Study of glycosides from Piper sintenense Hatusima
-
摘要:
为探究胡椒属植物小叶爬崖香(Piper sintenense Hatusima)中苷类化学成分,采用硅胶、ODS、MCI GEL CHP20P、Sephadex LH-20柱色谱和半制备高效液相等色谱技术,从小叶爬崖香95%乙醇提取物的正丁醇部位分离获得9个苷类化合物。根据理化性质及核磁共振数据,以上化合物被鉴定为(2S)-2-羟基-1-(4-羟基-3-甲氧基苯基)-1-丙酮-2-O-β-D-葡萄糖苷(1)、苯乙醇-β-D-葡萄糖苷(2)、苄醇-β-巢菜糖苷(3)、苄醇-β-樱草糖苷(4)、苯乙醇-β-D-呋喃芹菜糖基-(1''→2')-β-D-葡萄糖苷(5)、红景天苷(6)、苯乙醇-β-樱草糖苷(7)、(顺)-3-己烯醇-β-巢菜糖苷(8)、(顺)-3-己烯醇-β-樱草糖苷(9)。其中化合物1为新化合物,化合物3~9为首次从胡椒属中分离得到。
Abstract:In order to investigate the chemical constituents of glycosides in Piper sintenense Hatusima, column chromatographic techniques such as silica gel, ODS, MCI GEL CHP20P, Sephadex LH-20, and semi-preparative high performance liquid chromatography were used to afford nine glycosides from the n-butanol part of the 95% ethanol extract of Piper sintenense Hatusima. Based on the physicochemical properties and NMR data, the above compounds were identified as (2S)-2-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-1-propanone-2-O-β-D-glucopyranoside (1), 2-phenylethyl β-D-glucopyranoside (2), benzyl α-L-arabinopyranosyl-(1''→6')-β-D-glucopyranoside (3), benzyl β-D-xylopyanosyl-(1''→6')-β-D-glucopyranoside (4), phenethyl β-D-apiofuranosyl-(1''→ 2')-β-D-glucopyranoside(5), salidroside (6), phenethanol β-D-xylopyanosyl-(1''→6')-β-D-glucopyranoside (7), (Z)-hexenyl-O-α-L-arabinopyranosyl-(1''→6')-O-β-D-glucopyranoside (8), (Z)-hexenyl-O-β-D-xylopyanosyl-(1''→6')-O-β-D-glucopyranoside (9). Compound 1 was identified as a new compound, and compounds 3-9 were isolated from the genus Piper for the first time.
-
小叶爬崖香(Piper sintenense Hatusima)又名薄叶风藤,是胡椒科胡椒属攀援或匍匐藤本植物,产于我国东南至西南部各省区,东起台湾,西至西藏[1]。《新华本草纲要》中记录小叶爬崖香具有祛风活血的功效,水煎汤可治疗风湿骨痛[2]。然而,目前未见有关小叶爬崖香的研究论文发表,因此对小叶爬崖香中的化学成分的研究显得极为重要。对于胡椒属植物,其化学成分主要是生物碱和木脂素。从1939年至2015年,胡椒属植物中已有二百余种生物碱被报道[3];截至2022年10月,在胡椒属中已发现至少275种木脂素[4]。但是,胡椒属植物治疗风湿痹痛时多采用水煎法入药。现代研究显示,胡椒属植物中的苷类化合物具有广泛的药理活性。如石南藤中的芳香苷类化合物具有抗血小板聚集活性[5];假蒟的正丁醇提取物主要为生物碱和酚苷类成分,可以通过NF-κB信号通路减少猪肠道上皮细胞炎症因子的释放来发挥抗炎活性[6];从山蒟茎的正丁醇部位中分离得到的3种木脂素苷类化合物具有抗神经炎和抗氧化活性[7]。因此探究小叶爬崖香中苷类化学成分,对阐明其药效物质基础及其潜在的新的药理作用的开发具有重要意义。
