Volatile aromatic components and pyrolytic products in ethanol extracts of Cyclocarya paliurus by GC-MS
-
摘要:
为研究青钱柳浸膏作为添加剂应用于卷烟的可行性,采用气相-离子迁移谱(GC-IMS)分析挥发性香气成分,通过单热重-气相色谱-质谱联用技术(TGA-GC/MS)模拟燃烧过程,分析青钱柳浸膏在氮气环境中的裂解产物,并对产物可能的裂解机制进行合理推测。结果表明:醛类、醇类、酮类为青钱柳浸膏的主要挥发性香气成分,占总香气成分的62.28%。在不同温度条件下,青钱柳浸膏裂解产物差异较大,在200 ℃、360 ℃、440 ℃共鉴定出79种化合物,其中24种致香成分对卷烟风格具有重要作用,包括醛、酮、醇、酚、呋喃、芳香族化合物和其他一些天然香气物质,其中含量较多的酚类化合物主要是由含有类似愈创木酚单元和丁香酚单元结构的化合物通过侧链的断裂、脱甲基化、脱甲氧基化、脱水等形成,呋喃及呋喃衍生物主要由糖类或糖苷类化合物通过断裂糖苷键和脱水形成。
Abstract:In order to investigate the feasibility of the extract from Cyclocarya paliurus as an additive in cigarettes, the volatile aromatic components were analyzed by gas chromatography-ion mobility spectrometry (GC-IMS), and C.paliurus extract was pyrolyzed to simulate cigarette smoking by TGA-GC/MS. The cracking products of C.paliurus were analyzed in a nitrogen environment, and the possible cracking mechanism of the products was reasonably speculated. The results showed that aldehydes, alcohols, and ketones were the primary volatile aroma components of the C.paliurus extract, comprising 62.28% of the total aroma components. The cracking products of C.paliurus extract varied greatly under different temperature conditions. A total of 79 compounds were identified at 200,360, and 440 ℃, among which 24 aromatic components were clearly identified as having significant effects on cigarette style, including aldehydes, ketones, alcohols, phenols, furans, benzene series, and other natural aromatic substances. Among them, phenols containing a high concentration are mainly formed by compounds containing the structure of guaiacol unit and eugenol unit by side chain cleavage, demethylation, demethoxylation, dehydration, etc. Furan and its derivatives are mainly formed by glycosides or glycoside compounds by breaking glucoside bonds and dehydration.
-
-
Figure 3. GC-IMS fingerprint of volatile components of C. paliurus extract Each row represents the signal peak of one sample while each column represents the same volatile component in different samples. Colors represent the content of a volatile compound, and the brighter the color is, the higher the content
Table 1 Qualitative results of volatile compounds in C. paliurus extract
Type Compound CAS Formula RI RT/s DT/s Relative content/% Acids Acetic acid-M C64197 C2H4O2 1506.9 1184.727 1.058 3.14 Acids Acetic acid-D C64197 C2H4O2 1515.8 1201.702 1.165 1.26 Alcohols Propylene glycol C57556 C3H8O2 1713.8 1579.779 1.113 0.69 Alcohols Linalool C78706 C10H18O 1543.1 1253.848 1.207 0.82 Alcohols (Z)-2-Penten-1-ol C1576950 C5H10O 1330.8 848.484 0.944 8.55 Alcohols 3-Methyl-1-butanol C123513 C5H12O 1218.3 664.611 1.238 0.60 Alcohols 1-Penten-3-ol C616251 C5H10O 1167.8 579.743 0.949 6.19 Alcohols 1- Butanol-M C71363 C4H10O 1152.7 551.423 1.182 0.83 Alcohols 1- Butanol-D C71363 C4H10O 1152.2 550.596 1.387 0.38 Alcohols 2-Methyl-1-propanol C78831 C4H10O 1102.4 457.152 1.372 2.53 Alcohols 1-Propanethiol C107039 C3H8S 861.7 251.243 1.165 0.96 Aldehydes (2E,4E)-2,4-Heptadienal C4313035 C7H10O 1500.5 1172.396 1.213 1.25 Aldehydes (2E,4E)-2,4-Hexadienal-M C142836 C6H8O 1443.2 1063.027 1.129 2.56 Aldehydes (2E,4E)-2,4-Hexadienal-D C142836 C6H8O 1444.9 1066.292 1.452 