Effects of Pseudomonas aeruginosa PmrB△Leu172 mutation on polymyxin B resistance
-
摘要:
研究铜绿假单胞菌PmrB△Leu172突变对多黏菌素B耐药的影响。利用同源重组技术构建铜绿假单胞菌PmrB△Leu172突变株,利用微量肉汤稀释法测定多黏菌素B对野生株和突变株的最低抑菌浓度,利用转录组测序明确PmrB△Leu172缺失突变对基因转录水平的影响,利用反转录荧光定量PCR验证PmrB△Leu172缺失突变对铜绿假单胞菌中受PmrB调控的基因表达水平影响。PmrB△Leu172缺失突变株较野生株最低抑菌浓度与最低杀菌浓度分别提高了4和2倍,突变株表现出对多黏菌素B更强的耐受性;突变株中受PmrB调控的基因表达水平均显著提高。铜绿假单胞菌PmrB△Leu172缺失突变可引起PmrA-PmrB双组分系统的调控能力提升,从而导致铜绿假单胞菌对多黏菌素B产生抗性。
Abstract:This study aimed to investigate the effects of PmrB△Leu172 on polymyxin B resistance in Pseudomonas aeruginosa. Pseudomonas aeruginosa PmrB△Leu172 strain was constructed by homologous recombination technology, and the minimum inhibitory concentration of polymyxin B against wild type and mutant strains were determined by the broth microdilution technique. The effect of PmrB△Leu172 mutation on gene transcription level was determined by RNA sequencing. Reverse transcription quantitative PCR was used to verify the effect of PmrB△Leu172 mutation on the transcription level of PmrB-regulated genes in P. aeruginosa. The results showed that the minimum inhibitory concentration and minimum bactericidal concentration of mutant strain were 4 and 2 times higher than that of wild-type, respectively, and the transcription level of PmrB-regulated genes was also up-regulated. The results suggested that PmrB△Leu172 mutation of P. aeruginosa can enhance the regulation of PmrA-PmrB two-componentsystem, which leads to the resistance of P. aeruginosa to polymyxin B.
-
Keywords:
- Pseudomonas aeruginosa /
- pmrB /
- drug resistance /
- polymyxin B
-
铜绿假单胞菌(Pseudomonas aeruginosa, PA)是一种常见的医院感染病原体[1],可在患有慢性阻塞性肺疾病、囊性纤维化、癌症、创伤、烧伤及免疫缺陷个体中发生急性或慢性感染[2]。近年来,随着广谱抗生素的广泛使用,多重耐药(multidrug-resistant, MDR)的PA引起的感染变得越来越常见。多重耐药指的是对3种或3种以上类别的抗生素不敏感,因此临床上治疗手段非常有限,而多黏菌素类抗生素是为数不多的对MDR-PA仍然有效的药物[3]。
多黏菌素类抗生素是20世纪40年代开发的一类用于治疗革兰氏阴性菌感染的脂肽类抗生素[4]。由于其抗菌谱窄,并具有明显的肾毒性和神经毒性,逐渐退出了临床[5]。然而,随着MDR革兰氏阴性菌感染逐年增加,尤其是耐碳青霉烯类革兰氏阴性菌的出现,使得多黏菌素类抗生素又重新在临床上使用[6]。