为揭示小叶爬崖香中苷类化学成分及其药效物质,本研究对小叶爬崖香乙醇提取物中正丁醇部位进行了系统分离工作,从中分离鉴定了9个化合物,分别为(2S)-2-羟基-1-(4-羟基-3-甲氧基苯基)-1-丙酮-2-O-β-D-葡萄糖苷(1)、苯乙醇-β-D-葡萄糖苷(2)、苄醇-β-巢菜糖苷(3)、苄醇-β-樱草糖苷(4)、苯乙醇-β-D-呋喃芹菜糖基-(1''→2')-β-D-葡萄糖苷(5)、红景天苷(6)、苯乙醇-β-樱草糖苷(7)、(顺)-3-己烯醇-β-巢菜糖苷(8)、(顺)-3-己烯醇-β-樱草糖苷(9)。其中化合物1为新化合物,化合物3~9为首次从胡椒属中分离得到。
1. 材 料
1.1 药 材
小叶爬崖香取自中国科学院广西植物研究所,经中国药科大学中药资源学教研室秦民坚教授鉴定为小叶爬崖香(Piper sintenense Hatusima)。植物标本(IBK00409229)现存于中国药科大学中药制药系。
1.2 仪器与试剂
UV-2600i型紫外光谱仪(日本岛津公司);Tensor 27型红外光谱仪、Avance-500型核磁共振谱仪(德国布鲁克公司);Rudolph Autopol IV旋光仪(美国鲁道夫公司);1260 Infinity 高效液相色谱仪、Q-TOF-6520型质谱仪(美国安捷伦公司);SSI/LabAlliance半制备液相色谱仪(美国LabAlliance公司);Alltech 3300 ELSD检测器、Vision C18 HL制备、分析色谱柱(美国Grace公司);100~200目、200~300目硅胶(青岛海洋化工厂);ODS RP-18硅胶、硅胶60 F254薄层色谱板(德国Merck公司);ODS RP-18(日本YMC公司);MCI(日本三菱化学公司);Sephadex LH-20(美国Pharmacia公司);甲醇、乙腈(色谱级,上海星可高纯溶剂有限公司);实验用水(杭州娃哈哈集团有限公司),其他试剂均为市售分析纯。
2. 提取分离
取干燥后的小叶爬崖香全草25 kg,粉碎后用95%乙醇浸渍法提取3次,每次7 d。提取液合并后经减压浓缩至无醇味,得到粗浸膏(2.5 kg)。加适量纯水混悬浸膏,依次用等体积石油醚、乙酸乙酯和水饱和正丁醇各萃取3次,经过减压浓缩得到各个萃取部位。取部分正丁醇萃取部位(50 g),经硅胶柱色谱分离,以氯仿-甲醇-水(16∶1∶0.1 → 0∶1∶0)梯度洗脱,得到8个馏分(Fr. A - H)。Fr. B和Fr. C经过反复的硅胶柱色谱和ODS柱色谱洗脱后,用半制备HPLC以10%乙腈-水等度洗脱纯化,分别得到化合物1 (4.0 mg)、化合物2 (3.9 mg)和化合物5 (3.0 mg)。Fr. E通过MCI柱色谱分离,以甲醇-水(10∶90 → 0∶100) 洗脱得到Fr. E1-E5。Fr. E3经硅胶柱色谱、ODS反相柱色谱和Sephadex LH-20柱色谱反复分离,最后用半制备HPLC等度洗脱纯化,获得化合物3 (8.5 mg)、化合物4 (24.6 mg)、化合物6 (4.6 mg)、化合物7 (8.5 mg)、化合物8 (68.0 mg)和化合物9 (42.2 mg)。化合物1~9的结构式见图1。
3. 结构鉴定
3.1 化合物1
白色无定形粉末(甲醇),$ [\mathrm{\mathrm{\alpha\mathrm{\mathrm{ }}}}]_{\rm{D}}^{20} $−34.0° (c 0.1, MeOH),易溶于甲醇、吡啶等有机溶剂。酸水解衍生化后经HPLC分析检测出D-葡萄糖,推测其为糖苷类化合物。HR-TOF-MS显示准分子离子峰m/z 381.1142 [M + Na]+ (C16H22O9Na, Calcd. 381.1156),确定分子式为C16H22O9,相对分子质量为358。UV(CH3OH)谱显示最大吸收波长为231 nm。IR(KBr ν)光谱中存在羟基(3344.8 cm−1)、酮羰基(1718.5 cm−1)、芳环C=C键(1603.0 cm−1)和C-O键(1078.0 cm−1)吸收峰。
1H NMR谱中存在1,3,4-取代的芳香质子信号δ 7.69 (1H, dd, J = 8.5, 2.0 Hz)、7.63 (1H, d, J = 2.0 Hz)和6.92 (1H, d, J = 8.5 Hz);1个甲氧基单峰氢信号δ 3.96;1个连氧次甲基氢信号δ 5.56 (1H, q, J = 7.0 Hz);1个甲基双峰氢信号δ 1.52。13C NMR显示该化合物有16个碳信号,其中δ 201.1为羰基碳信号,δ 112~155为苯环碳信号,δ 76.2为连氧碳信号,δ 56.5为甲氧基碳信号。推测化合物1的苷元为苯丙素类化合物。
