Research progress of pharmacological actions and clinical applications of diterpene ginkgolides meglumine injection
-
摘要:
银杏是银杏科银杏属植物,其根、叶、果实均可入药,具有活血养心、敛肺涩肠的功效,临床上广泛用于改善血液循环。银杏二萜内酯葡胺注射液是基于银杏叶的主要提取物银杏内酯类成分研发的中药五类新药。研究发现银杏二萜内酯葡胺注射液药理作用广泛,具有抗氧化、抑制血小板聚集、改善记忆、心肌细胞保护及炎症损伤保护等作用,临床上广泛用于治疗心脑血管疾病、糖尿病并发症、脑梗死合并症等,其作用机制和靶点也有深入的研究,具有较好的应用前景。本文对银杏二萜内酯葡胺注射液的临床应用和药理作用进行综述,为临床药物选择和深入研发提供参考依据。
-
关键词:
- 银杏二萜内酯葡胺注射液 /
- 药理作用 /
- 临床应用 /
- 神经保护 /
- 心肌保护
Abstract:Ginkgo biloba L. is a plant belonging to the Ginkgoaceae family and the ginkgo genus, and its roots, leaves and fruits can be used as medicine, with the effects of activating blood and nourishing heart, and tonifying the lung and intestine. Diterpene ginkgolides meglumine injection is based on the ginkgolide, which is the main extract of ginkgo leaf and is a Class V new drug of traditional Chinese medicine. Studies have shown that diterpene ginkgolides meglumine injection has a wide range of pharmacological effects, including anti-oxidation, inhibition of platelet aggregation, improvement of memory, protection of cardiomyocytes and protection of inflammatory damage, etc. It is widely used in clinical treatment of cardiovascular and cerebrovascular diseases, complications of diabetes, and complications of cerebral infarction, etc. Its mechanism of action and targets have also been extensively studied, with a good application prospect. This paper summarizes the clinical application and pharmacological actions of diterpene ginkgolides meglumine injection, in the hope of providing some reference for clinical drug selection and further research and development.
-
氟溴唑仑(flubromazolam,Flub)是通过改造阿普唑仑结构获得的一种新型苯二氮䓬类精神活性物质,其化学结构与阿普唑仑(alprazolam)类似,是在阿普唑仑结构8位添加了一个氟原子,并用溴取代了2′位氯原子。据报道,Flub具有快速且持久的中枢抑制作用,可使人体暂时性遗忘、昏迷、呼吸抑制[1]。2014年,德国首次发现Flub在人群中滥用[2]。2018年,中国也监测到Flub滥用[3]。2019–2021年,美国缉毒局(DEA)报告Flub滥用的案例逐年增加[4−6]。目前,关于Flub研究主要集中在定性定量分析及其代谢动力学等方面[7−10],其成瘾性及其机制尚不清楚。本研究拟建立小鼠条件性位置偏好(CPP)模型,以CPP评分评价Flub的奖赏效应,并检测腹侧被盖区(VTA)多巴胺(DA)能神经元以及喙内侧被盖核(RMTg)→VTA神经环路对Flub奖赏效应调控作用,为深入了解Flub成瘾性、开发安全有效的防治方法奠定基础。
1. 材 料
1.1 药品与试剂
氟溴唑仑(国家禁毒委员会办公室-中国药科大学禁毒关键技术联合实验室提供);羟丙基-β-环糊精,氟马西尼(flumazenil,FMZ)(上海源叶生物科技有限公司);氯氮平-N-氧化物(clozapine-n-oxide,CNO)(美国MCE公司);异氟烷(深圳瑞沃德生命科技有限公司);驴血清(江苏碧云天生物科技有限公司);酪氨酸羟化酶(tyrosine hydroxylase,TH)抗体(美国CST公司);c-Fos抗体(美国 Abcam公司);Alexa Fluor 594标记驴抗兔IgG,Alexa Fluor 488标记山羊抗小鼠IgG(上海翌圣生物科技有限公司);4',6-二脒基-2-苯基吲哚(4',6-diamidino-2-phenylindole,DAPI,北京索莱宝科技有限公司);其他试剂均为市售分析纯。
1.2 工具病毒信息
腺相关病毒包括AAV-TH-hM4Di-mCherry、AAV-GAD67-hM3Dq-mCherry、AAV-GAD67-hM4Di-mCherry、retro-AAV-GAD67-Cre-EGFP、retro-AAV-VGAT1-Cre、AAV-hSyn-DIO-hM3Dq-mCherry,均购自武汉枢密脑科学技术有限公司。AAV-TH-hM4Di-mCherry用于化学遗传调控VTA DA能神经元和相关环路;AAV-hSyn-DIO-hM3Dq-mCherry和retro-AAV-VGAT1-Cre用于化学遗传调控RMTg→VTA环路;AAV-GAD67-hM3Dq-mCherry用于顺向追踪RMTg脑区神经元的投射;retro-AAV-GAD67-Cre-EGFP用于VTA脑区神经元逆向追踪;AAV-GAD67-hM4Di-mCherry用于化学遗传调控RMTg→VTA环路。