临床上使用的多黏菌素类抗生素主要有多黏菌素B和多黏菌素E。其中,多黏菌素B作为带有正电荷的阳离子多肽,可与革兰氏阴性菌外膜上带负电荷的脂多糖(lipopolysaccharide, LPS)结合,使得外膜破裂进而胞内容物流失,最终导致细菌死亡[7]。然而,PA可通过修饰LPS的脂质A成分,从而降低多黏菌素B与LPS的亲和力,最终导致耐药[8]。由arnBCADTEF操纵子编码的蛋白质介导,在脂质A成分中添加带正电荷的4-氨基-L-阿拉伯糖(4-amino-4-deoxy-L-arabinose, L-Ara4N),是PA的LPS修饰的常见形式[9−10]。而上述操纵子基因的表达可由双组分系统PmrA-PmrB调控[11]。有研究表明,PA的pmrB上的碱基发生突变,可导致PA对多黏菌素B产生抗性。如Abraham等[12]从临床上发现的一株耐多黏菌素B的PA,其pmrB第292位碱基发生(T→C)突变;Barrow 等[13]发现pmrB在739位的(G→A)突变也可引起PA对多黏菌素B的耐药。
本研究通过阶梯式诱导的方式,获得了一株对多黏菌素B耐药的PA菌株。全基因组测序结果显示其pmrB基因第514−516位发生了缺失突变。通过同源重组、转录组测序(RNA sequencing,RNA-seq)、反转录荧光定量PCR(reverse transcription quantitative PCR, RT-qPCR)以及抗菌活性检测发现该缺失突变可导致pmrA、pmrB及arnBCADTEF操纵子基因的转录水平升高,细菌对多黏菌素B的敏感性下降。因此,本研究发现了一个新的可引起PmrA-PmrB功能改变的缺失突变形式,从而拓展了人们对多黏菌素B耐药机制的认识。
1. 材 料
1.1 菌株和质粒
PA标准菌株ATCC27853购自ATCC菌株保藏中心,pEX18Tc质粒购自上海禾午生物科技有限公司,大肠埃希菌DH5α感受态细胞、含有pUC57-pmrB⊿514-516质粒的大肠埃希菌Top10菌株购自上海生工生物工程有限公司。
1.2 培养基
LB液体培养基:10 g/L胰蛋白胨、5 g/L酵母粉、5 g/L NaCl。BHI(brain heart infusion)液体培养基:脑心浸粉17.5 g/L、葡萄糖2 g/L、胰蛋白胨10 g/L、NaCl 5 g/L、Na2HPO4 2.5 g/L。TYS10(tryptone yeast extract and sucrose 10)培养基:蛋白胨10 g/L,酵母提取物5 g/L,10%的过滤(0.22 µm)蔗糖。固体培养基:加琼脂粉于上述液体培养基至15 g/L。除特殊提及外,菌株在37 ℃的LB或BHI液体培养基中220 r/min振荡培养,37 ℃的LB或BHI固体培养基中静置培养。
1.3 试剂和仪器
MH(Mueller Hinton)培养基、胰蛋白胨、酵母粉、琼脂粉等(英国Oxoid公司);NaCl、MgSO4、Na2HPO4(上海BBI生命科学有限公司);质粒小提试剂盒、细菌基因组DNA提取试剂盒、细菌总RNA提取试剂盒(北京天根生化科技有限公司);氨苄西林、四环素、RT Master Mix for qPCR Ⅱ试剂盒、SYBR Green qPCR Master Mix试剂盒(美国MedChem Express公司)。引物的合成由上海生工生物工程有限公司完成。微量分光光度计(美国Biochrom SimpliNano公司),PCR扩增仪、实时荧光定量PCR仪、Gene Pulser Xcell™ 电穿孔仪(美国Bio-Rad公司)。
2. 方 法
2.1 多黏菌素B自发耐药PA(PA-PBsr)的筛选
将单菌落的PA ATCC27853接种在含有多黏菌素B (1 mg/mL)2 µL的LB液体培养基2 mL中培养过夜。按1∶100转移到含有多黏菌素B(1 mg/mL)4 µL的LB液体培养基2 mL中继续培养过夜。重复上述操作,逐级增加多黏菌素B的浓度,直至细菌无法生长。将在多黏菌素B最大浓度下能够生长的细菌涂布在LB平板上,挑取单菌落后接种至LB液体培养基3 mL中培养至A600 为 0.6~0.8。采用微量肉汤稀释法测定出多黏菌素B对纯化菌株的最低抑菌浓度( MIC),对MIC发生变化的菌株进行全基因组测序。
2.2 全基因组测序
挑取对MIC发生变化的菌株的单菌落,加入到LB培养液5 mL中培养过夜,按照细菌基因组DNA提取试剂盒提取DNA,取基因组DNA 1 µg(质量浓度≥10 ng/µL,A260/280=1.8~2.0)送至上海生工生物工程股份有限公司进行全基因组测序。使用Qubit 3.0对文库浓度进行初步定量,使用Agilent 2100检测文库片段的完整性。文库检测通过后,使用Illumina Hiseq 2000进行测序。测序得到的原始数据经过质控筛选、去除接头等后,利用SPAdes 3.12.0进行基因组组装,得到菌株PA-PBsr基因组序列。