此外,1H NMR谱中存在1个糖端基质子信号δ 4.31 (1H, d, J = 7.5 Hz)和其他糖基质子信号δ 3.20~3.90,糖端基质子的偶合常数提示其构型为β构型。13C NMR谱显示1个糖端基碳信号δ 103.4,δ 78.2、77.9、75.4、71.6、62.9为糖环上其他连氧碳信号。结合酸水解结果,并与文献报道的葡萄糖数据[8]对照,说明化合物1结构中含有1个β-D-葡萄糖。将化合物1的碳氢数据与3-β-glucopyranosyloxy-2-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-propan-1-one对照发现,两者核磁数据接近,主要区别在于化合物1的C-9由连氧碳信号变为饱和烷基碳信号,并且在氢谱中出现甲基双峰氢信号,故推测化合物1的C-9为甲基;C-8化学位移向低场位移,推测葡萄糖连在C-8位。
以上推测通过解析二维NMR图谱而证实。首先通过HSQC将化合物 1的碳、氢相关信号进行归属。1H-1H COSY谱(图2)中显示,δH-8 5.56与δH-9 1.52有相关信号。HMBC谱中呈现δH-1' 4.31与δC-8 76.2有相关信号,δH-8 5.56与δC-1' 103.4提示苷元C-8位连接葡萄糖。由于C-8处构型的不同,化合物 1存在两种可能的异构体(S)-1和(R)-1。化合物 1的绝对构型通过计算ECD谱确定,对比化合物 1的实测CD数据[Δε (M−1·cm−1): −5.64 (233 nm), +4.36 (276 nm) , −2.70 (325 nm)]和两种构型的计算ECD数据[(S)-1: Δε (M−1·cm−1): −1.77 (233 nm), +1.68 (276 nm) , −0.61 (325 nm);(R)-1: Δε (M−1·cm−1): −0.75 (233 nm), −2.53 (276 nm) , +1.98 (325 nm)]发现,化合物 1与(S)-1的计算ECD曲线更加吻合(图3)。
综合上述解析,化合物1的结构确定为(2S)-2-羟基-1-(4-羟基-3-甲氧基苯基)-1-丙酮-2-O-β-D-吡喃葡萄糖苷,即(2S)-2-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-1-propanone-2-O-β-D-glucopyranoside, 经SciFinder检索为一新化合物。化合物1的NMR波谱数据全归属见表1。
Table 1. NMR data of compound 1 (CD3OD, J in Hz)Position δH a) δC b) 1H-1H COSY HMBC (H→C) Agly 1 — 128.0 — — 2 7.63 (d, 2.0) 112.5 — C-1, 3, 4, 6, 7 3 — 149.4 — — 4 — 154.4 — — 5 6.92 (d, 8.5) 116.1 H-6 C-1, 3, 4 6 7.69 (dd, 8.5, 2.0) 125.5 H-5 C-2, 4, 7 7 — 201.1 — — 8 5.56 (q, 7.0) 76.2 H-9 C-9, 1' 9 1.52 (d, 7.0) 20.5 H-8 C-7, 8 3-OMe 3.96 (s) 56.5 — C-3 Glc 1' 4.31 (d, 7.5) 103.4 H-2' C-8, 5' 2' 3.33 c) 75.4 H-1', 3' C-4' 3' 3.30 c) 78.2 H-2', 4' C-5' 4' 3.32 c) 71.6 H-3', 5' C-3' 5' 3.36 c) 77.9 H-4', 6' C-4' 6' 3.93 (dd, 12.0, 2.0) 3.70 (dd, 12.0, 5.5) 62.9 H-5' C-5' a) Measured at 500 MHz; b) Measured at 125 MHz; c) Overlapped signals 3.2 化合物2
白色粉末(甲醇),易溶于甲醇、吡啶等有机溶剂。254 nm下有暗斑,Molish反应呈阳性,香草醛-浓硫酸反应显棕色。相对分子质量为284,分子式C14H20O6。1H NMR (CD3OD, 500 MHz) δ: 7.31 (4H, m, H-2, 3, 5, 6), 7.22 (1H, m, H-4), 4.36 (1H, d, J = 7.5 Hz, H-1'), 4.14 (1H, ddd, J = 10, 8.0, 7.0 Hz, H-8a), 3.91 (1H, dd, J = 11.5, 2.0 Hz, H-6'a), 3.81 (1H, ddd, J = 9.5, 8.0, 6.5 Hz, H-8b), 3.71 (1H, dd, J = 12.0, 2.5 Hz, H-6'b), 3.40 (1H, m, H-3'), 3.32 (2H, m, H-4', H-5'), 3.23 (1H, dd, J = 9.0, 8.0 Hz, H-2'), 2.99 (2H, m, H-7)。13C NMR (CD3OD, 125 MHz) δ: 140.1 (C-1), 130.0 (C-2), 129.3 (C-3), 127.2 (C-4), 129.3 (C-5), 130.0 (C-6), 37.2 (C-7), 71.7 (C-8), 104.4 (C-1'), 75.1 (C-2'), 78.1 (C-3'), 71.7 (C-4'), 78.0 (C-5'), 62.8 (C-6')。以上波谱数据与文献[9]对照基本一致,故确定化合物2为苯乙醇-β-D-葡萄糖苷。
