Research progress on the function of ectopic olfactory receptors and their value as drug targets
-
摘要:
嗅觉受体(olfactory receptors,ORs)是一类主要在鼻上皮嗅觉感觉神经元中分布的跨膜蛋白,介导气味向大脑传递实时感觉信号而产生嗅觉。近年来研究发现,ORs也可在鼻腔外组织或器官中表达,且与多种生物过程密切相关,如精子趋化性、伤口愈合、糖脂代谢及肠道分泌等。此外,ORs还与前列腺癌、乳腺癌及结直肠癌等多种恶性肿瘤关系密切,通过调节细胞增殖、凋亡、迁移及侵袭等过程影响肿瘤的发生发展。本文概述了异位ORs对人体组织器官功能的影响,并评估它们作为治疗疾病的药物靶点的潜在价值。
Abstract:Olfactory receptors (ORs) are transmembrane proteins mainly distributed in olfactory sensory neurons of the nasal epithelium, mediating the transmission of real-time sensory signals to the brain to produce smell. Recent studies have reported that ORs can also be expressed in tissues or organs outside the nasal cavity, and are closely related to a variety of biological processes, such as sperm chemotaxis, wound healing, glycolipid metabolism and intestinal secretion. In addition, ORs are closely related to a variety of malignant tumors such as prostate cancer, breast cancer and colorectal cancer, and may affect the occurrence and development of tumors by regulating cell proliferation, apoptosis, migration and invasion. This review provides an overview of the effects of ectopic ORs on the function of various human tissues and organs and assesses their potential value as drug targets for the treatment of human diseases.
-
草珊瑚(Sarcandra glabra)为金粟兰科(Chloranthaceae)草珊瑚属植物,在我国主要分布于南部地区,具有清热凉血,活血消斑,祛风通络的功效,是用于治疗炎症性疾病、风湿关节痛的传统中药[1]。现代药理学研究表明,草珊瑚具有免疫调节[2]、抗炎[3]以及抗肿瘤[4]活性。近些年来,草珊瑚及其提取物在食品以及化妆品等行业的需求也在不断地增长[5]。本课题组围绕草珊瑚中的特征性成分进行了诸多探索[6−7]。乌药烷倍半萜及其聚合物以其独特的3/5/6环结构、多样的聚合方式以及良好的生物活性也被认为是草珊瑚中最有代表性的化合物[8−9]。目前对于草珊瑚的化学成分的研究主要集中于极性较小的萜类成分,对于草珊瑚提取物中的大极性成分,特别是苷类成分研究较少[10]。
为了阐明草珊瑚作为常用中药的物质基础,进一步深入研究其中的有效成分。本研究对新鲜草珊瑚叶醇提物乙酸乙酯萃取后水部位进行了系统的研究。从中分离鉴定了8个极性较大的萜苷类化合物和2个迷迭香酸衍生物,分别为sarcaglaboside C (1)、sarcaglaboside D (2)、byzantionoside B (3)、lauroside E (4)、(4Z)-4-[(3S)-3-(β-D-glucopyranosyloxy)butylidene]-3,5,5-trimethyl-2-cyclohexen-1-one (5)、dihydrovomifoliol-O-β-D-glucopyranoside (6)、(+)-abscisyl-β-D-glucopyranoside (7)、9ξ-O-β-D-glucopyranosyloxy-5-megastigmen-4-one (8)、rosmarinic acid methyl ester (9)、methyl isorinate (10)。其中,化合物3~5,8~9均首次从草珊瑚中分离得到。
1. 仪器与材料
1.1 药 材
草珊瑚地上部分(约51.5 kg)采自福建省三明市,由中国药科大学生药学教研室张勉教授鉴定为金粟兰科草珊瑚属草珊瑚[Sarcandra glabra (Thunb.) Nakai],凭证标本(202106)存放于中国药科大学中药学院天然药物化学教研室。
1.2 仪器与试剂
1260/1100分析型高效液相色谱仪、G6520B Q-TOF质谱仪(美国安捷伦公司);制备型高效液相色谱仪、紫外光谱仪(日本岛津公司);AV-600型核磁共振仪(美国布鲁克公司);200~300目硅胶,GF254硅胶(青岛海洋化工有限公司);MCI树脂(三菱化学公司);RP-C18反相柱色谱填料(上海月旭科技公司);Sephadex LH-20(英国GE healthcare Bio-Sciences AB公司);氘代试剂(美国剑桥同位素实验室);所用试剂均为分析纯或色谱纯。
2. 提取与分离
新鲜的草珊瑚地上部分(51.5 kg),粉碎,用3倍量的85%乙醇回流提取3次,每次3 h。提取液减压浓缩后得到粗浸膏(
1553 g)。取适量水使之混悬,依次用2倍量的乙酸乙酯进行萃取,分别得到水部位(731.2 g)和乙酸乙酯部位(545.3 g)。水部位分别经大孔树脂柱色谱粗分段,用乙醇-水(0︰1→1︰0)梯度洗脱,得到5个馏分(Fr. A-E)。对馏分Fr. B以及Fr. C采用硅胶柱色谱、MCI柱色谱、凝胶柱色谱、制备液相色谱等分离方法,共得到10个化合物。其中,在馏分Fr. B中分离得到化合物1,5~10,在馏分Fr. B中分离得到化合物2~4。化合物1~10 的结构式见图1。3. 结 果
化合物1 白色无定形粉末,(+)-HR-ESI-MS m/z