2.3 PA的pmrB基因第514−516位缺失突变株(PA-pmrB⊿514-516)的构建
将含有pUC57-pmrB⊿514-516 质粒的大肠埃希菌TOP10单菌落接种于含有氨苄西林(50 µg/mL)的LB培养基5 mL中培养过夜;使用质粒小提试剂盒提取质粒。在冰上,将pUC57-pmrB⊿514-516 质粒5 µg与DH5α感受态细胞100 µL混合后孵育30 min,2.5 kV条件下于2 mm电转杯中电转, 添加LB培养基700 µL后转移至1.5 mL离心管培养1.5 h,
5000 r/min离心5 min,弃去部分上清液,留培养基100 µL重悬细菌并涂布于含氨苄西林(50 µg/mL)的LB平板继续培养;挑取单菌落接种至LB培养基3 mL培养过夜,提取质粒后使用引物pmrB-MUT-CXF1和pmrB-MUT-CXR1进行PCR验证。使用KpnⅠ和HindⅢ对pUC57-pmrB⊿514-516进行双酶切。酶切体系为:10×buffer(Cutsmart)10 µL,DNA模板4 µg,KpnⅠ(
20000 U/mL)2 µL,HindⅢ(20000 U/mL)2 µL,ddH2O补充至100 µL。使用KpnⅠ和HindⅢ对pEX18Tc质粒进行双酶切,酶切体系为:10 × buffer(Cutsmart)20 µL,DNA模板8 µg,KpnⅠ(20000 U/mL)4 µL,HindⅢ(20000 U/mL)4 µL,ddH2O补充至200 µL。37 ℃水浴酶切过夜进行胶回收。使用连接酶将回收后的目标片段和载体片段连接,酶连体系为:10 × T4 DNA 连接酶缓冲液 10 µL,T4 DNA 连接酶(40000 U/mL)2 µL,目标片段5 µg,载体片段5 µg,ddH2O补充至100 µL,16 ℃孵育过夜。将pEX18Tc-pmrB⊿514-516电转至(方法同上)DH5α感受态细胞100 µL,将菌液涂布于含四环素(20 µg/mL)的BHI平板继续培养。挑取单菌落培养后以pEX18-F和PA-pmrB-R引物进行PCR验证。将PCR阳性菌落接种至含有四环素(20 µg/mL)的LB培养基中,37 ℃振荡培养过夜后提取质粒(pEX18Tc-pmrB⊿514-516)。取PA ATCC27853单菌落,接种至LB培养基5 mL中,42 ℃静置培养过夜,
12000 r/min离心1 min后,使用MgSO4(1 mmol/L)1 mL洗涤3次,室温下重悬于MgSO4(1 mmol/L)50 µL中。冰上将pEX18Tc- pmrB⊿514-516 质粒5 µg与上述感受态50 µL混合孵育30 min,2.2 kV条件下于2 mm电转杯中电转,添加BHI培养基700 µL后转移至1.5 mL离心管后培养3 h,6000 r/min离心3 min后弃部分上清液,留培养基100 µL重悬细菌并涂布于含四环素(100 µg/mL)的BHI平板中培养64 h。挑取单菌落接种至含有四环素(20 µg/mL)的LB培养基3 mL中培养过夜,提取基因组DNA,以pEX18-F和PA-pmrB-R为引物进行PCR反应;将PCR结果为阳性的菌液涂布至含有四环素(100 µg/mL)的BHI平板培养过夜,挑取单菌落接种至TYS10平板上23 ℃培养64 h,挑取单菌落至LB培养基5 mL中培养过夜后提取基因组DNA,以pmrB-MUT-CXF1和pmrB-MUT-CXR1为引物进行PCR验证。扩增产物送上海生工生物工程有限公司进行测序验证。本研究所用引物参见表1。Table 1. Primers used in this studyPrimer Sequence(5′→3′) Sources pmrB-MUT-CXF1 CGCCTGCTGGTCAACCT This study pmrB-MUT-CXR1 CAGCAGGAGGTTGAGTTCGT This study pEX18-F GGCTCGTATGTTGTGTGGAATTGTG This study PA-pmrB-R GCAGGAGGTTGAGTTCGTCG This study rpsL-QF GTGGTGAAGGTCACAACCTG [14] rpsL-QR CCTGCTTACGGTCTTTGACA [15] pmrA-QF CACCAGGTGACCCTGTCC [14] pmrA-QR CGTAGAGGCTCTGCTCCAGT [15] pmrB-QF CCTCTCGCTGAAGCAGGTGA [15] pmrB-QR CTGGTCTTCGGTGGCAAGGT [16] arnB-QF CGCGATCAAGAACCTGACCT This study arnB-QR GGTCGGCCAGGTTGTATTTG This study arnC-QF AGTTGCGGTTGAGGATCACC This study arnC-QR TCTACAACGAGGAAGCCAGC This study arnA-QF CATCGGCATCCATTCGGAGT This study arnA-QR CGTTTGCCGTATTTCACGCA This study arnD-QF GCGACCTTCTTCTTCAGCGT This study arnD-QR AGCAGGATGTCCCAGCCATA This study arnT-QF CCGCAATTCACCTTCTGGGTC [16] arnT-QR CGAGGAAGCCCTTGGTCAGG [16] arnE-QF TCTGCTGGCTGCTGCTCCTG [16] arnE-QR CATCGAAGACGAAGCGTGCC [16] arnF-QF GTGCTTTCCTCGACGGATGA This study arnF-QR CAGTACCAGCAAGACCCTGG This study 2.4 MIC的测定
使用Ca2+、Mg2+调节过的MH培养基将对数生长期(A600 = 0.6~0.8)的PA野生株、PA-PBsr及PA-pmrB⊿514-516稀释至A600 为 0.001,96孔板第1孔加入待测菌液200 µL,第2孔至第10孔每孔加入菌液100 µL;第1孔加入多黏菌素B(1 mg/mL)6.4 µL,混匀后吸取菌液100 µL至第2孔,以此类推进行倍比稀释直至最后一孔混匀后弃掉100 µL。MH培养基、不含药物的菌液及DMSO 100 µL分别作阴性、阳性和空白对照。37 ℃静置培养18 h后,在每孔加入噻唑蓝(5 mg/mL)10 µL,37 ℃静置培养30 min后测量595 nm波长下的吸收度。
2.5 时间杀菌曲线
分别挑取PA野生株和PA-pmrB⊿514-516单菌落至LB培养基3 mL,培养至A600 为0.5。加入多黏菌素B至野生株与突变株菌液,使终浓度为0、16、32 µg/mL,在96孔板中按每孔总体积200 µL,37 ℃条件下培养。以2 h的间隔测量600 nm波长下的吸收度,平行试验3次,数据取均值。
2.6 抑菌圈
分别用棉拭子蘸取麦氏浊度0.5的野生株PA和突变株PA-pmrB⊿514-516的菌液,均匀涂布在MH平板上。滴加多黏菌素B(0.1 mg/mL)3 µL至MH平板,以生理盐水为阴性对照,37 ℃条件下培养过夜。游标卡尺测量抑菌圈直径,平行试验3次,数据取均值。
2.7 RNA-seq
分别培养野生株PA和突变株PA-pmrB⊿514-516 3 mL至对数生长期(A600 = 0.6~0.8),使用细菌总RNA提取试剂盒提取总RNA,取总RNA (质量浓度>50 ng/µL,A260/280=1.8~2.0)1 µg。使用RT Master Mix for qPCR Ⅱ 试剂盒进行反转录,使用NEB Next® Ultra™ Directional RNA Library Prep Kit for Illumina®试剂盒对样本进行建库。文库构建完成并质检后,使用Illumina Novaseq
6000 进行转录组测序。采用DESeq2进行基因差异表达分析。差异基因筛选条件以差异倍数(Fold change,FC)和P值作为参考指标。|log2FC| > 0.5和P < 0.05作为差异基因判断标准。测序工作主要由上海伟寰生物科技有限公司完成。2.8 RT-qPCR
取对数生长期(A600 = 0.6~0.8)的PA野生株及PA-pmrB⊿514-516 3 mL,使用细菌总RNA提取试剂盒提取总RNA。取总RNA 2 µg,使用RT Master Mix for qPCR Ⅱ 试剂盒进行反转录后,使用SYBR Green qPCR Master Mix试剂盒检测基因表达水平。以rpsL的表达作为内参对照,采用2−ΔΔCt法分析基因表达的相对变化。两组之间的比较采用非配对t检验。
2.9 数据处理及分析
采用GraphPad Prism 8.0.2对试验数据进行数据处理,P< 0.05作为显著性差异的标准。
3. 结 果
3.1 PA-PBsr的筛选及测序
通过阶梯式诱导的方式获得了一株对多黏菌素B耐药的PA菌株PA-PBsr(MIC=8 µg/mL),与野生型相比,其MIC增加到了原来的4倍。全基因组测序显示,与亲本株ATCC27853相比,PA-PBsr的pmrB基因第514−516位碱基发生了缺失突变,导致其编码蛋白同步发生了第172位亮氨酸缺失突变。
