高级检索

机器学习在合成大麻素识别鉴定中的应用进展

Advances in the application of machine learning in the identification and authentication of synthetic cannabinoids

  • 摘要: 合成大麻素是一种人工合成的可以引起公共健康风险的精神活性物质,且合成大麻素结构多变,容易被结构修饰,结构未知的合成大麻素的快速出现使得对其鉴识面临了新的挑战。近年来,机器学习已取得很大的进展,已经广泛应用到其他领域,也为结构未知合成大麻素的鉴识以及可能的来源推断提供了新的策略。本文阐述了常用机器学习方法的原理以及机器学习技术在合成大麻素类物质的质谱分析、拉曼光谱分析、代谢组学以及定量构效关系等方面的应用,以期为未知合成大麻素的鉴识提供新的思路。

     

    Abstract: Synthetic cannabinoids (SCs) are synthetic psychoactive substances that can pose a public health risk. The SCs are structurally variable and susceptible to structural modification. The rapid emergence of structurally unknown synthetic cannabinoids has led to new challenges in their identification. In recent years, machine learning has made great progress and has been widely applied to other fields, providing new strategies for the identification of unknown synthetic cannabinoids and the inference of possible sources. This paper describes the principles of commonly used machine learning methods and the application of machine learning techniques to mass spectrometry, Raman spectroscopy, metabolomics and quantitative conformational relationships of synthetic cannabinoids, aiming to provide new ideas for the identification of unknown synthetic cannabinoids.

     

/

返回文章
返回