433.1851 [M+Na]+。分子式为C21H30O8。其1H NMR谱图显示了1组葡萄糖基信号,2个甲基单峰信号;5个烯氢信号;1个连氧取代氢信号。13C NMR谱图显示1个酯羰基碳信号,3组碳碳双键信号,1个缩醛碳信号。结合以上信息分析该化合物为榄香烷倍半萜糖苷类化合物。具体的核磁数据如下:1H NMR (600 MHz, MeOD) δ: 5.83 (1H, m, H-1), 4.99 (1H, m, H-2α), 5.01 (1H, m, H-2β), 5.06 (1H, m, H-3α), 5.40 (1H, m, H-3β), 2.34 (1H, dd, J=12.2 Hz, 3.2 Hz, H-5), 2.81 (1H, dd, J=14.4 Hz, 4.2Hz, H-6α), 2.72 (1H, t, J=13.9 Hz, H-6β), 4.92 (1H, m, H-8), 1.36 (1H, t, J=12 Hz, H-9α), 2.14 (1H, dd, J =12.1 Hz, 6.1Hz, H-9β), 1.80 (1H, s, H3-13), 1.21 (1H, s, H3-14), 4.08 (1H, d, J=13 Hz, H-15α), 4.29 (1H, d, J=13 Hz, H-15β), 4.25 (1H, d, J=7.8 Hz, H-1′), 3.34 (1H, t, J=8.9 Hz, H-2′), 3.27 (1H, d, J=8.7 Hz, H-3′), 3.24 (1H, ddd, J=9.6Hz, 5.7Hz, 2.2Hz, H-4′), 3.20 (1H, dd, J=9.2 Hz, 7.9 Hz, H-5′), 3.66 (1H, dd, J=11.9 Hz, 5.5 Hz, H-6′α), 3.86 (1H, dd, J=11.8 Hz, 2.3 Hz, H-6′β); 13C NMR (150 MHz, MeOD) δ: 146.7 (C-1), 111.2 (C-2), 119.0 (C-3), 145.9 (C-4), 55.8 (C-5), 27.9 (C-6), 163.8 (C-7), 78.4 (C-8), 45.6 (C-9), 40.6 (C-10), 119.2 (C-11), 176.0 (C-12), 6.7 (C-13), 15.3 (C-14), 73.3 (C-15), 102.9 (C-1′), 73.8 (C-2′), 76.8 (C-3′), 70.3 (C-4′), 76.6 (C-5′), 61.4 (C-6′)。该化合物的波谱数据与文献[11]报道的基本一致,故鉴定化合物1为sarcaglaboside C。化合物2 白色无定形粉末,(+)-HR-ESI-MS m/z
565.2284 [M+Na]+。分子式为C26H38O12。1H NMR (600 MHz, MeOD) δ: 5.84 (1H, m, H-1), 5.02 (1H, m, H-2α), 5.02 (1H, m, H-2β), 5.02 (1H, m, H-3α), 5.42 (1H, m, H-3β), 2.73 (1H, t, J=13.9 Hz, H-5), 2.86 (1H, dd, J=14.4 Hz, 4.1 Hz, H-6α), 2.34 (1H, dd, J=13.4 Hz, 4 Hz, H-6β), 4.92 (1H, m, H-8), 1.38 (1H, t, J=12 Hz, H-9α), 2.16 (1H, dt, J=13.5 Hz, 6.7 Hz, H-9β), 1.82 (1H, s, H3-13), 1.23 (1H, s, H3-14), 4.10 (1H, d, J=12.9 Hz, H-15α), 4.26 (1H, m, H-15β), 4.27 (1H, m, H-1′), 3.21 (1H, m, H-2′), 3.37 (1H, m, H-3′), 3.27 (1H, t, J=9.3 Hz, H-4′), 3.37 (1H, m, H-5′), 3.40 (1H, m, H-6′α), 3,96 (1H, m, H-6′β), 4.93 (1H, m, H-1′′), 3.78 (1H, d, J=9.5 Hz, H-2′′), 3.61 (1H, dd, J=11.3 Hz, 6.5 Hz, H-4′′α), 3.91 (1H, d, J=2.5 Hz, H-4′′β), 3.59 (1H, br.s, H-5′′α), 3.59 (1H, br.s, H-5′′β); 13C NMR (150 MHz, MeOD) δ: 147.3 (C-1), 111.8 (C-2), 114.7 (C-3), 146.3 (C-4), 54.4 (C-5), 28.4 (C-6), 164.5 (C-7), 79.7 (C-8), 46.2 (C-9), 41.2 (C-10), 119.7 (C-11), 176.5 (C-12), 7.3 (C-13), 15.9 (C-14), 74.3 (C-15), 103.5 (C-1′), 74.1 (C-2′), 77.2 (C-3′), 70.9 (C-4′), 76.2 (C-5′), 67.9 (C-6′), 110.1 (C-1′′), 77.2 (C-2′′), 79.0 (C-3′′), 74.1 (C-4′′), 64.6 (C-5′′)。该化合物的波谱数据与文献[11]报道的基本一致,故鉴定化合物2为sarcaglaboside D。化合物3 黄色油状物,(+)-HR-ESI-MS m/z
395.2214 [M+Na]+。分子式为C19H32O7。其1H NMR谱图显示了1组葡萄糖基信号,3个甲基单峰信号;1个甲基双峰信号,1个烯氢信号,1个连氧取代氢信号。13C NMR谱图显示1个酮羰基碳信号,1组碳碳双键信号,1个缩醛碳信号。结合以上信息分析该化合物为紫罗兰酮型倍半萜糖苷类化合物。具体的核磁数据如下:1H NMR (600 MHz, MeOD) δ: 1.98 (1H, m, H-2α), 2.46 (1H, d, J=17.4 Hz, H-2β), 5.81 (1H, s, H-4), 1.98 (1H, m, H-6), 1.50 (1H, ddd, J=19.2 Hz, 9.6 Hz, 4.8 Hz, H-7α), 1.98 (1H, m, H-7β), 1.65 (1H, m, H-8α), 1.65 (1H, m, H-8β), 3.91 (1H, m, H-9), 1.19 (1H, d, J=6.2 Hz, H-10), 1.00 (1H, s, H3-11), 1.09 (1H, s, H3-12), 2.05 (1H, s, H3-13), 4.32 (1H, t, J=9.5 Hz, H-1′), 3.14 (1H, t, J=8.5 Hz, H-2′), 3.64 (1H, dt, J=15.1 Hz, 7 Hz, H-3′), 3.35 (1H, t, J=8.4 Hz, H-4′), 3.27 (1H, m, H-5′), 3.89 (1H, m, H-6′α), 3.83 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 46.7 (C-1), 36.6 (C-2), 201.0 (C-3), 124.0 (C-4), 168.7 (C-5), 51.0 (C-6), 36.4 (C-7), 35.9 (C-8), 70.5 (C-9), 23.6 (C-10), 25.4 (C-11), 26.1 (C-12), 18.5 (C-13), 100.7 (C-1′), 76.8 (C-2′), 73.8 (C-3′), 76.5 (C-4′), 74.2 (C-5′), 61.6 (C-6′)。该化合物的波谱数据与文献[12]报道的基本一致,故鉴定化合物3为byzantionoside B。化合物4 黄色油状物,(+)-HR-ESI-MS m/z