6.41 Aldehydes (E)-2-Hexenal-M C6728263 C6H10O 1231.5 684.312 1.184 1.85 Aldehydes (E)-2-Hexenal-D C6728263 C6H10O 1230.5 682.852 1.514 0.31 Aldehydes 3-Methyl-2-butenal-M C107868 C5H8O 1212.5 655.855 1.093 1.00 Aldehydes 3-Methyl-2-butenal-D C107868 C5H8O 1214.4 658.774 1.362 1.07 Aldehydes (E)-2-Pentenal-M C1576870 C5H8O 1124.0 497.672 1.110 7.42 Aldehydes (E)-2-Pentenal-D C1576870 C5H8O 1123.1 496.018 1.361 1.20 Aldehydes 1-Hexanal-M C66251 C6H12O 1101.0 454.671 1.271 1.23 Aldehydes 1-Hexanal-D C66251 C6H12O 1102.4 457.152 1.560 0.28 Aldehydes 1-Pentanal C110623 C5H10O 969.8 317.399 1.185 1.03 Aldehydes 2-Methyl butanal C96173 C5H10O 930.6 293.417 1.399 0.81 Aldehydes Butanal C123728 C4H8O 850.9 244.628 1.114 0.73 Aldehydes Acrolein C107028 C3H4O 872.5 257.859 1.055 1.22 Esters Ethyl 2-hydroxypropanoate C97643 C5H10O3 1352.6 889.996 1.150 0.52 Esters Ethyl 2-oxopropanoate C617356 C5H8O3 1253.0 716.417 1.149 0.77 Esters Ethyl acetate C141786 C4H8O2 903.6 276.879 1.334 0.43 Ketones 2-Methyl-2-hepten-6-one C110930 C8H14O 1342.5 870.827 1.179 0.42 Ketones 1-Hydroxy-2-propanone C116096 C3H6O2 1307.9 804.705 1.230 0.73 Ketones Cyclohexanone-M C108941 C6H10O 1294.5 779.167 1.155 1.87 Ketones Cyclohexanone-D C108941 C6H10O 1292.9 776.248 1.456 0.26 Ketones 2-Hexanone C591786 C6H12O 1062.7 408.362 1.198 1.39 Ketones 2,3-Pentadione C600146 C5H8O2 1043.1 386.035 1.307 2.13 Ketones 1-Penten-3-one C1629589 C5H8O 1006.0 343.861 1.302 0.82 Ketones 2-Butanone C78933 C4H8O 918.5 285.975 1.243 1.82 Others 2,6-Dimethylpyrazine C108509 C6H8N2 1320.5 828.783 1.134 0.40 Others 2-Methylpyrazine-M C109080 C5H6N2 1308.3 805.434 1.069 1.70 Others 2-Methylpyrazine-D C109080 C5H6N2 1307.9 804.705 1.398 6.75 Others β-Pinene C127913 C10H16 1123.5 496.845 1.223 0.62 Others 2-Propenenitrile C107131 C3H3N 992.8 331.457 1.088 6.50 RI:Retention index; RT:Retention time;DT:Drift time Table 2 Pyrolysis products of C.paliurus extract at 200 ℃,360 ℃,and 440 ℃
RT/s Compound CAS Match R.Match Relative content/% 200 ℃ 360 ℃ 440 ℃ 2.528 Acetic acid 64-19-7 898 941 7.222 ND ND 2.557 2-Methyl-furan 534-22-5 735 810 ND 9.426 ND 2.863 2,4-Hexadiene 5194 -51-4886 886 6.653 ND ND 3.152 2-Propanone, 1-hydroxy- 116-09-6 844 905 6.395 ND ND 3.546 2,3-Pentanedione 600-14-6 848 848 1.792 ND ND 3.704 Furan, 2,5-dimethyl- 625-86-5 821 838 ND 2.405 ND 4.739 Toluene 108-88-3 866 883 ND 2.317 3.991 5.192 Cyclopentanone 120-92-3 849 859 ND 0.393 ND 5.381 Heptane,2,4-dimethyl 2213 -23-2865 865 ND ND 1.058 5.504 3(2H)-Furanone, dihydro-2-methyl- 3188 -00-9800 800 0.854 ND ND 5.986 2-Cyclopenten-1-one 930-30-3 787 912 ND 2.244 ND 6.028 Furfural 98-01-1 878 889 23.993 ND ND 6.422 Furfuryl alcohol 98-00-0 907 907 10.180 ND ND 6.575 Ethylbenzene 100-41-4 863 919 ND ND 0.977 6.704 2-Propanone, 1-(acetyloxy)- 592-20-1 847 855 0.990 ND ND 6.763 p-Xylene 106-42-3 935 937 ND 3.699 4.945 6.963 4-Cyclopentene-1,3-dione 930-60-9 886 886 2.101 ND ND 7.192 o-Xylene 95-47-6 870 906 ND ND 1.436 7.357 Nonane 111-84-2 854 854 ND ND 1.117 7.404 2-Cyclopenten-1-one, 2-methyl- 1120 -73-6802 849 ND 0.871 ND 7.498 Ethanone, 1- (2-furanyl)- 1192 -62-7843 843 ND 2.015 ND 7.792 p-Benzoquinone 106-51-4 821 839 ND 5.066 1.061 8.375 Benzene, propyl- 