1.3 仪 器
电子分析天平(德国Sartorius公司);倒置荧光显微镜,组织包埋机及石蜡切片机,CM1950冰冻切片机(德国Leica仪器有限公司);ANY-maze动物行为采集分析软件(美国Stoelting公司)。
1.4 动 物
C57BL/6J小鼠,SPF级,8周龄,体重20~25 g,由南京青龙山动物繁殖中心提供,合格证号:SCXK(浙)2019-0002。实验动物饲养于12 h昼夜交替的环境中,室温维持在(24±1)℃,湿度(55±5)%,动物可以自由饮水和摄食,实验开始前先适应性饲养1周。对动物的所有处理均遵循动物伦理委员会标准。
2. 方 法
2.1 小鼠CPP实验模型
实验装置由两个大小相同的正方体(24 cm×24 cm×30 cm)和一个长方体中间室(24 cm×10 cm×30 cm)构成,两个正方体的内壁颜色及底板触感不同,三室所连接隔板取出后小鼠可以在三室自由探索,实验开始时将小鼠从中间室放入,第1天和第2天将隔板取出,让小鼠在装置中自由探索15 min,第1天让小鼠熟悉实验环境,第2天进行前测,记录小鼠在初始偏好侧和初始非偏好侧(药物配对侧)的停留时间,第3~10天将隔板插入,第3,5,7,9天腹腔注射Flub后放入初始非偏好室训练40 min,第4,6,8,10天腹腔注射对照溶液后放入初始偏好室训练40 min。第11天进行测试,隔板取出后将小鼠从中间室放入,让小鼠在实验装置里探索15 min,记录小鼠在各室的停留时间,计算条件性位置偏好评分(CPP评分=测试时小鼠在药物配对侧停留时间–前测时小鼠在药物配对侧停留时间)。在化学遗传学实验中,将腺相关病毒注入目标脑区,病毒表达3~4周,在每次药物配对侧训练前30 min,腹腔注射CNO(2 mg/kg)或套管给予CNO(3 μmol/L,每侧200 nL)。氟马西尼(0.2 nmol/L,每侧200 nL)在每次药物配对侧训练前10 min套管注入RMTg脑区。
2.2 免疫荧光染色
用异氟烷气体吸入麻醉动物,分别用PBS和4%多聚甲醛心脏灌注,分离脑组织,用4%多聚甲醛固定48 h后,包埋、切片,石蜡切片厚度为8 μm,冰冻切片厚度为25 μm。石蜡组织切片在免疫荧光染色前进行抗原修复,脑片在4 ℃条件下孵育TH抗体(1∶500)、c-Fos抗体(1∶300)。4 ℃过夜后,PBS清洗切片3次,每次10 min,室温下避光孵育二抗2 h,用PBS清洗3次,每次10 min,随后孵育DAPI染色液(1∶100),10 min后PBS洗片3次,每次5 min。脑片干燥后滴加防猝灭剂封片,在荧光显微镜下观察。
2.3 脑立体定位注射
用异氟烷气体吸入麻醉动物,用宠物剃毛刀将小鼠头部毛发剔除,放置于定位框架上,碘伏消毒,随后用手术剪刀将小鼠头皮剪开大约1 cm小口,用颅骨钻在合适位置钻孔,脑立体定位注入工具病毒后用可吸收缝合线缝合。病毒注射位点为AP:–3.28 mm,ML:±0.5 mm,DV:–4.4 mm(VTA);AP:–4.04 mm,ML:±0.3 mm,DV:–4.3 mm(RMTg)注射病毒100 nL,表达3~4周后用于后续化学遗传学实验。
2.4 脑立体定位植入套管及经管给药
用异氟烷气体吸入麻醉动物,剔除小鼠头部毛发,放置于定位框架上,碘伏消毒,随后用手术剪刀将小鼠头皮剪开大约1 cm小口,用颅骨钻在目标区域上方钻孔,磨薄颅骨表面,拧上经酒精消毒的螺丝钉,将套管固定于套管夹持器上,待下落到目标区域后用牙科水泥固定,术后恢复1周再进行后续实验。通过注射内管将药物缓慢注入目标脑区,完成注射后将停针5 min,随后缓慢拔出注射内管,旋紧套管帽将小鼠放回笼中,待小鼠在笼内适应10 min后再进行药物配对训练。
2.5 数据分析
采用GraphPad Prism 9统计学软件对研究数据进行统计分析。计量资料以$ \bar{x} $±s表示,两组数据的比较用非配对t检验,两组以上数据组间比较采用单因素方差分析(One-Way ANOVA)检验或双因素方差分析(Two-Way ANOVA)检验。P<0.05表示差异具有统计学意义。
3. 结 果
3.1 Flub诱导小鼠CPP模型的建立
CPP 是一种巴甫洛夫条件反射形式,用于研究与滥用药物相关的奖赏效应。采用隔天训练的CPP范式,其实验流程见图1-A。剂量摸索实验发现,3 mg/kg Flub诱导小鼠CPP评分显著升高(P<0.05),而1、2和4 mg/kg Flub组小鼠CPP评分与对照组小鼠相比无显著性差异(图1-B)。
3.2 抑制VTA中多巴胺能神经元活性降低Flub诱导的CPP评分
VTA多巴胺能神经与药物引起的奖赏效应密切相关。采用免疫荧光检测VTA多巴胺能神经元c-Fos水平。结果显示,Flub诱导CPP小鼠VTA脑区c-Fos阳性细胞数较对照组显著增加(P<0.001)(图2-A ,B),而且c-Fos阳性神经元主要与TH阳性神经元共定位(P<0.01)(图2-A,C)。在VTA中注射携带多巴胺能神经元启动子的化学遗传抑制病毒AAV-TH-hM4Di-mCherry(图2-D,E),此病毒可在VTA DA能神经元上特异性表达带有红色荧光、经过改造的人M4毒蕈碱乙酰胆碱受体(hM4Di)。在药物配对侧训练前30 min腹腔注射CNO,通过hM4Di与特异性配体 CNO结合,特异性抑制VTA中多巴胺能神经元活性。行为学结果显示,化学遗传学抑制VTA中多巴胺能神经元,Flub诱导的小鼠CPP评分显著下降(P<0.05)(图2-F)。结果说明VTA多巴胺能神经元参与且调控Flub诱导的小鼠CPP。