411.2116 [M+Na]+。分子式为C19H32O8。1H NMR (600 MHz, MeOD) δ: 2.05 (1H, m, H-2α), 2.46 (1H, d, J=17.4 Hz, H-2β), 5.81 (1H, s, H-4), 1.98 (1H, m, H-6), 1.50 (1H, m, H-7), 1.65 (1H, m, H-8α), 1.65 (1H, m, H-8β), 3.87 (1H, m, H-9), 1.19 (1H, d, J=6.2 Hz, H-10), 1.00 (1H, s, H3-11), 1.09 (1H, s, H3-12), 4.19 (1H, dd, J=15.6 Hz, 2 Hz, H-13), 4.36 (1H, dd, J=15.6 Hz, 2 Hz, H-13), 4.32 (1H, t, J=9.5 Hz, H-1′), 3.14 (1H, t, J=5.8 Hz, H-2′), 3.27 (1H, m, H-3′), 3.27 (1H, m, H-4′), 3.35 (1H, m, H-5′), 3.64 (1H, dp, J=15.1 Hz, 7 Hz, 6.4 Hz, H-6′α), 3.87 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 36.4 (C-1), 51.0 (C-2), 201.0 (C-3), 124.0 (C-4), 168.7 (C-5), 46.7 (C-6), 23.6 (C-7), 36.6 (C-8), 74.2 (C-9), 18.5 (C-10), 25.4 (C-11), 26.1 (C-12), 74.2 (C-13), 100.7 (C-1′), 73.8 (C-2′), 76.8 (C-3′), 70.5 (C-4′), 76.5 (C-5′), 61.5 (C-6′)。 该化合物的波谱数据与文献[13]报道的基本一致,故鉴定化合物4为lauroside E。化合物5 黄色油状物,(+)-HR-ESI-MS m/z
393.2136 [M+Na]+。分子式为C19H32O7。1H NMR (600 MHz, MeOD) δ: 2.66 (1H, dd, J=17.3 Hz, 11.6 Hz, 6.7 Hz, H-2α), 2.66 (1H, dd, J=17.3 Hz, 11.6 Hz, 6.7 Hz, H-2β), 5.86 (1H, s, H-4), 6.34 (1H, d, J=6.4 Hz, H-7), 2.31 (1H, d, J=8.6 Hz, H-8α), 2.31 (1H, d, J=8.6 Hz, H-8β), 4.35 (1H, d, J=7.8 Hz, H-9), 1.28 (1H, d, J=2.2 Hz, H-10), 1.25 (1H, s, H3-11), 1.25 (1H, s, H3-12), 2.11 (1H, s, H3-13), 4.36 (1H, m, H-1′), 4.03 (1H, m, H-2′), 3.26 (1H, dt, J=11.7 Hz, 6.5 Hz, H-3′), 3.15 (1H, m, H-4′), 3.35 (1H, m, H-5′), 3.84 (1H, m, H-6′α), 3.98 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 53.2 (C-1), 37.8 (C-2), 200.8 (C-3), 124.0 (C-4), 157.9 (C-5), 141.7 (C-6), 134.2 (C-7), 37.2 (C-8), 76.7 (C-9), 21.3 (C-10), 27.7 (C-11), 27.7 (C-12), 18.7 (C-13), 101.1 (C-1′), 73.7 (C-2′), 76.6 (C-3′), 70.5 (C-4′), 74.3 (C-5′), 61.7 (C-6′)。该化合物的波谱数据与文献[14]报道的基本一致,故鉴定化合物5为(4Z)-4-[(3S)-3-(β-D-glucopyranosyloxy)butylidene]-3,5,5-trimethyl-2-cyclohexen-1-one。化合物6 黄色油状物,(+)-HR-ESI-MS m/z
411.2116 [M+Na]+。分子式为C19H32O8。1H NMR (600 MHz, MeOD) δ: 2.61 (1H, d, J=12 Hz, H-2α), 2.15 (1H, d, J=12 Hz, H-2β), 5.83 (1H, s, H-4), 2.15 (1H, d, J=12 Hz, H-7α), 1.82 (1H, m, H-7β), 1.79 (1H, m, H-8α), 1.49 (1H, tt, J=12.9 Hz, 4.5 Hz, H-8β), 4.07 (1H, m, H-9), 1.17 (1H, d, J=6.2 Hz, H-10), 1.02 (1H, s, H3-11), 1.10 (1H, s, H3-12), 2.04 (1H, s, H3-13), 4.36 (1H, m, H-1′), 3.13 (1H, dd, J=9.2 Hz, 7.8 Hz, H-2′), 3.81 (1H, q, J=6 Hz, H-3′), 3.26 (1H, m, H-4′), 3.26 (1H, m, H-5′), 3.85 (1H, dd, J=11.6 Hz, 5.3 Hz, H-6′α), 3.34 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 42.0 (C-1), 50.2 (C-2), 200.2 (C-3), 125.8 (C-4), 170.9 (C-5), 78.4 (C-6), 34.0 (C-7), 32.7 (C-8), 75.3 (C-9), 20.9 (C-10), 23.8 (C-11), 23.3 (C-12), 19.2 (C-13), 101.4 (C-1′), 74.3 (C-2′), 77.0 (C-3′), 70.9 (C-4′), 77.3 (C-5′), 62.0 (C-6′)。该化合物的波谱数据与文献[15]报道的基本一致,故鉴定化合物6为dihydrovomifoliol-O-β-D-glucopyranoside。化合物7 黄色油状物,(+)-HR-ESI-MS m/z
459.1917 [M+Na]+。分子式为C21H30O9。1H NMR (600 MHz, MeOD) δ: 2.21 (1H, d, J=16.9 Hz, H-2α), 2.56 (1H, d, J=16.9 Hz, H-2β), 5.96 (1H, s, H-4), 6.35 (1H, d, J=16.1 Hz, H-7), 7.83 (1H, d, J=16.1 Hz, H-8), 5.84 (1H, s, H-10), 1.09 (1H, s, H3-12), 2.04 (1H, s, H3-13), 2.04 (1H, br.s, H3-14), 1.95 (1H, br.s, H3-15), 5.52 (1H, d, J=8.2 Hz, H-1′), 3.78 (1H, q, J=6.1 Hz, H-2′), 3.27 (1H, m, H-3′), 3.43 (1H, m, H-4′), 3.43 (1H, m, H-5′), 3.86 (1H, dd, J=12.1 Hz, 2.1 Hz, H-6′α), 3.71 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 41.5 (C-1), 49.2 (C-2), 199.5 (C-3), 126.3 (C-4), 152.2 (C-5), 77.4 (C-6), 137.9 (C-7), 127.8 (C-8), 128.5 (C-9), 116.7 (C-10), 164.4 (C-11), 18.1 (C-12), 18.1 (C-13), 22.2 (C-14), 19.9 (C-15), 94.0 (C-1′), 69.7 (C-2′), 76.7 (C-3′), 72.6 (C-4′), 67.8 (C-5′), 61.0 (C-6′)。该化合物的波谱数据与文献[16]报道的基本一致,故鉴定化合物7为 (+)-abscisyl-β-D-glucopyranoside。化合物8 黄色油状物,(+)-HR-ESI-MS m/z
