• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

发酵枸杞多糖通过调节肠道微生态缓解葡聚糖硫酸钠诱导的溃疡性结肠炎

李蓉, 杨萍, 李明鉴, 叶子茹, 张镨月, 黄永

李蓉,杨萍,李明鉴,等. 发酵枸杞多糖通过调节肠道微生态缓解葡聚糖硫酸钠诱导的溃疡性结肠炎[J]. 中国药科大学学报,2024,55(2):236 − 245. DOI: 10.11665/j.issn.1000-5048.2023082801
引用本文: 李蓉,杨萍,李明鉴,等. 发酵枸杞多糖通过调节肠道微生态缓解葡聚糖硫酸钠诱导的溃疡性结肠炎[J]. 中国药科大学学报,2024,55(2):236 − 245. DOI: 10.11665/j.issn.1000-5048.2023082801
LI Rong, YANG Ping, LI Mingjian, et al. Amelioration of dextran sulfate sodium-induced ulcerative colitis by fermented Lycium barbarum polysaccharides through modulation of intestinal microecology[J]. J China Pharm Univ, 2024, 55(2): 236 − 245. DOI: 10.11665/j.issn.1000-5048.2023082801
Citation: LI Rong, YANG Ping, LI Mingjian, et al. Amelioration of dextran sulfate sodium-induced ulcerative colitis by fermented Lycium barbarum polysaccharides through modulation of intestinal microecology[J]. J China Pharm Univ, 2024, 55(2): 236 − 245. DOI: 10.11665/j.issn.1000-5048.2023082801

发酵枸杞多糖通过调节肠道微生态缓解葡聚糖硫酸钠诱导的溃疡性结肠炎

基金项目: 四川省科技计划项目重点研发项目(No. 2019YFS0160)
详细信息
    通讯作者:

    黄永: Tel:13908191352 E-mail:huangyong@cdutcm.edu.cn

  • 中图分类号: R574.62

Amelioration of dextran sulfate sodium-induced ulcerative colitis by fermented Lycium barbarum polysaccharides through modulation of intestinal microecology

Funds: This study was supported by the Key Research and Development Project Fund of Sichuan Provincial Science and Technology Program(No. 2019YFS0160)
  • 摘要:

    为探究多糖益生元调节肠道微生态作用机制,采用ELISA法、组织病理学分析、免疫组化分析、16S rRNA高通量测序、气相色谱-质谱联用等方法,研究发酵多糖对葡聚糖硫酸钠(DSS)诱导结肠炎模型小鼠肠道菌群和短链脂肪酸(SCFAs)变化的影响及其与肠道炎症水平、屏障蛋白表达的关系。结果发现,发酵枸杞多糖(FLBP)可显著降低小鼠肠道炎症水平,改善结肠组织结构,上调紧密连接蛋白Claudin-1和ZO-1表达量,同时显著增加肠道SCFAs含量。肠道菌群分析结果表明,FLBP可富集小鼠肠道杜氏芽孢杆菌(Dubosiella)和阿克曼氏菌属(Akkermansia),降低Turicibacter菌属、肠杆菌属(Faecalibaculum)、埃希氏菌-志贺菌属(Escherichia-Shigella)丰度。研究结果表明,FLBP激活重塑的杜氏芽孢杆菌在改善结肠炎中占主导作用,显著提升SCFAs含量,增强肠道屏障,降低肠道炎症。研究旨在为改善结肠炎提供更安全有益的选择,并为开发FLBP功能性食品提供理论依据。

    Abstract:

    To explore the mechanism of the intestinal microecology regulation by polysaccharide prebiotics, ELISA, histopathologic analysis, immunohistochemical analysis, 16S rRNA high-throughput sequencing, and gas chromatography-mass spectrometry were applied to investigate the effects of fermented polysaccharides on changes in the intestinal microbiota and short-chain fatty acids (SCFAs) in mice with dextran sulfate sodium (DSS)-induced colitis model and their relationship with the level of intestinal inflammation and barrier protein expression. It was found that fermented Lycium barbarum polysaccharides (FLBP) significantly reduced intestinal inflammation level, improved colonic tissue structure, up-regulated the expression of tight junction proteins Claudin-1 and ZO-1, and significantly increased the content of intestinal SCFAs in mice. Gut bacteria analyses showed that FLBP enriched intestinal Dubosiella and Akkermansia in mice and decreased the abundance of Turicibacter, Faecalibaculum, and Escherichia-Shigella. Results showed that remodeled Dubosiella activated by FLBP played a dominant role in ameliorating colitis by significantly increasing SCFAs content, improving intestinal barrier and reducing intestinal inflammation. The study aimed to provide a safer and better option for the amelioration of colitis and to provide a theoretical basis for the development of functional foods with FLBP.