103-65-1 907 907 ND ND 0.202 8.504 2-Furancarboxaldehyde, 5-methyl- 620-02-0 916 921 4.019 ND ND 8.51 Benzene, 1-ethyl-2-methyl- 611-14-3 914 930 ND ND 1.368 8.569 Benzene, 1-ethyl-4-methyl- 622-96-8 877 885 ND ND 1.326 8.663 Benzene,1,2,4-trimethyl- 95-63-6 912 912 ND ND 0.764 8.769 Phenol 108-95-2 953 973 ND 10.862 4.216 9.192 3,3,5-Trimethyl-1,5-heptadiene 74630 -29-8807 838 ND 0.804 ND 9.604 Mesitylene 108-67-8 847 920 ND 2.104 2.331 9.68 Benzene, 1-methyl-3-(1-methylethyl)- 535-77-3 800 811 ND 2.122 0.515 9.774 D-Limonen 5989 -27-5916 924 ND 2.818 ND 9.816 Benzyl alcohol 100-51-6 800 800 2.343 1.990 ND 10.022 Benzene, 1-ethynyl-4-methyl- 766-97-2 863 894 ND ND 0.142 10.092 Phenol,2-methyl- 95-48-7 928 928 ND 0.669 2.042 10.227 Benzene, 1,4-diethyl- 105-05-5 839 859 ND ND 0.921 10.38 Acetophenone 98-86-2 854 854 ND 0.367 ND 10.445 p-Cresol 106-44-5 917 919 ND 3.687 3.714 10.586 2 5-Furandicarboxaldehyde 823-82-6 918 937 3.093 ND ND 10.598 1-Ethyl-2,4-dimethylbenzene 874-41-9 872 872 ND ND 0.580 10.698 Mequinol 150-76-5 850 923 ND 1.648 ND 10.798 Benzene, 1-methyl-4-(1-methylethenyl)- 1195 -32-0832 895 ND 0.815 ND 10.939 Undecane 1120 -21-4900 900 ND ND 0.705 11.033 Phenol, 2,5-dimethyl- 95-87-4 800 875 ND ND 0.706 11.104 Benzofuran, 2-methyl- 4265 -25-2881 881 ND ND 0.294 11.292 Benzene, 1,2,4,5-tetramethyl- 95-93-2 916 916 ND ND 0.735 11.457 Phenol, 2-ethyl- 90-00-6 808 866 ND ND 0.370 11.651 Phenol, 2,4-dimethyl- 105-07-9 843 928 ND ND 2.307 11.927 Phenol, 4-ethyl- 123-07-9 901 964 ND 1.406 ND 12.492 α-Terpineol 98-55-2 866 877 3.324 1.254 12.715 Benzofuran, 2,3-dihydro- 496-16-2 800 872 ND 1.552 ND 12.81 Benzofuran,4,7-dimethyl 28715 -26-6808 808 ND ND 0.591 12.845 5-Hydroxymethylfurfural 67-47-0 745 786 2.141 ND ND 13.404 Naphthalene,1,2-dihydro-4-methyl- 4373 -13-1843 879 ND ND 0.316 13.433 Hydroquinone 123-31-9 893 908 ND 5.873 1. 402 13.645 Cinnamaldehyde, (E)- 14371 -10-9892 910 3.759 1.733 ND 13.78 1H-Indene,2,3-dihydro-4,7-dimethyl- 6682 -71-9809 835 ND ND 0.753 13.98 Tridecane 629-50-5 858 900 ND ND 0.884 14.086 2-Propen-1-ol, 3-phenyl- 104-54-1 939 939 12.898 6.157 ND 14.41 1H-Indene,2,3-dihydro-1,1,5-trimethyl- 40650 -41-7829 831 ND ND 1.408 15.08 2-Propadienylmesitylene 29555 -07-5800 912 ND ND 0.517 15.351 Tetradecane 629-59-4 816 907 ND ND 1.113 15.456 Diphenyl ether 101-84-8 831 856 0.447 0.254 ND 15.562 Naphthalene, 1,8-dimethyl- 569-41-5 830 869 ND ND 1.117 15.692 Ethanone, 1-(3-hydroxyphenyl)- 121-71-1 909 909 0.193 ND ND 15.792 Naphthalene, 2,6-dimethyl- 581-42-0 872 928 ND ND 1.261 16.574 Benzene, 1,2-dimethoxy-4-propenyl-, (E)- 6379 -72-2871 894 0.919 1.740 ND 16.815 1-Naphthalenol 96-15-3 800 816 ND 0.253 ND 17.056 Naphthalene, 2-ethoxy- 93-18-5 938 947 2.280 1.707 ND 17.515 Naphthalene, 1,6,7-trimethyl- 2245 -38-7914 929 ND ND 2.292 17.845 Naphthalene,2,3,6-trimethyl- 829-26-5 892 898 ND ND 1.703 18.156 (+)-Cedrol 77-53-2 817 834 ND 1.461 ND 19.521 Tetramethylnaphthalene 2717 -39-7851 851 ND ND 0.596 20.509 Neophytadiene 504-96-1 800 800 ND 0.286 ND -
[1] Chen ZL, Jian YQ, Wu Q, et al. Cyclocarya paliurus (batalin) iljinskaja: botany, ethnopharmacology, phytochemistry and pharmacology[J]. J Ethnopharmacol, 2022, 285 : 114912.