3.2 突变菌株的构建与验证
如图1所示,pmrB-MUT-CXF1和pmrB-MUT-CXR1扩增条带大小为657 bp,表明pUC57-pmrB⊿514-516成功电转至感受态细胞中;pEX18-F和PA-pmrB-R扩增条带大小为325 bp(图2),表明已成功将pmrB⊿514-516片段连接至pEX18Tc。引物pmrB-MUT-CXF1和pmrB-MUT-CXR1扩增产物测序结果见图3,测序结果表明pmrB的第514−516位碱基缺失突变株构建成功。
3.3 多黏菌素B对突变株的MIC、杀菌曲线和抑菌圈的测定
多黏菌素B对野生株PA及突变株PA-pmrB⊿514-516的MIC分别是2和8 µg/mL,表明pmrB第514−516位点缺失突变与PA对多黏菌素B的耐药性改变有关。
时间杀菌曲线结果表明,如图4所示,多黏菌素B对野生株PA及PA-pmrB⊿514-516的最低杀菌浓度分别为16和32 µg/mL,表明PA-pmrB⊿514-516对多黏菌素B表现出更强的耐受性。
当多黏菌素B质量浓度为0.1 mg/mL时,野生株PA和突变株PA-pmrB⊿514-516形成的抑菌圈如图5所示。野生株PA的抑菌圈平均值为11.4 mm,突变株PA-pmrB⊿514-516的抑菌圈平均直径为6.1 mm,表明突变株对多黏菌素B敏感性降低。
3.4 差异表达基因分析
如图6所示,与野生株PA相比,突变株PA-pmrB⊿514-516总共有787个基因发生显著变化,其中有418个基因表达上调,369个基因表达下调。其中,与多黏菌素B耐药性相关的pmrA、pmrB及arnBCADTEF都发生了上调(表2)。
Table 2. Changes in the related gene expression regulated by pmrBSymbol log2 Fold change P Stat Product pmrA 5.9 0 up PmrA: two-component regulator system response regulator PmrA pmrB 6.1 1.1 × 10−260 up PmrB: two-component regulator system signal sensor kinase PmrB arnB 7.5 7.3 × 10−5 up ArnB arnC 6.9 4.0 × 10−212 up ArnC arnA 7.2 0 up ArnA arnD 8.1 8.9 × 10−8 up ArnD arnT 7.0 0 up inner membrane L-Ara4N transferase ArnT arnE 7.4 1.6 × 10−26 up ArnE arnF 7.4 6.5 × 10−7 up ArnF 3.5 RT-qPCR结果分析
如图7所示,与野生型相比,在PA-pmrB⊿514-516中,受PmrB调控的基因pmrA、pmrB及arnBCADTEF的表达量均显著升高。其中pmrA和pmrB基因表达分别升高8.6倍和 3.4倍,而arnBCADTEF操纵子各基因组分的表达量分别升高31.3、56.9、43.8、5.1、45.2、5.3和19.9倍。结果与转录组测序结果相一致。
4. 讨 论
随着抗生素的广泛使用,对抗生素产生耐药性的PA越来越常见。全国细菌耐药监测网显示,2021年我国PA对碳青霉烯类抗生素的耐药率为17.7%[17]。多黏菌素B是治疗对碳青霉烯耐药PA的重要手段。细胞外膜脂质A成分的修饰可使PA对多黏菌素B产生耐受性,其常见形式是在脂质A成分中添加正电荷的L-Ara4N,从而降低多黏菌素B与LPS的亲和力,而该过程是由arnBCADTEF操纵子编码的蛋白质介导的,该操纵子则受双组分系统PmrA-PmrB调控。目前已有文献表明,PA对多黏菌素B产生抗性,与PA的pmrB上的碱基发生突变存在一定关系[12−13]。
本研究使用多黏菌素B对PA进行亚抑菌浓度诱导,获得了一株PA-PBsr,该菌株在pmrB基因发生了第514−516位的缺失突变。我们通过同源重组,构建PA-pmrB⊿514-516突变株后发现,该突变可介导PA对多黏菌素B产生抗性。另外,RNA-seq和RT-qPCR结果显示该突变可引起pmrA、pmrB和操纵子arnBCADTEF表达量升高,提示PmrA-PmrB功能表达增强。因此,本研究明确了一个可以引起PA对多黏菌素B产生耐药性的新的pmrB突变形式,对于进一步认识和了解PA对多黏菌素B的耐药机制提供了新的数据。鉴于该突变形式目前还未在临床耐药株中发现,因此,在今后使用多黏菌素B治疗PA感染时应注意由该突变引起的耐药,从而体现了本研究对于临床用药的指导意义。然而,PA的pmrB⊿514-516突变是如何导致双组分系统PmrA-PmrB功能增强,其具体作用机制还需要进一步研究。