3.3 化合物3
白色无定形粉末(甲醇),易溶于甲醇、吡啶等有机溶剂。254 nm下有暗斑,Molish反应呈阳性,香草醛-浓硫酸反应显紫色。相对分子质量为402,分子式C18H26O10。1H NMR (CD3OD, 500 MHz) δ: 7.49 (2H, d, J = 7.5 Hz, H-2, H-6), 7.40 (2H, t, J = 7.5 Hz, H-3, H-5), 7.34 (1H, d, J = 7.5 Hz, H-4), 4.98 (1H, d, J = 12.0 Hz, H-7a), 4.73 (1H, d, J = 12.0 Hz, H-7b), 4.44 (1H, d, J = 8.0 Hz, H-1''), 4.42 (1H, d, J = 6.5 Hz, H-1'), 4.19 (1H, dd, J = 11.5, 2.0 Hz, H-6'a), 3.94 (1H, d, J = 12.5, 3.5 Hz, H-5'), 3.83 (1H, dd, J = 11.5, 6.0 Hz, H-6'b), 3.35~3.71 (8H, H-2', 3', 4', 2'', 3'', 4'', 5''a, 5''b)。13C NMR (CD3OD, 125 MHz) δ: 139.1 (C-1), 129.3 (C-2), 129.2 (C-3), 128.7 (C-4), 129.2 (C-5), 129.3 (C-6), 71.9 (C-7), 103.4 (C-1'), 74.2 (C-2'), 77.9 (C-3'), 71.7 (C-4'), 77.0 (C-5'), 69.5 (C-6'), 105.2 (C-1''), 72.4 (C-2''), 75.1 (C-3''), 69.4 (C-4''), 66.7 (C-5'')。以上波谱数据与文献[10]对照基本一致,故确定化合物3为苄醇-β-巢菜糖苷。
3.4 化合物4
白色无定形粉末(甲醇),易溶于甲醇、吡啶等有机溶剂。254 nm下有暗斑,Molish反应呈阳性,香草醛-浓硫酸反应显蓝紫色。相对分子质量为402,分子式C18H26O10。1H NMR (CD3OD, 500 MHz) δ: 7.50 (2H, d, J = 7.5 Hz, H-2, H-6), 7.40 (2H, t, J = 7.5 Hz, H-3, H-5), 7.34 (1H, t, J = 7.5 Hz, H-4), 4.99 (1H, d, J = 12.0 Hz, H-7a), 4.74 (1H, d, J = 11.5 Hz, H-7b), 4.43 (1H, d, J = 7.5 Hz, H-1''), 4.32 (1H, d, J = 7.5 Hz, H-1'), 4.19 (1H, dd, J = 11.5, 2.0 Hz, H-6'a), 3.94 (1H, d, J = 11.5, 5.5 Hz, H-5'), 3.84 (1H, dd, J = 11.5, 6.0 Hz, H-6'b), 3.25~3.60 (8H, H-2', 3', 4', 2'', 3'', 4'', 5''a, 5''b)。13C NMR (CD3OD, 125 MHz) δ: 139.1 (C-1), 129.3 (C-2), 129.2 (C-3), 128.7 (C-4), 129.2 (C-5), 129.3 (C-6), 71.6 (C-7), 103.4 (C-1'), 75.1 (C-2'), 78.0 (C-3'), 71.9 (C-4'), 77.7 (C-5'), 69.9 (C-6'), 105.6 (C-1''), 74.9 (C-2''), 77.1 (C-3''), 71.2 (C-4''), 66.9 (C-5'')。以上波谱数据与文献[11]对照基本一致,故确定化合物4为苄醇-β-樱草糖苷。
3.5 化合物5