  • Figure  1.   Effect of fermented Lycium barbarum polysaccharides (FLBP) on changes in body weight and disease activity index (DAI) in mice ($ \bar{x}\pm s $, n = 8)

    A: Body weight; B: DAI score DSS: Dextran sulfate sodium; LFLBP: Low-dose FLBP; HFLBP: High-dose FLBP**P < 0.01 vs control group; ##P < 0.01 vs DSS group

    Figure  2.   Effect of FLBP on changes in colon length in mice ($ \bar{x}\pm s $, n = 8)

    A: Colon image; B: Colon length**P < 0.01 vs control group; ##P < 0.01 vs DSS group

    Figure  3.   Effect of FLBP on inflammatory cytokines and myeloperoxidase (MPO) expression in mice colonic tissues ($ \bar{x}\pm s $, n = 8)

    A: Level of IL-1β in colon; B: Level of IL-6 in colon; C:Level of TNF-α in colon; D: Activity of MPO in colon**P < 0.01 vs control group; ##P < 0.01 vs DSS group; &&P < 0.01 vs LFLBP

    Figure  4.   Effect of FLBP on HE staining of colonic tissues of mice ($ \bar{x}\pm s $, n = 3)

    Note: Black arrows are inflammatory cells, red arrows are colonic crypt structures, and blue arrows are goblet cells

    Figure  5.   Effect of FLBP on colonic barrier protein expression in mice ($ \bar{x}\pm s $, n = 3)

    A: Expression of Claudin-1 protein and ZO-1 protein; B: Average optical density (AOD) of Claudin-1; C: AOD of ZO-1 Note: Black arrows are Claudin-1 protein expression and red arrows are ZO-1 protein expression**P < 0.01 vs control group; #P < 0.05, ##P < 0.01 vs DSS group

    Figure  6.   Effect of FLBP on gut bacterial diversity ($ \bar{x}\pm s $, n = 8)

    A: Simpson index; B: PCoA analysis**P < 0.01 vs control group; #P < 0.05, ##P < 0.01 vs DSS group

    Figure  7.   Effect of FLBP on relative abundance of gut bacteria on genus level ($ \bar{x}\pm s $, n = 8)

    A: Relative abundance of gut bacteria at genus level; B: Significantly altered gut bacteria at genus level**P < 0.01

    Figure  8.   Effect of FLBP on fecal short-chain fatty acids (SCFAs) in mice ($ \bar{x}\pm s $, n = 8)

    *P < 0.05, **P < 0.01 vs control group; #P < 0.05, ##P < 0.01 vs DSS group

    Figure  9.   Analysis of the correlation between gut bacteria and SCFAs (n = 8)

    *P < 0.05, **P < 0.01

  • [1] Zhang TT, Mei YL, Dong WF, et al. Protective effect of staphylococcal nuclease on 2, 4, 6-trinitro-benzene sulfonic acid-induced colitis in mice[J]. J China Pharm Univ (中国药科大学学报), 2020, 51(2): 198-205.
    [2] Zhou ZQ, Li J, Liu D, et al. Pharmacodynamics and mechanism of Zhuling Jianpi capsule on 2, 4, 6-trinitroben-zenesulfonic acid-induced experimental colitis in rats[J]. J China Pharm Univ (中国药科大学学报), 2023, 54(1): 107-114.
    [3]

    Li LY, Qiu N, Meng YQ, et al. Preserved egg white alleviates DSS-induced colitis in mice through the reduction of oxidative stress, modulation of inflammatory cytokines, NF-κB, MAPK and gut microbiota composition[J]. Food Sci Hum Wellness, 2023, 12(1): 312-323. doi: 10.1016/j.fshw.2022.07.021

    [4] Xue YQ, Zhang JB, Ban ZG, et al. Biological characteristics and development and utilization of Lycium barbarum[J]. Inn Mong For Investig Des (内蒙古林业调查设计), 2016, 39(3): 58-59.
    [5]

    Qian D, Zhao YX, Yang G, et al. Systematic review of chemical constituents in the genus Lycium (Solanaceae)[J]. Molecules, 2017, 22(6): 911. doi: 10.3390/molecules22060911

    [6]

    Kulczyński B, Gramza-Michałowska A. Goji berry (Lycium barbarum): composition and health effects—a review[J]. Pol J Food Nutr Sci, 2016, 66(2): 67-75. doi: 10.1515/pjfns-2015-0040

    [7]

    Li L, Wang L, Fan WX, et al. The application of fermentation technology in traditional Chinese medicine: a review[J]. Am J Chin Med, 2020, 48(4): 899-921. doi: 10.1142/S0192415X20500433

    [8] Wu P, Liu JQ, Dong J, et al. Improving effect of Houttuynia cordata polysaccharide on dextran sodium sulfate-induced ulcerative colitis[J]. Sci Technol Food Ind (食品工业科技), 2021, 42(23): 362-369.
    [9]

    Cao GT, Wang KL, Li ZM, et al. Bacillus amyloliquefaciens ameliorates dextran sulfate sodium-induced colitis by improving gut microbial dysbiosis in mice model[J]. Front Microbiol, 2019, 9: 3260.