Figure 2. Inhibition of ventral tegmental area (VTA) dopaminergic neuronal activity decreased Flub-induced CPP score A: Representative images showing c-Fos-positive cells and co-localization of c-Fos-positive neurons with tyrosine hydroxylase (TH); B: Statistical plot of number of c-Fos-positive neurons($ \mathit{\mathit{\bar{\mathrm{\mathit{x}}}\mathit{\mathit{\mathit{ }}}}} $±s,n=5); C: Statistical plot of co-localization of c-Fos-positive neurons with TH-positive neurons($ \bar{\mathrm{\mathit{x}}} $±s,n=5); D: Schematic diagram of virus injection; E:Expression of TH-hM4Di-mCherry (red) in the VTA; F: CPP score under chemogenetic inhibition of dopaminergic neurons in VTA of mice treated with Flub ($ \bar{\mathrm{\mathit{x}}} $±s,n=10)*P<0.05, **P<0.01, ***P<0.001,****P<0.00013.3 RMTgGABA→VTADA神经环路调控Flub诱导的小鼠CPP
由于VTA多巴胺能神经元接受VTA尾部RMTg的抑制性神经元投射,在RMTg注射携带GABA能神经元启动子的顺行红色荧光病毒AAV-GAD67-hM3Dq-mCherry(图3-A,B),此病毒可在RMTg GABA能神经元的胞体和轴突特异性表达红色荧光蛋白。病毒表达3周后显微镜观察显示,下游VTA脑区中可见由上游投射的大量红色输入细胞(图3-C)。在VTA注射逆行绿色荧光病毒retro-AAV-GAD67-Cre-EGFP(图3-D,E),此病毒可在上游GABA能神经元轴突和胞体中表达。病毒表达3周,显微镜观察可见RMTg脑区大量绿色病毒荧光(图3-F)。这些实验结果验证了RMTgGABA→VTADA神经环路的存在。
Figure 3. Suppression of rostrum tegmental nucleus (RMTg) inhibitory projections to VTA dopaminergic neurons is necessary for Flub-induced CPP A,D: Schematic diagram of virus injection; B: Expression of GAD67-mCherry (red) in the RMTg; C: mCherry-positive neuronal fibers from VTA-projecting RMTg γ-aminobutyric acid (GABA) neurons; E: Expression of EGFP(green) in the VTA; F:Expression of EGFP in the RMTg; G: Schematic diagram of virus injection; H: The expression of DIO-hM3Dq-mCherry (red) in the RMTg; I: CPP score in chemogenetic activation of RMTgGABA→VTA ($ \mathit{\bar{\mathrm{\mathit{x}}}\mathit{\mathit{\mathit{\mathit{ }}}}} $±s,n=10); J: Schematic diagram of virus injection; K: Representative diagram of cannula track in the VTA; L: CPP score in chemogenetic inhibitions of RMTgGABA→VTA and dopaminergic neurons in VTA($ \mathit{\bar{\mathrm{\mathit{x}}}\mathit{\mathit{\mathit{ }}}} $±s,n=12)**P<0.01为探究RMTgGABA→VTADA环路对Flub诱导的小鼠CPP是否有调控作用,在RMTg注射Cre依赖的红色荧光病毒AAV-hSyn-DIO-hM3Dq-mCherry,在VTA中注射retro-AAV-VGAT1-Cre病毒(图3-G,H),AAV-hSyn-DIO-hM3Dq-mCherry在 Cre 重组酶的作用下可在RMTg GABA 能神经元中特异性表达红色荧光蛋白和经改造的人M3 毒蕈碱受体(hM3Dq),通过给予特异性配体 CNO ,可启动下游 G蛋白信号通路,兴奋 GABA 能神经元。病毒表达3周后进行CPP实验,在药物配对侧训练前30 min腹腔给予CNO激活该环路。实验结果显示,激活环路RMTgGABA→VTADA后Flub诱导的小鼠CPP评分显著下降(P<0.01)(图3-I)。 此外,在RMTg注射AAV-GAD67-hM4Di-mCherry,在VTA注射AAV-TH-hM4Di-mCherry病毒,病毒表达3周后在VTA植入套管(图3-J),1周后进行CPP实验,在药物配对侧训练前30 min通过套管在VTA注射CNO(图3-K),通过hM4Di与特异性配体 CNO 结合,抑制该环路和VTA中多巴胺能神经元。实验结果显示,抑制RMTgGABA→VTADA环路和VTA多巴胺能神经元后Flub诱导的小鼠CPP评分与对照组相比,差异无统计学意义(图3-L)。这说明RMTgGABA→VTADA环路是通过VTA多巴胺能神经元调控Flub诱导的小鼠CPP。
3.4 Flub通过RMTg中的苯二氮䓬受体产生奖赏效应
为了探究Flub是否作用于RMTg脑区苯二氮䓬受体(亦称GABAA受体)产生奖赏效应,在RMTg植入套管(图4-A,B),1周后进行CPP实验,在药物配对侧训练前10 min通过套管在RMTg注入苯二氮䓬受体拮抗剂FMZ。实验结果显示,FMZ阻断RMTg中的苯二氮䓬受体显著降低Flub诱导的小鼠CPP评分(图4-C),这说明RMTg中的苯二氮䓬受体参与Flub诱导的奖赏效应。