白色粉末(甲醇),易溶于甲醇、吡啶等有机溶剂。254 nm下有暗斑,Molish反应呈阳性,香草醛-浓硫酸反应显棕色。相对分子质量为416,分子式C19H28O10。1H NMR (CD3OD, 500 MHz) δ: 7.32 (4H, m, H-2', H-3', H-5', H-6'), 7.23 (1H, m, H-4'), 5.44 (1H, d, J = 1.5 Hz, H-1''), 4.41 (1H, d, J = 7.5 Hz, H-1'), 4.16 (1H, overlapped, H-4'''a), 4.14 (1H, overlapped, H-1a), 4.00 (1H, d, J = 9.5 Hz, H-4'''b), 3.99 (1H, d, J = 2.0 Hz, H-2'''), 3.91 (1H, dd, J = 12.0, 2.0 Hz, H-6''a), 3.66 (2H, d, J = 5.0 Hz, H-5'''), 3.53 (1H, d, J = 9.0 Hz, H-5''), 3.43 (1H, d, J = 8.0 Hz, H-3''), 3.34 (1H, d, J = 9.0 Hz, H-4''), 3.00 (2H, m, H-2)。13C NMR (CD3OD, 125 MHz) δ: 71.6 (C-1), 37.3 (C-2), 140.1 (C-1'), 127.2 (C-2'), 130.0 (C-3'), 129.4 (C-4'), 130.0 (C-5'), 127.2 (C-6'), 103.3 (C-1''), 77.8 (C-2''), 78.7 (C-3''), 71.7 (C-4''), 78.6 (C-5''), 62.8 (C-6''), 110.5 (C-1'''), 78.0 (C-2'''), 80.7 (C-3'''), 66.1 (C-4'''), 75.5 (C-5''')。以上波谱数据与文献[12]对照基本一致,故确定化合物5为苯乙醇-β-D-呋喃芹菜糖基-(1''→2')-β-D-葡萄糖苷。
3.6 化合物6
白色粉末(甲醇),易溶于甲醇、吡啶等有机溶剂。254 nm下有暗斑,Molish反应呈阳性,香草醛-浓硫酸反应显棕色。相对分子质量为300,分子式C14H20O7。1H NMR (CD3OD, 500 MHz) δ: 7.11 (2H, d, J = 8.5 Hz, H-2, H-6), 6.74 (2H, d, J = 8.0 Hz, H-3, H-5), 4.34 (1H, d, J = 7.5 Hz, H-1'), 4.08 (1H, dt, J = 9.5, 7.5 Hz, H-8a), 3.91 (1H, dd, J = 12.0, 2.0 Hz, H-6'a), 3.75 (1H, m, H-8b), 3.71 (1H, dd, J = 12.0, 5.0 Hz, H-6'b), 3.40 (1H, t, J = 8.5 Hz, H-3'), 3.31 (2H, m, H-4', H-5'), 3.23 (1H, t, J = 9.0 Hz, H-2'), 2.88 (2H, td, J = 7.5, 2.5 Hz, H-7)。13C NMR (CD3OD, 125 MHz) δ: 130.8 (C-1), 130.9 (C-2), 116.1 (C-3), 156.8 (C-4), 116.1 (C-5), 130.9 (C-6), 36.4 (C-7), 71.7 (C-8), 104.4 (C-1'), 75.1 (C-2'), 78.1 (C-3'), 72.1 (C-4'), 78.0 (C-5'), 62.8 (C-6')。以上波谱数据与文献[13]对照基本一致,故确定化合物6为红景天苷。
3.7 化合物7
白色粉末(甲醇),易溶于甲醇、吡啶等有机溶剂。254 nm下有暗斑,Molish反应呈阳性,香草醛-浓硫酸反应显棕黄色。相对分子质量为416,分子式C19H28O10。1H NMR (CD3OD, 500 MHz) δ: 7.34 (4H, m, H-2', H-3', H-5', H-6'), 7.25 (1H, m, H-4'), 4.38 (1H, overlapped, H-1''), 4.38 (1H, overlapped, H-1'), 4.15 (1H, overlapped, H-8a), 4.15 (1H, overlapped, H-6a), 3.92 (2H, m, H-5''), 3.81 (1H, overlapped, H-8b), 3.81 (1H, overlapped, H-6'b), 3.22-3.68 (7H, m, H-2', 3', 4', 5', 2'', 3'', 4''), 3.01 (2H, t, J = 7.0 Hz, H-7)。13C NMR (CD3OD, 125 MHz) δ: 140.1 (C-1), 129.3 (C-2), 130.0 (C-3), 127.2 (C-4), 130.0 (C-5), 129.3 (C-6), 37.2 (C-7), 71.8 (C-8), 104.4 (C-1'), 75.1 (C-2'), 78.0 (C-3'), 72.4 (C-4'), 76.5 (C-5'), 69.5 (C-6'), 105.1 (C-1''), 74.2 (C-2''), 76.9 (C-3''), 71.6 (C-4''), 66.7 (C-5'')。以上波谱数据与文献[14]对照基本一致,故确定化合物7为苯乙醇-β-樱草糖苷。