395.2214 [M+Na]+。分子式为C19H32O7。1H NMR (600 MHz, MeOD) δ: 1.81 (1H, m, H-2α), 1.81 (1H, m, H-2β), 2.44 (1H, dd, J=7.5 Hz, 4.2 Hz, H-3α), 2.44 (1H, dd, J=7.5 Hz, 4.2 Hz, H-3β), 2.54 (1H, m, H-7α), 2.31 (1H, m, H-7β), 1.68 (1H, m, H-8α), 1.68 (1H, m, H-8β), 3.96 (1H, tt, J=7 Hz, 3.4 Hz, H-9), 1.76 (1H, s, H-10), 1.20 (1H, s, H3-11), 1.20 (1H, s, H3-12), 1.23 (1H, d, J=6.2 Hz, H-13), 4.35 (1H, d, J=7 Hz, H-1′), 3.16 (1H, m, H-2′), 3.28 (1H, m, H-3′), 3.31 (1H, m, H-4′), 3.28 (1H, m, H-5′), 3.88 (1H, ddd, J=11.4 Hz, 7 Hz, 1.4 Hz, H-6′α), 3.67 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 36.7 (C-1), 37.6 (C-2), 36.4 (C-3), 200.7 (C-4), 132.7 (C-5), 167.9 (C-6), 27.1 (C-7), 34.2 (C-8), 71.0 (C-9), 10.9 (C-10), 26.3 (C-11), 26.3 (C-12), 18.9 (C-13), 101.4 (C-1′), 74.9 (C-2′), 77.0 (C-3′), 74.3 (C-4′), 77.4 (C-5′), 62.1 (C-6′)。该化合物的波谱数据与文献[17]报道的基本一致,故鉴定化合物8为9ξ-O-β-D-glucopyranosyloxy-5-megastigmen-4-one。化合物9 白色方晶,(+)-HR-ESI-MS m/z
397.3121 [M+Na]+。分子式为C19H18O8。1H NMR (600 MHz, MeOD) δ: 7.05 (1H, d, J=2.1 Hz, H-2), 6.96 (1H, dd, J=8.2 Hz, 2 Hz, H-5), 6.78 (1H, d, J=8.1 Hz, H-6), 7.55 (1H, d, J=15.9 Hz, H-7), 6.26 (1H, d, J=15.9 Hz, H-8), 6.73 (2H, m, H-2′, H-6′), 6.57 (1H, dd, J=8.1 Hz, 2 Hz, H-5′), 3.04 (1H, qd, J=14.3 Hz, 6.4 Hz, H2-7′), 5.19 (1H, dd, J=7.7 Hz, 5.1 Hz, H-8′), 3.70 (1H, s, H3-OCH3); 13C NMR (150 MHz, MeOD) δ: 126.1 (C-1), 114.9 (C-2), 148.6 (C-3), 146.6 (C-4), 121.8 (C-5), 116.1 (C-6), 144.8 (C-7), 112.7 (C-8), 166.9 (C-9), 127.3 (C-1′), 115.1 (C-2′), 145.5 (C-3′), 144.8 (C-4′), 113.8 (C-5′), 120.4 (C-6′), 36.5 (C-7′), 73.3 (C-8′), 170.8 (C-9′), 51.3 (C-OCH3)。该化合物的波谱数据与文献[18]报道的基本一致,故鉴定化合物9为rosmarinic acid methyl ester。化合物10 白色方晶,(+)-HR-ESI-MS m/z
381.1117 [M+Na]+。分子式为C19H18O7。1H NMR (600 MHz, MeOD) δ: 7.06 (1H, d, J=2.1 Hz, H-2), 6.96 (1H, dd, J=8.2 Hz, 2 Hz, H-5), 6.81 (1H, d, J=8.1 Hz, H-6), 7.56 (1H, d, J=15.9 Hz, H-7), 6.27 (1H, d, J=15.9 Hz, H-8), 7.10 (2H, m, H-2′, H-6′), 6.75 (2H, dd, J=8.1 Hz, 2 Hz, H-3′, H-5′), 3.11 (1H, m, H2-7′), 5.22 (1H, dd, J=7.7 Hz, 5.1 Hz, H-8′), 3.71 (1H, s, H3-OCH3); 13C NMR (150 MHz, MeOD) δ: 126.2 (C-1), 113.9 (C-2), 148.6 (C-3), 146.6 (C-4), 121.8 (C-5), 112.7 (C-6), 156.0 (C-7), 122.3 (C-8), 166.9 (C-9), 130.1 (C-1′), 115.1 (C-2′, C-6′), 114.9 (C-3′, C-5′), 145.4 (C-4′), 36.3 (C-7′), 73.3 (C-8′), 170.8 (C-9′), 51.3 (C-OCH3)。该化合物的波谱数据与文献[19]报道的基本一致,故鉴定化合物10为methyl isorinate。4. 讨论与结论
草珊瑚中含有结构丰富的化合物,包括酚酸类,以乌药烷倍半萜及其多聚体组成的萜类,黄酮类以及香豆素类。本研究以草珊瑚地上部分的水萃取层为研究对象,系统地研究了其中的化学成分。从中发现了2个榄香烷糖苷类化合物,6个紫罗兰酮糖苷类化合物以及2个酚酸类化合物。上述化合物都具有较大的极性。其中,化合物3~5,8~9首次从草珊瑚中分离得到。这些化合物的发现有助于丰富草珊瑚植物中化合物的类型,有利于对草珊瑚作为常用中药含有的有效成分的理解,并为后续药理活性研究提供了重要的物质基础。基于草珊瑚用于治疗炎症性疾病的经验,后续可以对分离得到的上述化合物进行抗炎活性研究。
-
表 1 异位嗅觉受体潜在药物靶点研究现状
受 体 配 体 产生效应 目标疾病或症状 生物学功能 参考文献 OR2AT4 檀香 激活 伤口愈合 增加角质细胞增殖、迁移、再生和伤口愈合 [30,78−79] 激活 脱发 增加头发生长和延长毛囊的生长期 [18,33] Olfr544 壬二酸 激活 肥胖和皮下脂肪减少 通过脂肪分解和肝脂肪酸氧化而减少皮下脂肪 [37] OR51B6 Troenan 抑制 结肠癌 抑制细胞增殖和迁移 [14,67] OR1A2 单萜(–)-香茅醛 抑制 肝癌 抑制细胞增殖 [69] OR2J3 乙酰醛 抑制 肺癌 诱导细胞凋亡、抑制细胞增殖和迁移 [65] OR51E2 β-紫罗兰酮 抑制 黑色素瘤 抑制黑色素细胞增殖、迁移并诱导细胞凋亡 [71] -
[1] Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map[J]. BMC Biol, 2021, 19(1): 174. doi: 10.1186/s12915-021-01116-y
[2] He ZW, Wang DW. Olfactory receptor 2 activation in macrophages: novel mediator of atherosclerosis progression[J]. Signal Transduct Target Ther, 2022, 7(1): 247. doi: 10.1038/s41392-022-01115-7