Figure 4. Intra-RMTg infusion of flumazenil (FMZ) significantly reduced Flub-induced CPP score A: Schematic diagram of cannula track in the RMTg; B: Representative diagram of cannula track in the RMTg; C: CPP score in intra-RMTg of FMZ 10 min before administration of Flub (ip)($ \bar{\mathrm{\mathit{x}}} $±s,n= 9)**P<0.014. 讨 论
Flub属于未经批准上市的苯二氮䓬类新精神活性物质,其药理作用与阿普唑仑相似。本研究发现,Flub以3 mg/kg剂量腹腔注射4次小鼠CPP评分显著增加,而1 或2 mg/kg给药4次不能诱导小鼠CPP评分显著增加。Flub 4 mg/kg给药使小鼠出现反射减弱、镇静、呼吸抑制等中枢抑制作用,也不能诱导小鼠CPP评分显著增加。说明该药物的奖赏效应与剂量有关,这也从动物实验水平初步解释了Flub服用者描述在服药后感受到欣快感[11]。
精神活性物质所产生的欣快感在成瘾中起正性强化作用,VTA是药物奖赏的重要脑区,VTA多巴胺能神经元投射作用于伏隔核、杏仁核和前额叶皮层等多个脑区,形成中脑边缘奖赏系统,在成瘾药物诱导的奖励驱动行为过程中发挥重要作用[12]。化学遗传学抑制VTA中多巴胺能神经元可以降低Flub诱导的小鼠CPP评分,证实了VTA 多巴胺能神经元参与Flub诱导的奖赏效应。有研究表明苯二氮䓬类药物作用于GABAAα1亚基导致成瘾[13],因此,推测Flub可能通过与VTA上游脑区GABA能神经元GABAA受体结合,进而抑制GABA能神经元的活性,解除对VTA中多巴胺能神经元的抑制作用,从而使VTA多巴胺能神经元兴奋性增加,产生奖赏效应。RMTg是VTA多巴胺神经元抑制性GABA能输入的主要来源[14],越来越多研究表明,RMTg参与调节奖赏、动机、厌恶和行为回避[15−21]。Jalabert等[22]通过在RMTg注入顺行示踪剂或VTA注入逆行示踪剂来探究RMTg-VTA路的联系,发现在VTA中有顺行示踪剂,而在RMTg中检测到逆行示踪剂。本研究通过化学遗传学激活RMTgGABA→VTADA神经环路显著抑制Flub诱导的小鼠CPP,在RMTg经套管给予FMZ,阻断苯二氮䓬受体,也能够抑制Flub诱导的小鼠CPP。这提示Flub分布到RMTg 脑区,通过激动GABA能神经元GABAA受体,减少抑制性神经冲动至VTA多巴胺能神经元,使VTA多巴胺能神经元兴奋,产生奖赏效应。
综上所述,本研究采用评价药物精神依赖性的经典CPP动物模型,从分子、神经核团和神经环路水平揭示了Flub诱导奖赏效应的机制,为进一步研究Flub成瘾机制以及防治方法奠定了实验基础。
-
表 1 银杏二萜内酯葡胺注射液的临床应用研究
疾 病 治疗方案 观察指标 研究结论 对照组 治疗组 脑梗死伴不稳定性心绞痛[52] 常规治疗 常规治疗+DGMI 25 mg/d,14 d NIHSS评分、血脂相关指标、血清NSE、hs-CRP水平、心绞痛发作情况、心电图、心功能指标 DGMI可提高脑梗死合并不稳定心绞痛患者治疗效果,降低血脂指标 脑血栓合并高血脂[56] 常规治疗 常规治疗+DGMI,28 d 血脂水平、血浆纤维蛋白原、全血黏度 DGMI可改善脑血栓合并高血脂患者实验室指标,疗效显著 脑卒中[30] 阿替普酶 0.9 mg/kg 阿替普酶0.9 mg/kg+DGMI 25 mg/d,14 d NIHSS评分、Sestrin2蛋白水平、Hcy水平血浆黏度、红细胞比容、血小板黏附率 DGMI联合阿替普酶可改善脑梗死患者的神经功能、血液流变学指标,降低Sestrin2蛋白、Hcy水平 脑卒中[31] 阿替普酶 0.9 mg/kg 阿替普酶 0.9 mg/kg+DGMI 25 mg/d,14 d NIHSS评分、mRS量表评分、Barthel指数、hs-CRP和PON-1水平 DGMI联合溶栓治疗效果显著,可改善患者神经功能和血清指标,提高日常生活能力 脑卒中[32] 阿替普酶 0.9 mg/kg 阿替普酶 0.9 mg/kg+DGMI 25 mg/d,28 d NIHSS评分、Barthel指数、CRP、IL-1β、Hcy、IL-2水平、颈总动脉斑块情况、ADR 在脑梗死窗口期使用DGMI联合溶栓治疗,效果显著且安全 脑卒中[33] 阿替普酶 0.6
或0.9 mg/kg阿替普酶 0.6或0.9 mg/kg+DGMI 25 mg/d NIHSS评分、mRS量表评分、出血转归的病例数、90天预后 DGMI联合溶栓治疗有利于神经功能的恢复,改善患者远期预后 脑卒中[35] DGMI 25 mg/d DGMI 25 mg/d+丁苯酞软胶囊200 mg,7~14 d NIHSS评分、临床疗效、ADR、血流动力学指标 DGMI联合丁苯酞软胶囊改善脑梗死患者疗效效果显著且安全 脑卒中[36] 丁苯酞注射液
100 mL,2次/日,14 d丁苯酞注射液 100 mL,
2次/d+DGMI 25 mg/d,14 dNIHSS评分、Barthel指数、临床
疗效、血液流变学指标、侧支循环评估DGMI联合丁苯酞注射液治疗脑梗死效果显著,可提高侧支循环数量和分级 脑卒中[37] 依达拉奉15 mg/d,
14 d依达拉奉15 mg/d+DGMI
25 mg/d,14 dNIHSS评分、临床疗效、氧化应激指标、血清炎症因子 DGMI联合依达拉奉治疗脑梗死疗效确切,可显著改善炎症因子及氧化应激 脑卒中[38] 依达拉奉30 mg/d,
14 d依达拉奉30 mg/d+DGMI
25 mg/d,14 dNIHSS评分、疗效 DGMI联合依达拉奉对脑梗死患者疗效显著 脑卒中[39] 依达拉奉30 mg,
2次/日,14 d依达拉奉30 mg,
2次/日+DGMI 25 mg/d,14 dNIHSS评分、Hcy、NSE DGMI联合依达拉奉可显著改善神经功能缺损并下调血清同型半胱氨酸(Hcy)、血清神经元特异性烯醇化酶(NSE) 脑卒中[40] 丁苯酞软胶囊
60 mg,bid+依达拉奉30 mL/d,28 d丁苯酞软胶囊60 mg,bid+
依达拉奉30 mL/d+DGMI
25 mg,28 dNIHSS评分、Barthel指数、Fugl-Meyer评分、血清中氨基酸、神经递质、细胞因子含量、临床疗效、ADR 三种药联合使用可改善患者神经功能、肢体运动能力及生活能力,安全有效 DPN[43] 甲钴胺 0.5 mg,tid,28 d 甲钴胺 0.5 mg,tid,28 d+DGMI 25 mg/d,28 d 临床疗效、氧化应激指标、神经传导功能 DGMI联合甲钴胺治疗DPN能改善机体氧化应激,提高神经传导速度,疗效确切 DPN[42] 降糖药物治疗+丹参川芎嗪注射液