    [10]

    O’Hara AM, Shanahan F. The gut flora as a forgotten organ[J]. EMBO Rep, 2006, 7(7): 688-693. doi: 10.1038/sj.embor.7400731

    [11]

    Huang ZQ, Liu K, Ma WW, et al. The gut microbiome in human health and disease-Where are we and where are we going? A bibliometric analysis[J]. Front Microbiol, 2022, 13: 1018594. doi: 10.3389/fmicb.2022.1018594

    [12]

    Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4): 223-237. doi: 10.1038/s41575-019-0258-z

    [13]

    Oka A, Sartor RB. Microbial-based and microbial-targeted therapies for inflammatory bowel diseases[J]. Dig Dis Sci, 2020, 65(3): 757-788. doi: 10.1007/s10620-020-06090-z

    [14]

    Zhai ZY, Zhang F, Cao RH, et al. Cecropin A alleviates inflammation through modulating the gut microbiota of C57BL/6 mice with DSS-induced IBD[J]. Front Microbiol, 2019, 10: 1595. doi: 10.3389/fmicb.2019.01595

    [15]

    Wan F, Wang MY, Zhong RQ, et al. Supplementation with Chinese medicinal plant extracts from Lonicera hypoglauca and Scutellaria baicalensis mitigates colonic inflammation by regulating oxidative stress and gut microbiota in a colitis mouse model[J]. Front Cell Infect Microbiol, 2022, 11: 798052. doi: 10.3389/fcimb.2021.798052

    [16]

    Peng L, Gao XY, Nie L, et al. Astragalin attenuates dextran sulfate sodium (DSS)-induced acute experimental colitis by alleviating gut microbiota dysbiosis and inhibiting NF-κB activation in mice[J]. Front Immunol, 2020, 11: 2058. doi: 10.3389/fimmu.2020.02058

    [17]

    Deng QH, Wang WJ, Zhang LY, et al. Gougunao tea polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota[J]. Food Funct, 2023, 14(2): 703-719. doi: 10.1039/D2FO01828D

    [18]

    Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol, 2019, 10: 277. doi: 10.3389/fimmu.2019.00277

    [19]

    den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. J Lipid Res, 2013, 54(9): 2325-2340. doi: 10.1194/jlr.R036012

    [20]

    Dong F, Xiao FF, Li XL, et al. Pediococcus pentosaceus CECT 8330 protects DSS-induced colitis and regulates the intestinal microbiota and immune responses in mice[J]. J Transl Med, 2022, 20 (1): 33.

    [21]

    Wu ZH, Huang SM, Li TT, et al. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis[J]. Microbiome, 2021, 9(1): 184. doi: 10.1186/s40168-021-01115-9

    [22]

    Wang HB, Wang PY, Wang X, et al. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription[J]. Dig Dis Sci, 2012, 57(12): 3126-3135. doi: 10.1007/s10620-012-2259-4

    [23]

    Zhao Y, Chen FD, Wu W, et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3[J]. Mucosal Immunol, 2018, 11(3): 752-762. doi: 10.1038/mi.2017.118

    [24]

    Gerlach K, McKenzie AN, Neurath MF, et al. IL-9 regulates intestinal barrier function in experimental T cell-mediated colitis[J]. Tissue Barriers, 2015, 3(1/2): e983777.

    [25]

    Ling KH, Wan MLY, El-Nezami H, et al. Protective capacity of resveratrol, a natural polyphenolic compound, against deoxynivalenol-induced intestinal barrier dysfunction and bacterial translocation[J]. Chem Res Toxicol, 2016, 29(5): 823-833. doi: 10.1021/acs.chemrestox.6b00001

    [26]

    Martel J, Chang SH, Ko YF, et al. Gut barrier disruption and chronic disease[J]. Trends Endocrinol Metab, 2022, 33(4): 247-265. doi: 10.1016/j.tem.2022.01.002

    [27]

    Llorente C, Jepsen P, Inamine T, et al. Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus[J]. Nat Commun, 2017, 8(1): 837. doi: 10.1038/s41467-017-00796-x

    [28]

    Zhang C, Zhu HP, Jie H, et al. Arbutin ameliorated ulcerative colitis of mice induced by dextran sodium sulfate (DSS)[J]. Bioengineered, 2021, 12(2): 11707-11715. doi: 10.1080/21655979.2021.2005746

  • 期刊类型引用(2)

    1. 曾庆儒,谢玲,龚小会,陈晨,苏正,杨博. 白酒酒糟在不同领域综合利用的研究进展. 酿酒. 2025(01): 47-52 . 百度学术
    2. 王风青,陈燕梅,郑佳,宋洪宁,杨灿,刘军,刘根侨,李仲玄. 白酒固态酿造副产物丢糟在动物养殖中的应用研究. 中国饲料. 2024(21): 175-180+202 . 百度学术

    其他类型引用(0)

图(9)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-08-27
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