[3] Raka RN, Wu H, Xiao JS, et al. Human ectopic olfactory receptors and their food originated ligands: a review[J]. Crit Rev Food Sci Nutr, 2022, 62(20): 5424-5443. doi: 10.1080/10408398.2021.1885007
[4] Galibert F, Azzouzi N. Are the olfactory receptors present at the sperm membrane involved in reproduction[J]? Int J Mol Sci, 2023, 24(14): 11277. doi: 10.3390/ijms241411277
[5] Geng RX, Wang YN, Fang JJ, et al. Ectopic odorant receptors responding to flavor compounds in skin health and disease: current insights and future perspectives[J]. Crit Rev Food Sci Nutr, 2023, 63(28): 9392-9408. doi: 10.1080/10408398.2022.2064812
[6] Zhang SY, Li LH, Li HB. Role of ectopic olfactory receptors in glucose and lipid metabolism[J]. Br J Pharmacol, 2021, 178(24): 4792-4807. doi: 10.1111/bph.15666
[7] Meijerink J. The intestinal fatty acid-enteroendocrine interplay, emerging roles for olfactory signaling and serotonin conjugates[J]. Molecules, 2021, 26(5): 1416. doi: 10.3390/molecules26051416
[8] Chung C, Cho HJ, Lee C, et al. Odorant receptors in cancer[J]. BMB Rep, 2022, 55(2): 72-80. doi: 10.5483/BMBRep.2022.55.2.010
[9] Cong XJ, Ren WW, Pacalon J, et al. Large-scale G protein-coupled olfactory receptor-ligand pairing[J]. ACS Cent Sci, 2022, 8(3): 379-387. doi: 10.1021/acscentsci.1c01495
[10] Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition[J]. Cell, 1991, 65(1): 175-187. doi: 10.1016/0092-8674(91)90418-X
[11] Jimenez RC, Casajuana-Martin N, García-Recio A, et al. The mutational landscape of human olfactory G protein-coupled receptors[J]. BMC Biol, 2021, 19(1): 21. doi: 10.1186/s12915-021-00962-0
[12] Barnes IHA, Ibarra-Soria X, Fitzgerald S, et al. Expert curation of the human and mouse olfactory receptor gene repertoires identifies conserved coding regions split across two exons[J]. BMC Genomics, 2020, 21(1): 196. doi: 10.1186/s12864-020-6583-3
[13] Ali MA, Wang YH, Qin ZY, et al. Odorant and taste receptors in sperm chemotaxis and cryopreservation: roles and implications in sperm capacitation, motility and fertility[J]. Genes, 2021, 12(4): 488. doi: 10.3390/genes12040488
[14] Lee SJ, Depoortere I, Hatt H. Therapeutic potential of ectopic olfactory and taste receptors[J]. Nat Rev Drug Discov, 2019, 18(2): 116-138. doi: 10.1038/s41573-018-0002-3
[15] Feldmesser E, Olender T, Khen M, et al. Widespread ectopic expression of olfactory receptor genes[J]. BMC Genomics, 2006, 7: 121. doi: 10.1186/1471-2164-7-121
[16] Makeyeva Y, Nicol C, Ledger WL, et al. Immunocytochemical localization of olfactory-signaling molecules in human and rat spermatozoa[J]. J Histochem Cytochem, 2020, 68(7): 491-513. doi: 10.1369/0022155420939833
[17] Zhang XH, de la Cruz O, Pinto JM, et al. Characterizing the expression of the human olfactory receptor gene family using a novel DNA microarray[J]. Genome Biol, 2007, 8(5): R86. doi: 10.1186/gb-2007-8-5-r86
[18] Tong T, Wang YN, Kang SG, et al. Ectopic odorant receptor responding to flavor compounds: versatile roles in health and disease[J]. Pharmaceutics, 2021, 13(8): 1314. doi: 10.3390/pharmaceutics13081314
[19] Masjedi S, Zwiebel LJ, Giorgio TD. Olfactory receptor gene abundance in invasive breast carcinoma[J]. Sci Rep, 2019, 9(1): 13736. doi: 10.1038/s41598-019-50085-4