3.8 化合物8
白色无定形粉末(甲醇),易溶于甲醇、吡啶等有机溶剂。254 nm下无暗斑,Molish反应呈阳性,香草醛-浓硫酸反应显黄色。相对分子质量为394,分子式C17H30O10。1H NMR (CD3OD, 500 MHz) δ: 5.52 (1H, m, H-3), 5.46 (1H, m, H-4), 4.40 (1H, d, J = 6.5 Hz, H-1''), 4.36 (1H, d, J = 8.0 Hz, H-1'), 4.17 (1H, dd, J = 11.5, 2.5 Hz, H-6'a), 3.92 (3H, overlapped, H-1a, H-4'', H-5''a), 3.82 (1H, dd, J = 11.5, 5.5 Hz, H-6'b), 3.67 (1H, m, H-1b), 3.42-3.64 (6H, overlapped, H-3', 4', 5', 2'', 3'', 5''b), 3.27 (1H, m, H-2'), 2.46 (2H, q, J = 7.5 Hz, H-2), 2.15 (2H, q, J = 7.5 Hz, H-5), 1.04 (3H, t, J = 7.5 Hz, H-6)。13C NMR (CD3OD, 125 MHz) δ: 70.6 (C-1), 28.8 (C-2), 125.9 (C-3), 134.5 (C-4), 21.5 (C-5), 14.6 (C-6), 104.3 (C-1'), 75.0 (C-2'), 77.9 (C-3'), 71.5 (C-4'), 76.8 (C-5'), 69.4 (C-6'), 105.0 (C-1''), 72.3 (C-2''), 74.1 (C-3''), 69.4 (C-4''), 66.6 (C-5'')。以上波谱数据与文献[15]对照基本一致,故确定化合物8为(顺)-3-己烯醇-β-巢菜糖苷。
3.9 化合物9
白色无定形粉末(甲醇),易溶于甲醇、吡啶等有机溶剂。254 nm下无暗斑,Molish反应呈阳性,香草醛-浓硫酸反应显黄色。相对分子质量为394,分子式C17H30O10。1H NMR (CD3OD, 500 MHz) δ: 5.53 (1H, m, H-4), 5.47 (1H, m, H-3), 4.41 (1H, d, J = 7.5 Hz, H-1''), 4.35 (1H, d, J = 7.5 Hz, H-1'), 4.16 (1H, dd, J = 11.5, 2.0 Hz, H-6'a), 3.95 (1H, overlapped, H-5''b), 3.93 (1H, overlapped, H-1a), 3.83 (1H, dd, J = 11.5, 5.5 Hz, H-6'b), 3.64 (1H, m, H-1b), 3.24-3.60 (8H, overlapped, H-2', 3', 4', 5', 2'', 3'', 4'', 5''a), 2.46 (2H, q, J = 7.0 Hz, H-2), 2.16 (2H, m, H-5), 1.05 (3H, t, J = 7.5 Hz, H-6)。13C NMR (CD3OD, 125 MHz) δ: 70.6 (C-1), 28.8 (C-2), 125.9 (C-3), 134.5 (C-4), 21.5 (C-5), 14.6 (C-6), 104.3 (C-1'), 74.8 (C-2'), 77.9 (C-3'), 71.1 (C-4'), 77.6 (C-5'), 69.7 (C-6'), 105.4 (C-1''), 75.0 (C-2''), 76.9 (C-3''), 71.4 (C-4''), 66.9 (C-5'')。以上波谱数据与文献[16]对照基本一致,故确定化合物9为(顺)-3-己烯醇-β-樱草糖苷。
4. 结果与讨论
本研究首次对小叶爬崖香中的化学成分进行了研究,从其正丁醇萃取部位中分离获得了9个苷类化合物,包括1个新的苯丙素苷类化合物和8个其他苷类化合物。其中化合物1的绝对构型通过计算电子圆二色谱(ECD)的方法确定。
胡椒属植物在现代已经发掘出了广泛的药理活性。在中国、印度和拉丁美洲等地,除了作为调料品食用,胡椒属植物还常作为药用植物治疗发烧、消化不良、类风湿关节炎、哮喘等疾病[17]。胡椒属植物传统的内服入药方法多为水煎煮,如《中药大辞典》中记载胡椒入药方法:内服,煎汤,0.5~1钱。然而目前对于胡椒属植物极性部位的化学成分鲜有研究。
本研究首次研究了胡椒属植物小叶爬崖香中正丁醇部位的化学成分,但是小叶爬崖香的药效物质基础仍不明确。有文献通过网络药理学预测化合物6可能具有潜在的抗痛风活性[18],这与该植物治疗风湿骨痛的传统药效相对应。为此,后续将继续丰富小叶爬崖香中的苷类化合物,并对小叶爬崖香中苷类化合物抗痛风活性及其作用机制进行深入研究,进而阐明其传统药效的物质基础。