10 mL,1次/日,10 d降糖药物治疗+DGMI 10 mL/d,10 d 血糖水平、神经系统评分、临床疗效评估、神经传导速度 DGMI可明显改善DPN患者临床症状评分和神经传导速度 DN[45] 常规治疗 常规治疗+DGMI 25 mg/d+水蛭胶囊4粒,tid,28 d 临床疗效、血生化指标、中医症状积分、ADR DGMI联合水蛭胶囊辅助治疗DN安全有效 脑梗死合并多发性颅内动脉狭窄[46] 舒血宁注射液
20 mL/d,14 dDGMI 20 mL/d,14 d ET水平、NO、NIHSS评分、临床
疗效DGMI可促进内皮功能和神经功能的改善,阻止动脉粥样硬化进展 脑梗死合并多发性颅内动脉狭窄[47] 舒血宁注射液
20 mL/d,15 dDGMI 20 mL/d,14 d NIHSS评分、NO、ET-1水平 DGMI可通过调节NO和ET-1比例,改善血管内皮功能来延缓疾病
进展多发颅内动脉狭窄[48] 奥扎格雷50~70 mg,2次/d,28 d 奥扎格雷50~70 mg,2次/d+DGMI 25 mg/d,28 d NIHSS评分、Barthel指数、临床疗效、NO、ET、脂联素、过氧化氢酶 DGMI联合奥扎格雷治疗多发颅内动脉狭窄患者可改善内皮功能及神经功能,提高疗效。 冠心病合并脑梗死[49] 氯吡格雷75 mg,qd,14周 氯吡格雷75 mg,qd,14周+DGMI 25 mg/d 临床疗效、脑梗死中医症候积分、认知功能评价、血小板聚集率、ADR DGMI联合氯吡格雷治疗冠心病合并脑梗死疗效确切,能有效改善患者动脉粥样硬化,安全性高 脑卒中后抑郁[50] 盐酸氟西汀胶囊
20 mg/d,6周盐酸氟西汀胶囊20 mg/d,6周+DGMI 25 mg,14 d HAMD评分、DA、NE、BDNF水平、Barthel指数、ADR DGMI联合氟西汀可提高轻中度脑卒中后抑郁治疗效果,降低血清神经递质水平,安全有效 DVT[54] 注射用丹参
400 mg/d,14 dDGMI 25 mg/d,14 d 临床疗效、D-D水平、APTT、PT、FDP DGMI可改善DVT患者的凝血功能,对DVT治疗效果良好 DVT[55] 注射用丹参
400 mg/d,15 dDGMI 25 mg/d,15 d 临床疗效、炎症指标、应激指标 DGMI治疗老年DVT效果显著,可减轻机体应激及炎症 DGMI:银杏二萜内酯葡胺注射液;NIHSS:神经功能缺损;NSE:神经元特异性烯醇化酶;hs-CRP:超敏C反应蛋白;Sestrin2:一种抗氧化应激蛋白;Hcy:同型半胱氨酸;mRS量表:改良Rankin量表;Barthel指数:巴氏日常生活指数;PON-1:对氧磷酶-1;CRP:C反应蛋白;IL-1β:白介素-1β;IL-2:白介素-2;ADR:药物不良反应;DPN:糖尿病周围神经病变;DN:糖尿病肾病;Qd:每日一次;Tid:每次3次;Bid:每日两次;NO:一氧化氮;ET:内皮素;HAMD:汉密顿抑郁量表;DA:多巴胺;NE:去甲肾上腺素;BDNF:脑源性神经营养因子;DVT:下肢深静脉血栓形成;D:D-二聚体;APTT:活化部分凝血活酶时间;PT:凝血酶原时间;FDP:纤维蛋白(原)降解产物 -
[1] Yang HP, Gao R. Progress on medicinal components and pharmacological effects of Ginkgo biloba[J]. Prog Vet Med (动物医学进展), 2017, 38(8): 96-99. [2] Xu HY, Chen SP, Jin T, et al. Protective effects of ginaton against ischemia-reperfusion injury on the autograft after lung autotransplantation: experiment with rabbits[J]. Natl Med J China (中华医学杂志), 2006, 86(45): 3211-3214. [3] Li HM, Liu SL, Jiang JY. Ginkgo biloba extract pharmacological activity research progress in cardiovascular and cerebrovascular diseases[J]. Lishizhen Med Mater Med Res (时珍国医国药), 2002 (2): 105-106. [4] Wang KL, Li ZQ, Cao ZY, et al. Effects of ginkgolide A, B and K on platelet aggregation[J]. China J Chin Mater Med (中国中药杂志), 2017, 42(24): 4722-4726. [5] Zhang CF, Cao L, Deng Y, et al. Effect of Ginkgo terpene lactones meglumine injection on behavior and cerebrospinal fluid in rats with cerebral ischemia/reperfusion[J]. Chin J Exp Tradit Med Formulae (中国实验方剂学杂志), 2015, 21(20): 118-122. [6] Huo HL. Effects and action mechanism of ginkgo diterpene lactone on the learning and memory ability in rts with cerebral ischemia[J]. Hebei Med J (河北医药), 2020, 42(15): 2300-2304. [7] Xu F. Investigation on thein vitro antibacterial activity and immune modulatory function of Ginkgo biloba extract[D]. Changsha: Hunan Agricultural University, 2014.