[2] Zhang HY. The Chinese Traditional Medicine Resource (中国中药资源志要) Records. Beijing: Science Press, 1994: 159. [3] Shen YB, Peng Y, Zhu XC, et al. The phytochemicals and health benefits of Cyclocarya paliurus (Batalin) Iljinskaja[J]. Front Nutr, 2023, 10: 1158158. doi: 10.3389/fnut.2023.1158158
[4] Wang H, Tang C, Gao ZZ, et al. Potential role of natural plant medicine Cyclocarya paliurus in the treatment of type 2 diabetes mellitus[J]. J Diabetes Res, 2021, 2021: 1655336.
[5] Wang KP, Li WR, Song MZ, et al. Research progress on chemical constituents, biological activities and product development of Cyclocarya paliurus[J]. Chin J Hosp Pharm, 2023, 43(18): 2100-2104.
[6] Wang J, Mao Y, Yang WY, et al. A preparation method of plant faint-scent cigarette: CN105077574B[P]. 2018-09-21.
[7] Li GM. A kind of smoking cessation cigarettes-Cyclocarya paliurus cigarettes: CN104799427B[P]. 2017-01-11.
[8] Liu H, Chu GL, Ren ZY, et al. Study on the moisturizing and flavor-increasing mechanism of polysaccharides and its application in cigarettes[J]. Food Ind (食品工业), 2022, 43(7): 39-44. [9] Zhu LJ, Cao Y, Qin YH, et al. Effect of glycerol addition ratio on thermal properties and pyrolysis products of tobacco sheet of heated cigarette[J]. Acta Tabacaria Sin (中国烟草学报), 2022, 28(5): 8-16. [10] Luo RC, Zhao ZY, Liu HG, et al. Effect of pyrolytic temperature of β-carotene on the pyrolytic products[J]. J Food Sci Biotechnol (食品与生物技术学报), 2003(3): 67-75. [11] Han Y, Yang Z, Zou XM, et al. Analysis of volatile components and thermal cracking products of Buxus fruit extract and its application in cigarettes[J]. Light Ind Sci Technol (轻工科技), 2021, 37(8): 4-7. [12] Zhang WL, Rong H, Zhao XD, et al. Pyrolysis Constituents of Elsholtzia bodineri Vaniot and effects of the same on deliveries of seven harmful components in mainstream cigarette smoke[J]. J Yunnan Agric Univ (云南农业大学学报), 2018, 33(6): 1105-1112. [13] Hai XC. Study on the characteristic flavor of caramel malt and its changing law in the roasting process (焦香麦芽特征风味及其在焙焦过程中变化规律研究) [D]. Yangzhou: Yangzhou University, 2019. [14] Guan TQ, Zhang B, Zhang L, et al. Analysis of pyrolysis products of Peru extract[J]. Light Ind Sci Technol (轻工科技), 2018, 34(2): 5-6,148. [15] Li C, Liu JY, Cai JY, et al. Analysis of aroma compounds in different flavored cigarette paper by using headspace-gas chromatography-ion mobility spectrometry[J]. J Light Ind (轻工学报), 2023, 38(2): 80-86. [16] Tian LM, Miao EM, Zeng WL, et al. Pyrolysis products analysis of honeysuckle by gas chromatography-mass spectrometer[J]. Chin Agric Sci Bull (中国农学通报), 2017, 33(5): 116-121. [17] Liu XG, Chen YS. Study on synthesis of 2-methyltetrafuran-3-one from ethyl lactate and methyl acrylate[J]. Food Sci (食品科学), 2005, 26(5): 165-167. [18] Wang B, Fan Z, Li HL, et al. Effect of ventilation on the release of typical phenolic flavor components in mainstream cigarette smoke[J]. J Light Ind (轻工学报), 2022, 37(4): 58-65. [19] Dai JG, Li YJ, Zhang P, et al. Study on the pyrolysis behavior of loquat leaf extract[J]. J Light Ind (轻工学报), 2015, 30(1): 30-35. [20] Zhu H, Chai GB, Chi GJ, et al. Sensory-oriented analysis of smoky components in mainstream cigarette smoke[J]. Tob Sci