[20] Li M, Wang X, Ma RR, et al. The olfactory receptor family 2, subfamily T, member 6 (OR2T6) is involved in breast cancer progression via initiating epithelial-mesenchymal transition and MAPK/ERK pathway[J]. Front Oncol, 2019, 9: 1210. doi: 10.3389/fonc.2019.01210
[21] Li M, Schweiger MW, Ryan DJ, et al. Olfactory receptor 5B21 drives breast cancer metastasis[J]. iScience, 2021, 24(12): 103519. doi: 10.1016/j.isci.2021.103519
[22] Spehr M, Gisselmann G, Poplawski A, et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis[J]. Science, 2003, 299(5615): 2054-2058. doi: 10.1126/science.1080376
[23] Veitinger T, Riffell JR, Veitinger S, et al. Chemosensory Ca2+ dynamics correlate with diverse behavioral phenotypes in human sperm[J]. J Biol Chem, 2011, 286(19): 17311-17325. doi: 10.1074/jbc.M110.211524
[24] Corda PO, Santiago J, Fardilha M. G-protein coupled receptors in human sperm: an in silico approach to identify potential modulatory targets[J]. Molecules, 2022, 27(19): 6503. doi: 10.3390/molecules27196503
[25] Milardi D, Colussi C, Grande G, et al. Olfactory receptors in Semen and in the male tract: from proteome to proteins[J]. Front Endocrinol, 2018, 8: 379. doi: 10.3389/fendo.2017.00379
[26] Yuan X, Wang YH, Ali MA, et al. Odorant receptor OR2C1 is an essential modulator of boar sperm capacitation by binding with heparin[J]. Int J Mol Sci, 2023, 24(2): 1664. doi: 10.3390/ijms24021664
[27] Olaniyan OT, Dare A, Okotie GE, et al. Ovarian odorant-like biomolecules in promoting chemotaxis behavior of spermatozoa olfactory receptors during migration, maturation, and fertilization[J]. Middle East Fertil Soc J, 2021, 26(1): 3. doi: 10.1186/s43043-020-00049-w
[28] Dai PY, Chen C, Yu JY, et al. New insights into sperm physiology regulation: enlightenment from G-protein-coupled receptors[J]. Andrology, 2024. doi: 10.1111/andr.13593.
[29] Teveroni E, Di Nicuolo F, Vergani E, et al. Short-chain fatty acids modulate sperm migration through olfactory receptor 51E2 activity[J]. Int J Mol Sci, 2022, 23(21): 12726. doi: 10.3390/ijms232112726
[30] Koyama S, Heinbockel T. The effects of essential oils and terpenes in relation to their routes of intake and application[J]. Int J Mol Sci, 2020, 21(5): 1558. doi: 10.3390/ijms21051558
[31] Seo J, Choi S, Kim H, et al. Association between olfactory receptors and skin physiology[J]. Ann Dermatol, 2022, 34(2): 87-94. doi: 10.5021/ad.2022.34.2.87
[32] Kim JS, Lee HL, Jeong JH, et al. OR2AT4, an ectopic olfactory receptor, suppresses oxidative stress-induced senescence in human keratinocytes[J]. Antioxidants, 2022, 11(11): 2180. doi: 10.3390/antiox11112180
[33] Jimenez F, López E, Bertolini M, et al. Topical odorant application of the specific olfactory receptor OR2AT4 agonist, Sandalore®, improves telogen effluvium-associated parameters[J]. J Cosmet Dermatol, 2021, 20(3): 784-791. doi: 10.1111/jocd.13608
[34] Kang W, Son B, Park S, et al. UV-irradiation- and inflammation-induced skin barrier dysfunction is associated with the expression of olfactory receptor genes in human keratinocytes[J]. Int J Mol Sci, 2021, 22(6): 2799. doi: 10.3390/ijms22062799
[35] Connor EE, Zhou Y, Liu GE. The essence of appetite: does olfactory receptor variation play a role[J]? J Anim Sci, 2018, 96(4): 1551-1558. doi: 10.1093/jas/sky068
[36] Liu Y, Long AJ, Chen LQ, et al. The Asprosin-OLFR734 module regulates appetitive behaviors[J]. Cell Discov, 2020, 6: 19.