[8] Xu JJ, Ke YQ, Dai XY, et al. Role of ginkgo flavonoids in ultraviolet radiation-induced skin injury and aging[J]. China Mod Dr (中国现代医生), 2022, 60(8): 12-15. [9] Ma HJ, Li CC, Zhou JC, et al. The effects of oral Ginkgo biloba extract(EGB) on the proliferation of human colon cancer SW480 cell lines[J]. Anti Tumor Pharm (肿瘤药学), 2014, 4(1): 36-39. [10] Xiao ST, Cao CR, Liu HY, et al. Advances in pharmaceutical research of extracts from Ginkgo biloba leaves[J]. Chin Pharm Aff (中国药事), 2022, 36(4): 429-443. [11] Zhong CJ, Hua J, Chen M, et al. Protection of diterpene ginkgolides meglumine injection on acute injury of ischemic stroke in rats[J]. Drug Eval Res (药物评价研究), 2017, 40(6): 752-758. [12] Wu HL. The research of diterpene ginkgolides meglumine injection on oxidative stress and inflammatory reaction after cerebral ischemia-reperfusion in rat[J]. Chin J Integr Med Cardio Cerebrovasc Dis (中西医结合心脑血管病杂志), 2019, 17(23): 3717-3721. [13] Liu Q, Xu ZL, Jin ZQ, et al. Diterpene ginkgolides meglumine injection attenuates oxygen-glucose deprivation-induced apoptosis of nerve cells via inhibition of calpain signaling pathway[J]. J China Pharm Univ (中国药科大学学报), 2015, 46(6): 707-711. [14] Wang H, Song S, Zhao JC. The effects of Ginkgo biloba diterpene lactone glumine injection on SIRT1/HIF-1α/VEGF signal pathway and synaptic plasticity in rats with focal cerebral ischemia[J]. Med J West China (西部医学), 2021, 33(6): 823-828. [15] Peng JL, Xiong LJ, Liu XH. The protective effect of ginkgo diterpene lactone meglumine on cerebral ischemia-reperfusion[J]. Tianjin Med J (天津医药), 2021, 49(2): 153-158,225. [16] Zhang W, Song JK, Yan R, et al. Diterpene ginkgolides protect against cerebral ischemia/reperfusion damage in rats by activating Nrf2 and CREB through PI3K/Akt signaling[J]. Acta Pharmacol Sin, 2018, 39(8): 1259-1272. doi: 10.1038/aps.2017.149
[17] Zhang W, Song JK, He GR, et al. Effects of diterpene ginkgolides meglumine injection on neurotransmitters in cerebral ischemia-reperfusion injury rats[J]. Chin Pharmacol Bull (中国药理学通报), 2016, 32(12): 1648-1656. [18] Chen CM, Zhou J, Chen J, et al. Protective effects of Ginkgo terpene lactones meglumine injection on focal cerebral ischemia reperfusion injury in rats[J]. Chin J Exp Tradit Med Formulae (中国实验方剂学杂志), 2014, 20(17): 133-136. [19] Wang TJ, Wu ZY, Yang CH, et al. Multiple mechanistic models reveal the neuroprotective effects of diterpene ginkgolides against astrocyte-mediated demyelination via the PAF-PAFR pathway[J]. Am J Chin Med, 2022, 50(6): 1565-1597. doi: 10.1142/S0192415X22500665
[20] Li YZ, Li ZH, Li L, et al. Effects of diterpene ginkgolides meglumine injection on myocardial arrhythmia induced by myocardial ischemia-reperfusion[J]. J Emerg Tradit Chin Med (中国中医急症), 2018, 27(10): 1761-1764. [21] Li YZ. Experimental study on the protective effect of diterpene ginkgolides meglumine injection on isolated heart ischemiareperfusion injury[J]. Tianjin J Tradit Chin Med (天津中医药), 2018, 35(8): 616-620. [22] Li YZ, Li ZH, Li L, et al. A study of the effect and mechanism of Ginkgo diterpene lactone on the cell apoptosis in MIRI rat models[J]. Jiangsu J Tradit Chin Med (江苏中医药), 2018, 50(9): 71-74. [23] Chen DX, Hong DW, Dou XJ. Effect of edaravone dexterol combined with Ginkgo bilobalide glucosamine on mild cognitive impairment after stroke[J]. Shenzhen J Integr Tradit Chin West Med (深圳中西医结合杂志), 2023, 33(3): 107-109. [24] Wang Y, Jiang ZX, Wang Q, et al. Effects of ginkgo diterpene lactone meglumine on learning and memory in old mice and its mechanisms[J]. Chin J Behav Med Brain Sci(中华行为医学与脑科学杂志), 2019(06): 510-515. [25] Wang Y, Wang Q, Jiang ZX, et al. Effect of ginkgo biloba diterpene lactone meglumine on learning and memory impairment in Alzheimer's disease rats[J]. Chin Tradi Pat Med(中成药), 2023, 45(10): 3438-3441. Wang Y, Wang Q, Jiang ZX, et al. Effect of ginkgo biloba diterpene lactone meglumine on learning and memory impairment in Alzheimer's disease rats[J]. Chin Tradi Pat Med(中成药), 2023, 45(10): 3438-3441.