-
Table 1 Primers used in this study
Primer Sequence(5′→3′) Sources pmrB-MUT-CXF1 CGCCTGCTGGTCAACCT This study pmrB-MUT-CXR1 CAGCAGGAGGTTGAGTTCGT This study pEX18-F GGCTCGTATGTTGTGTGGAATTGTG This study PA-pmrB-R GCAGGAGGTTGAGTTCGTCG This study rpsL-QF GTGGTGAAGGTCACAACCTG [14] rpsL-QR CCTGCTTACGGTCTTTGACA [15] pmrA-QF CACCAGGTGACCCTGTCC [14] pmrA-QR CGTAGAGGCTCTGCTCCAGT [15] pmrB-QF CCTCTCGCTGAAGCAGGTGA [15] pmrB-QR CTGGTCTTCGGTGGCAAGGT [16] arnB-QF CGCGATCAAGAACCTGACCT This study arnB-QR GGTCGGCCAGGTTGTATTTG This study arnC-QF AGTTGCGGTTGAGGATCACC This study arnC-QR TCTACAACGAGGAAGCCAGC This study arnA-QF CATCGGCATCCATTCGGAGT This study arnA-QR CGTTTGCCGTATTTCACGCA This study arnD-QF GCGACCTTCTTCTTCAGCGT This study arnD-QR AGCAGGATGTCCCAGCCATA This study arnT-QF CCGCAATTCACCTTCTGGGTC [16] arnT-QR CGAGGAAGCCCTTGGTCAGG [16] arnE-QF TCTGCTGGCTGCTGCTCCTG [16] arnE-QR CATCGAAGACGAAGCGTGCC [16] arnF-QF GTGCTTTCCTCGACGGATGA This study arnF-QR CAGTACCAGCAAGACCCTGG This study Table 2 Changes in the related gene expression regulated by pmrB
Symbol log2 Fold change P Stat Product pmrA 5.9 0 up PmrA: two-component regulator system response regulator PmrA pmrB 6.1 1.1 × 10−260 up PmrB: two-component regulator system signal sensor kinase PmrB arnB 7.5 7.3 × 10−5 up ArnB arnC 6.9 4.0 × 10−212 up ArnC arnA 7.2 0 up ArnA arnD 8.1 8.9 × 10−8 up ArnD arnT 7.0 0 up inner membrane L-Ara4N transferase ArnT arnE 7.4 1.6 × 10−26 up ArnE arnF 7.4 6.5 × 10−7 up ArnF -
[1] Kim BO, Jang HJ, Chung IY, et al. Nitrate respiration promotes polymyxin B resistance in Pseudomonas aeruginosa[J]. Antioxid Redox Signal, 2021, 34(6): 442-451. doi: 10.1089/ars.2019.7924
[2] Qin SG, Xiao W, Zhou CM, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics[J]. Signal Transduct Target Ther, 2022, 7(1): 199. doi: 10.1038/s41392-022-01056-1
[3] Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria[J]. Front Microbiol, 2014, 5: 643.
