 19.31x+117.16 0.9988 0.75 -
[1] Sharma VK, Mamontov E, Tyagi M. Effects of NSAIDs on the nanoscopic dynamics of lipid membrane[J]. Biochim Biophys Acta Biomembr, 2020, 1862(2): 183100. doi: 10.1016/j.bbamem.2019.183100
[2] Ma LY. Transformation and residual determination non-steroidal anti-inflammatory drugs[D]. Wuhan: Huazhong University of Science and Technology, 2017.
[3] Spencer JA, Konetchy D, Ahmadzadeh A. Review: Influences of non-steroidal anti-inflammatory drugs on dairy cattle reproductive performance[J]. Applied Animal Science, 2020, 36(3): 397-406. doi: 10.15232/aas.2019-01969
[4] Rastogi A, Tiwari MK, Ghangrekar MM. A review on environmental occurrence, toxicity and microbial degradation of non-steroidal anti-inflammatory drugs (NSAIDs)[J]. J Environ Manage, 2021, 300: 113694. doi: 10.1016/j.jenvman.2021.113694
[5] Svensson Grape E, Chacón-García AJ, Rojas S, et al. Removal of pharmaceutical pollutants from effluent by a plant-based metal–organic framework[J]. Nat Water, 2023, 1: 433-442. doi: 10.1038/s44221-023-00070-z
[6] Racamonde I, Rodil R, Quintana JB, et al. Fabric phase sorptive extraction: a new sorptive microextraction technique for the determination of non-steroidal anti-inflammatory drugs from environmental water samples[J]. Anal Chim Acta, 2015, 865: 22-30. doi: 10.1016/j.aca.2015.01.036
[7] Ji Y, Du ZX, Zhang HJ, et al. Rapid analysis of non-steroidal anti-inflammatory drugs in tap water and drinks by ionic liquid dispersive liquid–liquid microextraction coupled to ultra-high performance supercritical fluid chromatography[J]. Anal Methods, 2014, 6(18): 7294-7304. doi: 10.1039/C4AY01305K
[8] Jian NG, Qian LL, Wang CM, et al. Novel nanofibers mat as an efficient, fast and reusable adsorbent for solid phase extraction of non-steroidal anti-inflammatory drugs in environmental water[J]. J Hazard Mater, 2019, 363: 81-89. doi: 10.1016/j.jhazmat.2018.09.052
[9] Wang R, Li WQ, Chen ZL. Solid phase microextraction with poly(deep eutectic solvent) monolithic column online coupled to HPLC for determination of non-steroidal anti-inflammatory drugs[J]. Anal Chim Acta, 2018, 1018: 111-118. doi: 10.1016/j.aca.2018.02.024
[10] Zang LJ, He M, Wu ZK, et al. Imine-linked covalent organic frameworks coated stir bar sorptive extraction of non-steroidal anti-inflammatory drugs from environmental water followed by high performance liquid chromatography-ultraviolet detection[J]. J Chromatogr A, 2021, 1659: 462647. doi: 10.1016/j.chroma.2021.462647
[11] Worawit C, Cocovi-Solberg DJ, Varanusupakul P, et al. In-line carbon nanofiber reinforced hollow fiber-mediated liquid phase microextraction using a 3D printed extraction platform as a front end to liquid chromatography for automatic sample preparation and analysis: a proof of concept study[J]. Talanta, 2018, 185: 611-619. doi: 10.1016/j.talanta.2018.04.007
[12] Han XF, Chen J, Li Z, et al. Combustion fabrication of magne-tic porous carbon as a novel magnetic solid-phase extraction adsorbent for the determination of non-steroidal anti-inflammatory drugs[J]. Anal Chim Acta, 2019, 1078: 78-89. doi: 10.1016/j.aca.2019.06.022
[13] Chen ZL, Zhang YN, Guo JZ, et al. Enhanced removal of Cr(VI) by polyethyleneimine-modified bamboo hydrochar[J]. Environ Sci Pollut Res Int, 2023, 30(41): 94185-94194. doi: 10.1007/s11356-023-29085-5