[26] Zhang ZZ, Su J, Pairihan·AIERKEN, et al. Effects of Ginkgo diterpene ginkgolides on cognitive function of immature rats anesthetized by ketamine[J]. Eval Anal Drug Use Hosp China(中国医院用药评价与分析), 2022, 8(9): 1054-1059. Zhang ZZ, Su J, Pairihan·AIERKEN, et al. Effects of Ginkgo diterpene ginkgolides on cognitive function of immature rats anesthetized by ketamine[J]. Eval Anal Drug Use Hosp China(中国医院用药评价与分析), 2022, 8(9): 1054-1059.
[27] Li GP, Yang H, Zong SB, et al. Diterpene ginkgolides meglumine injection protects against paraquat-induced lung injury and pulmonary fibrosis in rats[J]. Biomed Pharmacother, 2018, 99: 746-754. doi: 10.1016/j.biopha.2018.01.135
[28] Fan XX, Cao ZY, Liu MX, et al. Diterpene ginkgolides meglumine injection inhibits apoptosis induced by optic nerve crush injury via modulating MAPKs signaling pathways in retinal ganglion cells[J]. J Ethnopharmacol, 2021, 279: 114371. doi: 10.1016/j.jep.2021.114371
[29] Jin FH, Chen J, Yang WC. The efficacy and safety of diterpene ginkgolides meglumine injection in stroke: a Meta-analysis[J]. J Pharm Pract (药学实践杂志), 2019, 37(1): 80-85. [30] Zhang DD, Wang Y, Meng ZH, et al. Efficacy of Diterpene Ginkgolides Meglumine injection in elderly patients with ischemic stroke: a post hoc analysis of a randomized controlled trial[J]. Phytomedicine, 2022, 106: 154391. doi: 10.1016/j.phymed.2022.154391
[31] Li XF, Wang QF, Feng YF. Clinical study on Ginkgo diterpene lactone glucamine combined with alteplase for acute ischemic stroke[J]. N Chin Med (新中医), 2022, 54(2): 50-53. [32] Zhang Y, Chen Y, Fan R, et al. Clinical observation on ginkgo diterpene lactone meglumine injection combined with rt-PA intravenous thrombolysis in treatment of acute ischemic stroke[J]. Pract Pharm Clin Remed(实用药物与临床), 2020, 23(11): 1015-1018. [33] Wang NN, Zhou HS, Gu XY, et al. Clinical effects of Ginkgo diterpene lactone meglumine injection in the treatment of ischemic stroke[J]. World Chin Med (世界中医药), 2021, 16(10): 1589-1593. [34] Qu XF, Gao Y, Wang LL, et al. Evaluation on the therapeutic efficacy of intravenous thrombolysis combined with ginkgo diterpene lactone meglumine injection in patients with acute cerebral infarction[J]. China Med Pharm (中国医药科学), 2020, 10(20): 112-114,132. [35] Chen CX, Lv HH, Shan LL, et al. Antiplatelet effect of ginkgo diterpene lactone meglumine injection in acute ischemic stroke: a randomized, double-blind, placebo-controlled clinical trial[J]. Phytother Res, 2023, 37(5): 1986-1996. doi: 10.1002/ptr.7720
[36] Fan QQ, Chen HJ. Impact of butylphthalide soft capsules combined with ginkgo diterpene lactone meglumine injection on neurological function and hemodynamics in patients with acute ischemic stroke[J]. Pract J Card Cereb Pneumal Vasc Dis (实用心脑肺血管病杂志), 2018, 26(6): 146-148. [37] Shi XJ, Li XM, Yang WJ, et al. Therapeutic effects of butylphthalide injection combined with ginkgolide injection on acute cerebral infarction and its improvement effects on collateral circulation[J]. Hebei Med J (河北医药), 2021, 43(19): 2965-2968. [38] Sun YL. Clinical effect of ginkgo diterpene lactone meglumine combined with edaravone in the treatment of ischemic stroke[J]. Chin Remed Clin(中国药物与临床), 2020, 20(21): 3599-3601. [39] Zhao GQ, Li YS, Jiang CH, et al. Clinical efficacy of ginkgo biloba diterpene lactone injection combined with Edaravone injection in the treatment of acute cerebral infarction[J]. Guide Chin Med(中国医药指南), 2017, 15(30): 210-211. [40] Yang M. Effect of ginkgo biloba diterpene lactone injection assisted with Edaravone in the treatment of acute cerebral infarction and changes of serum Hcy and NSE[J]. J Medical Forum(医药论坛杂志), 2019, 40(3): 148-149. [41] Hu JP, Guo J, Zhang TH, et al. The curative effects and safety of combination medication of ginkgo diterpene lactone glucamine, butylphthalide and edaravone in treatment of phlegm and blood stasis blocking collateral type cerebral infarction[J]. Hebei Med J (河北医药), 2021, 43(2): 219-222. [42] Zhao CY, Guo LP. Pharmacological mechanism of Ginkgo diterpene lactone glucosamine injection in the treatment of cerebral infarction based on network pharmacology[J]. West J Tradit Chin Med (西部中医药), 2022, 35(8): 73-79. [43] Li X, Ren X, Chen HY, et al. Clinical effects of diterpene ginkgolides meglumine injection for type 2 diabetic peripheral neuropathy[J]. Mil Med J S Chin(华南国防医学杂志), 2022, 36(4): 253-256,283. [44] Wang