[37] Wu CY, Hwang SH, Jia YY, et al. Olfactory receptor 544 reduces adiposity by steering fuel preference toward fats[J]. J Clin Invest, 2017, 127(11): 4118-4123. doi: 10.1172/JCI89344
[38] Tong T, Ryu SE, Min Y, et al. Olfactory receptor 10J5 responding to α-cedrene regulates hepatic steatosis via the cAMP-PKA pathway[J]. Sci Rep, 2017, 7(1): 9471. doi: 10.1038/s41598-017-10379-x
[39] Wu CY, Thach TT, Kim YJ, et al. Olfactory receptor 43 reduces hepatic lipid accumulation and adiposity in mice[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(4): 489-499.
[40] Wu CY, Jia YY, Lee JH, et al. Activation of OR1A1 suppresses PPAR-γ expression by inducing HES-1 in cultured hepatocytes[J]. Int J Biochem Cell Biol, 2015, 64: 75-80. doi: 10.1016/j.biocel.2015.03.008
[41] Tong T, Park J, Moon C, et al. Regulation of adipogenesis and thermogenesis through mouse olfactory receptor 23 stimulated by α-cedrene in 3T3-L1 cells[J]. Nutrients, 2018, 10(11): 1781. doi: 10.3390/nu10111781
[42] Yang Z, Cheng J, Shang P, et al. Emerging roles of olfactory receptors in glucose metabolism[J]. Trends Cell Biol, 2023, 33(6): 463-476. doi: 10.1016/j.tcb.2022.09.005
[43] Munakata Y, Yamada T, Imai J, et al. Olfactory receptors are expressed in pancreatic β-cells and promote glucose-stimulated insulin secretion[J]. Sci Rep, 2018, 8(1): 1499. doi: 10.1038/s41598-018-19765-5
[44] Leem J, Shim HM, Cho H, et al. Octanoic acid potentiates glucose-stimulated insulin secretion and expression of glucokinase through the olfactory receptor in pancreatic β-cells[J]. Biochem Biophys Res Commun, 2018, 503(1): 278-284. doi: 10.1016/j.bbrc.2018.06.015
[45] Cheng J, Yang Z, Ge XY, et al. Autonomous sensing of the insulin peptide by an olfactory G protein-coupled receptor modulates glucose metabolism[J]. Cell Metab, 2022, 34(2): 240-255. e10.
[46] Kim KS, Lee IS, Kim KH, et al. Activation of intestinal olfactory receptor stimulates glucagon-like peptide-1 secretion in enteroendocrine cells and attenuates hyperglycemia in type 2 diabetic mice[J]. Sci Rep, 2017, 7(1): 13978. doi: 10.1038/s41598-017-14086-5
[47] Long AJ, Liu Y, Fang XL, et al. Famsin, a novel gut-secreted hormone, contributes to metabolic adaptations to fasting via binding to its receptor OLFR796[J]. Cell Res, 2023, 33(4): 273-287. doi: 10.1038/s41422-023-00782-7
[48] Li EW, Shan HL, Chen LQ, et al. OLFR734 mediates glucose metabolism as a receptor of asprosin[J]. Cell Metab, 2019, 30(2): 319-328. e8.
[49] Wang YN, Geng RX, Zhao YH, et al. The gut odorant receptor and taste receptor make sense of dietary components: a focus on gut hormone secretion[J]. Crit Rev Food Sci Nutr, 2023: 1-15.
[50] Braun T, Voland P, Kunz L, et al. Enterochromaffin cells of the human gut: sensors for spices and odorants[J]. Gastroenterology, 2007, 132(5): 1890-1901. doi: 10.1053/j.gastro.2007.02.036
[51] Nishida A, Miyamoto J, Shimizu H, et al. Gut microbial short-chain fatty acids-mediated olfactory receptor 78 stimulation promotes anorexigenic gut hormone peptide YY secretion in mice[J]. Biochem Biophys Res Commun, 2021, 557: 48-54. doi: 10.1016/j.bbrc.2021.03.167
[52] Dinsart G, Leprovots M, Lefort A, et al. The olfactory receptor Olfr78 promotes differentiation of enterochromaffin cells in the mouse colon[J]. EMBO Rep, 2024, 25(1): 304-333.
[53] Wu CY, Jeong MY, Kim JY, et al. Activation of ectopic olfactory receptor 544 induces GLP-1 secretion and regulates gut inflammation[J]. Gut Microbes, 2021, 13(1): 1987782. doi: 10.1080/19490976.2021.1987782
[54] Kotlo K, Anbazhagan AN, Priyamvada S, et al. The olfactory G protein-coupled receptor (Olfr-78/OR51E2) modulates the intestinal response to colitis[J]. Am J Physiol Cell Physiol, 2020, 318(3): C502-C513. doi: 10.1152/ajpcell.00454.2019
[55] Wang CC, Andreasson KI. Odorant receptors in macrophages: potential targets for atherosclerosis[J]. Trends Immunol, 2022, 43(4): 262-264. doi: 10.1016/j.it.2022.02.006
[56] Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19(8): 477-489. doi: 10.1038/s41577-019-0165-0
[57] Orecchioni M, Kobiyama K, Winkels H, et al. Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production[J]. Science, 2022, 375(6577): 214-221. doi: 10.1126/science.abg3067
[58] Drew L. Olfactory receptors are not unique to the nose[J]. Nature, 2022, 606(7915): S14-S17. doi: 10.1038/d41586-022-01631-0
[59] Li Y, Li Q, Li DJ, et al. Exosome carrying PSGR promotes stemness and epithelial-mesenchymal transition of low aggressive prostate cancer cells[J]. Life Sci, 2021, 264: 118638. doi: 10.1016/j.lfs.2020.118638
[60] Rodriguez M, Luo W, Weng J, et al. PSGR promotes prostatic intraepithelial neoplasia and prostate cancer xenograft growth through NF-κB[J]. Oncogenesis, 2014, 3(8): e114. doi: 10.1038/oncsis.2014.29