-
Table 1 NMR data of compound 1 (CD3OD, J in Hz)
Position δH a) δC b) 1H-1H COSY HMBC (H→C) Agly 1 — 128.0 — — 2 7.63 (d, 2.0) 112.5 — C-1, 3, 4, 6, 7 3 — 149.4 — — 4 — 154.4 — — 5 6.92 (d, 8.5) 116.1 H-6 C-1, 3, 4 6 7.69 (dd, 8.5, 2.0) 125.5 H-5 C-2, 4, 7 7 — 201.1 — — 8 5.56 (q, 7.0) 76.2 H-9 C-9, 1' 9 1.52 (d, 7.0) 20.5 H-8 C-7, 8 3-OMe 3.96 (s) 56.5 — C-3 Glc 1' 4.31 (d, 7.5) 103.4 H-2' C-8, 5' 2' 3.33 c) 75.4 H-1', 3' C-4' 3' 3.30 c) 78.2 H-2', 4' C-5' 4' 3.32 c) 71.6 H-3', 5' C-3' 5' 3.36 c) 77.9 H-4', 6' C-4' 6' 3.93 (dd, 12.0, 2.0) 3.70 (dd, 12.0, 5.5) 62.9 H-5' C-5' a) Measured at 500 MHz; b) Measured at 125 MHz; c) Overlapped signals -
[1] Editorial Board of the Flora of China. Flora of China(中国植物志)[M]. Beijing: Science Press, 1982, 20 (1): 45. [2] Wu ZY. Xinhua Compendium of Materia Medica(新华本草纲要)[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1988: 190. [3] Xiang CP. Phytochemical Investigations on Three Ethnic Medicine and Their Biological Activities(三种民族药的化学成分及生物活性研究)[D]. Kunming: Kunming University of Science and Technology, 2017. [4] Fan DS, Zhou CY, Chen CY, et al. Lignans from the genus Piper L. and their pharmacological activities: an updated review[J]. Fitoterapia, 2023, 165: 105403. doi: 10.1016/j.fitote.2022.105403
[5] Shi YN, Shi YM, Yang L, et al. Lignans and aromatic glycosides from Piper wallichii and their antithrombotic activities[J]. J Ethnopharmacol, 2015, 162: 87-96. doi: 10.1016/j.jep.2014.12.038
[6] Wang DF, Zhou LL, Zhou HL, et al. Chemical composition and anti-inflammatory activity of n-butanol extract of Piper sarmentosum Roxb. in the intestinal porcine epithelial cells (IPEC-J2)[J]. J Ethnopharmacol, 2021, 269: 113723. doi: 10.1016/j.jep.2020.113723
[7] He S, Chen ML, Yang F, et al. Piperhancosides A–C, new lignan glycosides from the stems of Piper hancei Maxim[J]. Phytochem Lett, 2022, 50: 45-49. doi: 10.1016/j.phytol.2022.05.009
[8] Liimatainen J, Karonen M, Sinkkonen J, et al. Characterization of phenolic compounds from inner bark of Betula pendula[J]. Holzforschung, 2012, 66(2): 171-181. doi: 10.1515/HF.2011.146