Technol (烟草科技), 2017, 50(1): 41-49. [21] Liao HY, Wu Y, Sun HP, et al. Analysis of methyleugenol in mainstream cigarette smoke by solid phase extractiondouble packing reverse extraction coupled with GC/MS[J]. Tob Sci Technol (烟草科技), 2021, 54(4): 66-73. [22] Wang HJ, Jing XY, Liu LF, et al. Analysis of volatile components in Pimenta dioica leaf oil and its application in cigarette[J]. J Henan Agric Sci (河南农业科学), 2013, 42(3): 143-145. [23] Chu GL. Analysis of pyrolytic properties of polysaccharides and its application in cigarette (多糖的热裂解性质分析及其在卷烟中的应用) [D]. Nanchang: Nanchang University, 2023. [24] Huang YC, Gong CR, Guo R, et al. Research progress on the relationship between pigment and aroma substances in flue-cured tobacco[J]. J Henan Agric Sci (河南农业科学), 2008, 37(2): 5-9. [25] Peng YX. Analysis of the characteristic aroma components of Hunan Fu brick tea (湖南茯砖茶特征香气成分分析) [D]. Tianjin: Tianjin University, 2022. [26] Chigo-Hernandez MM, Tomasino E. Aroma perception of limonene, linalool and α-terpineol combinations in pinot Gris wine[J]. Foods, 2023, 12(12): 2389. doi: 10.3390/foods12122389
[27] Mei X, Xu JG, Su LL, et al. Rapid identification of odor difference markers before and after bran-fried Aurantii Fructus based on Heracles NEO ultra-fast gas phase electronic nose[J]. Chin Tradit Herb Drugs (中草药), 2023, 54(16): 5165-5171. [28] Kaur R, Tarun Kumar V, Krishna BB, et al. Characterization of slow pyrolysis products from three different cashew wastes[J]. Bioresour Technol, 2023, 376: 128859. doi: 10.1016/j.biortech.2023.128859
[29] Lu XY, Gu XL. A review on lignin pyrolysis: pyrolytic behavior, mechanism, and relevant upgrading for improving process efficiency[J]. Biotechnol Biofuels Bioprod, 2022, 15(1): 106. doi: 10.1186/s13068-022-02203-0
[30] Hu J, Shen DK, Xiao R, et al. Free-radical analysis on thermochemical transformation of lignin to phenolic compounds[J]. Energy Fuels, 2013, 27(1): 285-293. doi: 10.1021/ef3016602
[31] Chen T, Qi XP, Chen MJ, et al. Gas chromatography-ion mobility spectrometry detection of odor fingerprint as markers of rapeseed oil refined grade[J]. J Anal Methods Chem, 2019, 2019: 3163204.
[32] Hu X, Wang RR, Guo JJ, et al. Changes in the volatile components of candied kumquats in different processing methodologies with headspace-gas chromatography-ion mobility spectrometry[J]. Molecules, 2019, 24(17): 3053. doi: 10.3390/molecules24173053
[33] Li WQ, Chen YP, Blank I, et al. GC × GC-TOF-MS and GC-IMS based volatile profile characterization of the Chinese dry-cured hams from different regions[J]. Food Res Int, 2021, 142: 110222. doi: 10.1016/j.foodres.2021.110222
[34] Ma Y, Wang YY, Guan MR, et al. Changes of the color and odor of the flowers from Lonicera japonica in different development[J]. Chin Tradit Pat Med (中成药), 2019, 41(6): 1349-1353. [35] Chen WL. Base on chromatography-mass spectrometry technology research chemical constituents of Cyclocarya paliurus leaf (基于色谱-质谱技术研究青钱柳叶化学成分) [D]. Nanchang: Nanchang University, 2018. [36] Kou XL, Li TT, Wu CE, et al. Optimization of the extraction of the volatile substances in Cyclocarya paliurus tea based on GC-TOF-MS[J]. Mod Food Sci Technol (现代食品科技), 2019, 35(8): 261-270.