[61] Sanz G, Leray I, Dewaele A, et al. Promotion of cancer cell invasiveness and metastasis emergence caused by olfactory receptor stimulation[J]. PLoS One, 2014, 9(1): e85110. doi: 10.1371/journal.pone.0085110
[62] Xu X, Khater M, Wu GY. The olfactory receptor OR51E2 activates ERK1/2 through the Golgi-localized Gβγ-PI3Kγ-ARF1 pathway in prostate cancer cells[J]. Front Pharmacol, 2022, 13: 1009380. doi: 10.3389/fphar.2022.1009380
[63] Rodriguez M, Siwko S, Zeng L, et al. Prostate-specific G-protein-coupled receptor collaborates with loss of PTEN to promote prostate cancer progression[J]. Oncogene, 2016, 35(9): 1153-1162. doi: 10.1038/onc.2015.170
[64] Asadi M, Ahmadi N, Ahmadvand S, et al. Investigation of olfactory receptor family 51 subfamily j member 1 (OR51J1) gene susceptibility as a potential breast cancer-associated biomarker[J]. PLoS One, 2021, 16(2): e0246752. doi: 10.1371/journal.pone.0246752
[65] Kalbe B, Schulz VM, Schlimm M, et al. Helional-induced activation of human olfactory receptor 2J3 promotes apoptosis and inhibits proliferation in a non-small-cell lung cancer cell line[J]. Eur J Cell Biol, 2017, 96(1): 34-46. doi: 10.1016/j.ejcb.2016.11.004
[66] Vadevoo SMP, Gunassekaran GR, Lee C, et al. The macrophage odorant receptor Olfr78 mediates the lactate-induced M2 phenotype of tumor-associated macrophages[J]. Proc Natl Acad Sci U S A, 2021, 118(37): e2102434118. doi: 10.1073/pnas.2102434118
[67] Weber L, Al-Refae K, Ebbert J, et al. Activation of odorant receptor in colorectal cancer cells leads to inhibition of cell proliferation and apoptosis[J]. PLoS One, 2017, 12(3): e0172491. doi: 10.1371/journal.pone.0172491
[68] Morita R, Hirohashi Y, Torigoe T, et al. Olfactory receptor family 7 subfamily C member 1 is a novel marker of colon cancer-initiating cells and is a potent target of immunotherapy[J]. Clin Cancer Res, 2016, 22(13): 3298-3309. doi: 10.1158/1078-0432.CCR-15-1709
[69] Maßberg D, Simon A, Häussinger D, et al. Monoterpene (-)-citronellal affects hepatocarcinoma cell signaling via an olfactory receptor[J]. Arch Biochem Biophys, 2015, 566: 100-109. doi: 10.1016/j.abb.2014.12.004
[70] Shibel R, Sarfstein R, Nagaraj K, et al. The olfactory receptor gene product, OR5H2, modulates endometrial cancer cells proliferation via interaction with the IGF1 signaling pathway[J]. Cells, 2021, 10(6): 1483. doi: 10.3390/cells10061483
[71] Gelis L, Jovancevic N, Bechara FG, et al. Functional expression of olfactory receptors in human primary melanoma and melanoma metastasis[J]. Exp Dermatol, 2017, 26(7): 569-576. doi: 10.1111/exd.13316
[72] Cho HJ, Koo J. Odorant G protein-coupled receptors as potential therapeutic targets for adult diffuse gliomas: a systematic analysis and review[J]. BMB Rep, 2021, 54(12): 601-607. doi: 10.5483/BMBRep.2021.54.12.165
[73] Marti-Solano M, Crilly SE, Malinverni D, et al. Combinatorial expression of GPCR isoforms affects signalling and drug responses[J]. Nature, 2020, 587(7835): 650-656. doi: 10.1038/s41586-020-2888-2
[74] Guo SM, Zhao TT, Yun Y, et al. Recent progress in assays for GPCR drug discovery[J]. Am J Physiol Cell Physiol, 2022, 323(2): C583-C594. doi: 10.1152/ajpcell.00464.2021
[75] Ache BW. Position review: functional selectivity in mammalian olfactory receptors[J]. Chem Senses, 2020, 45(7): 503-508. doi: 10.1093/chemse/bjaa046
[76] Han L, Qu QH, Aydin D, et al. Structure and mechanism of the SGLT family of glucose transporters[J]. Nature, 2022, 601(7892): 274-279. doi: 10.1038/s41586-021-04211-w
[77] Schiazza AR, Considine EG, Betcher M, et al. Loss of renal olfactory receptor 1393 leads to improved glucose homeostasis in a type 1 diabetic mouse model[J]. Physiol Rep, 2021, 9(23): e15007.
[78] Verzeaux L, Richer S, Viguier J, et al. Structure-function relationship between a natural cosmetic active ingredient and the olfactory receptor OR2AT4[J]. Int J Cosmet Sci, 2019, 41(2): 194-199. doi: 10.1111/ics.12526
[79] Edelkamp J, Lousada MB, Pinto D, et al. Application of Topical Sandalore® Increases Epidermal Dermcidin Synthesis in Organ-Cultured Human Skin ex vivo[J]. Skin Pharmacol Physiol, 2023, 36(3): 117-124. doi: 10.1159/000528402
[80] Naressi RG, Schechtman D, Malnic B. Odorant receptors as potential drug targets[J]. Trends Pharmacol Sci, 2023, 44(1): 11-14. doi: 10.1016/j.tips.2022.08.003
[81] Davenport AP, Scully CCG, de Graaf C, et al. Advances in therapeutic peptides targeting G protein-coupled receptors[J]. Nat Rev Drug Discov, 2020, 19(6): 389-413. doi: 10.1038/s41573-020-0062-z
[82] Yoshikawa K, Nakagawa H, Mori N, et al. An unsaturated aliphatic alcohol as a natural ligand for a mouse odorant receptor[J]. Nat Chem Biol, 2013, 9(3): 160-162. doi: 10.1038/nchembio.1164
计量
- 文章访问数: 400
- HTML全文浏览量: 46
- PDF下载量: 37