[4] Cai YY, Lee W, Kwa AL. Polymyxin B versus colistin: an update[J]. Expert Rev Anti Infect Ther, 2015, 13(12): 1481-1497. doi: 10.1586/14787210.2015.1093933
[5] Liu ZG, Yang X, Che DB, et al. Research progress of polymyxin antibiotics[J]. Northwest Pharm J(西北药学杂志), 2019, 34(5): 701-705. [6] Lyu YM, Wang SL, Wang GJ, et al. Research progress on the mechanism and clinical application of polymyxin[J]. Chin J Geriatric Care(中国老年保健医学), 2019, 17(6): 95-97. [7] Moskowitz SM, Ernst RK, Miller SI. PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A[J]. J Bacteriol, 2004, 186(2): 575-579. doi: 10.1128/JB.186.2.575-579.2004
[8] Yang BP, Liu C, Pan XL, et al. Identification of novel PhoP-PhoQ regulated genes that contribute to polymyxin B tolerance in Pseudomonas aeruginosa[J]. Microorganisms, 2021, 9(2): 344. doi: 10.3390/microorganisms9020344
[9] Hasan CM, Pottenger S, Green AE, et al. Pseudomonas aeruginosa utilizes the host-derived polyamine spermidine to facilitate antimicrobial tolerance[J]. JCI Insight, 2022, 7(22): e158879. doi: 10.1172/jci.insight.158879
[10] Jochumsen N, Marvig RL, Damki RS, et al. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions[J]. Nat Commun, 2016, 7: 13002. doi: 10.1038/ncomms13002
[11] Bricio-Moreno L, Sheridan VH, Goodhead I, et al. Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa[J]. Nat Commun, 2018, 9(1): 2635. doi: 10.1038/s41467-018-04996-x
[12] Abraham N, Kwon DH. A single amino acid substitution in PmrB is associated with polymyxin B resistance in clinical isolate of Pseudomonas aeruginosa[J]. FEMS Microbiol Lett, 2009, 298(2): 249-254. doi: 10.1111/j.1574-6968.2009.01720.x
[13] Barrow K, Kwon DH. Alterations in two-component regulatory systems of phoPQ and pmrAB are associated with polymyxin B resistance in clinical isolates of Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2009, 53(12): 5150-5154. doi: 10.1128/AAC.00893-09
[14] Lee JY, Ko KS. Mutations and expression of PmrAB and PhoPQ related with colistin resistance in Pseudomonas aeruginosa clinical isolates[J]. Diagn Microbiol Infect Dis, 2014, 78(3): 271-276. doi: 10.1016/j.diagmicrobio.2013.11.027
[15] Ben Jeddou F, Falconnet L, Luscher A, et al. Adaptive and mutational responses to peptide dendrimer antimicrobials in Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2020, 64(4): e02040-e02019.
[16] Han X, Liu YJ, Ma YB, et al. Peptide dendrimers G3KL and TNS18 inhibit Pseudomonas aeruginosa biofilms[J]. Appl Microbiol Biotechnol, 2019, 103(14): 5821-5830. doi: 10.1007/s00253-019-09801-3
[17] Hu FP, Guo Y, Zhu DM, et al. CHINET surveillance of antimicrobial resistance among the bacterial isolates in 2021[J]. Chin J Infect Chemother (中国感染与化疗杂志), 2022, 22(5): 521-530.