Z, Guo TL. Effect of ginkgolide meglumine injection combined with mecobalamin on diabetic peripheral neuropathy and its influence on oxidative stress index[J]. Med Inf (医学信息), 2020, 33(22): 147-149. [45] Zhang Y, Wang Y. Effect of nicotinic acid injection combined with Ginkgo Diterpene Lactone Meglumine in the treatment of diabetic peripheral neuropathy[J]. Clin Med Eng(临床医学工程), 2023, 30(2): 221-222. [46] Li WY, Sun J, Gao ZH, et al. Clinical observation of ginkgo biloba diterpene lactone combined with leech capsule in adjuvant treatment of diabetic nephropathy[J]. Shandong Med J(山东医药), 2017, 57(28): 48-50. [47] Xiamasi PTGL, Simayi HPN. Effect of ginkgo diterpene lactone glucamine injection on acute cerebral infarction complicated with multiple intracranial stenosis[J]. Xinjiang Med J(新疆医学), 2020, 50(1): 68-70. [48] Zhang XL, Wang W, Chen HP, et al. Effects of Ginkgo lactone meglumine injection on the ET-1 and NO in blood plasma and clinical curative effect observation in patients with acute cerebral infarction and multiple intracranial arterial stenosis[J]. Strait Pharm J (海峡药学), 2017, 29(4): 78-80. [49] Li HX, Liu AW, Qiu WX, et al. Efficacy of ginkgo terpene lactones meglumine combined with ozagrel for treatment of multiple intracranial artery stenosis and its impact on patients’ vascular endothelial function and neurological function[J]. Guangxi Med J (广西医学), 2020, 42(15): 1985-1988. [50] Ma CQ, Guo XN, Zhang QQ, et al. Efficacy of diterpene ginkgolides meglumine injection combined with clopidogrel on coronary heart disease complicated with cerebral infarction[J]. Chin Arch Tradit Chin Med (中华中医药学刊), 2022, 40(1): 34-37. [51] Wang D, Li JJ, Zhang W, et al. Clinical study of ginkgo diterpenoid lactone meglumine injection combined with fluoxetine hydrochloride in the treatment of mild to moderate post-stroke depression[J]. Chin J Integr Med Cardio Cerebrovasc Dis (中西医结合心脑血管病杂志), 2022, 20(10): 1890-1893. [52] Zhao SL. Clinical observation of ginkgo diterpenoid lactone meglumine in the treatment of patients with cerebral infarction and unstable angina pectoris[J]. Gansu Sci Technol (甘肃科技), 2022, 38(3): 110-112. [53] Han XY, Li YJ, Chen XM, et al. Platelet-activating factor antagonist-based intensive antiplatelet strategy in acute ischemic stroke: a propensity score matched with network pharmacology analysis[J]. CNS Neurosci Ther, 2023, 29(12): 4082-4092. doi: 10.1111/cns.14331
[54] Lyu BN, Zhao W, Shi XM, et al. Effect of ginkgo biloba diterpene lactone meglumine injection on coagulation function in patients with deep venous thrombosis of lower limbs[J]. Hebei J TCM(河北中医), 2016, 38(10): 1558-1560,1571. [55] Lyu BN, Shi XM, Wu SC, et al. Effects and clinical significance of ginkgo diterpene lactone on stress status of elderly patients with lower limb deep vein thrombosis[J]. Hebei Med J(河北医药), 2019, 41(08): 1221-1224. [56] Gao P, Li KM, Wei YL, et al. Ginkgo diterpene lactone meglumine injection and Danshen capsule were used to treat 60 cases of cerebral thrombosis complicated with hyperlipidemia[J]. J Clin Med Lit(临床医学文献), 2017, 4(4): 776-777. [57] Wu QL, Sun YC, Li XF, et al. Determination of mannitol and meglamethylene amine in Ginkgo biloba diterpene lactones for injection by HPLC-ELSD[J]. World Sci Tec-Mod Tradi Chin Med(世界科学技术-中医药现代化), 2013, 15(9): 1985-1989. [58] Wu QL, Sun YC, Wan Q, et al. Determination of ginkgolide A, B, C, and K in diterpene lactones from Ginkgo biloba for injection by HPLC-ELSD[J]. Drugs Clin (现代药物与临床), 2014, 29(3): 255-258. [59] Chen XL, Geng T, Huang WZ, et al. 1H-NMR quantitative analysis and fingerprints of ginkgo diterpene lactone raw material[J]. China J Chin Mater Med (中国中药杂志), 2018, 43(7): 1404-1409. [60] Geng T, Zhang SB, Li YJ, et al. Analysis of metabolites of Ginkgo diterpene lactone meglumine injection in human urine by LC-MS/MS[J]. Chin J Exp Tradit Med Formulae (中国实验方剂学杂志), 2017, 23(11): 90-95. [61] Si HH, Geng T, Li YJ, et al. Determination of binding rate of ginkgolide A, B, K to human plasma protein in ginkgolide diterpene lactone injection[J]. World Sci Tec-Mod Tradi Chin Med(世界科学技术-中医药现代化), 2015, 17(11): 2235-2239. [62] Hu JH, Qian PF, Yu GF, et al. Compatibility between diterpene ginkgolides meglumine injection and infusion sets for single use[J]. Chin J Pharmaceuticals(中国医药工业杂志), 2020, 51(6): 778-783.
计量
- 文章访问数: 64
- HTML全文浏览量: 13
- PDF下载量: 5