[9] Kim KH, Lee KH, Choi SU, et al. Terpene and phenolic constituents of Lactuca indica L[J]. Arch Pharm Res, 2008, 31(8): 983-988. doi: 10.1007/s12272-001-1256-8
[10] Al-Massarani SM, El Gamal AA, Abd El Halim MF, et al. New acyclic secondary metabolites from the biologically active fraction of Albizia lebbeck flowers[J]. Saudi Pharm J, 2017, 25(1): 110-119. doi: 10.1016/j.jsps.2016.05.006
[11] Kawahara E, Fujii M, Kato K, et al. Chemoenzymatic synthesis of naturally occurring benzyl 6-O-glycosyl-beta-D-glucopyranosides[J]. Chem Pharm Bull, 2005, 53(8): 1058-1061. doi: 10.1248/cpb.53.1058
[12] Murakami T, Kohno K, Ninomiya K, et al. Medicinal foodstuffs. XXV. Hepatoprotective principle and structures of ionone glucoside, phenethyl glycoside, and flavonol oligoglycosides from young seedpods of garden peas, Pisum sativum L.[J]. Chem Pharm Bull, 2001, 49(8): 1003-1008. doi: 10.1248/cpb.49.1003
[13] Kutluay VM, Makino T, Inoue M, et al. New knowledge about old drugs; a cardenolide type glycoside with cytotoxic effect and unusual secondary metabolites from Digitalis grandiflora Miller[J]. Fitoterapia, 2019, 134: 73-80. doi: 10.1016/j.fitote.2019.02.001
[14] Saimaru H, Orihara Y. Biosynthesis of acteoside in cultured cells of Olea europaea[J]. J Nat Med, 2010, 64(2): 139-145. doi: 10.1007/s11418-009-0383-z
[15] Ding Y, Liang C, Choi E, et al. Chemical constituents from Artemisia iwayomogi increase the function of osteoblastic MC3T3-E1 cells[J]. Nat Prod Sci, 2009, 15(4): 192-197.
[16] Otsuka H, Takeda Y, Yamasaki K. Xyloglucosides of benzyl and phenethyl alcohols and Z-hex-3-en-1-ol from leaves of Alangium platanifolium var. trilobum[J]. Phytochemistry, 1990, 29(11): 3681-3683. doi: 10.1016/0031-9422(90)85306-Z
[17] Zhang DD, Sun JJ. Research advances on application of pipper plant resources[J]. Mod Agric Sci Technol (现代农业科技), 2016, 10: 74-76. [18] Hua QQ, Liu Y, Liu CH, et al. Revealing synergistic mechanism of multiple components in Stauntonia brachyanthera Hand. -Mazz. for gout by virtual screening and system pharmacological approach[J]. Bioorg Chem, 2019, 91: 103118.