• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

抗幽门螺杆菌UreB重组全人源化单域抗体的基因工程表达及分子改造

王雪芳, 赵阳, 刘竹青, 郭乐, 仲飞亮, 罗学刚

王雪芳,赵阳,刘竹青,等. 抗幽门螺杆菌UreB重组全人源化单域抗体的基因工程表达及分子改造[J]. 中国药科大学学报,2024,55(5):666 − 672. DOI: 10.11665/j.issn.1000-5048.2023122903
引用本文: 王雪芳,赵阳,刘竹青,等. 抗幽门螺杆菌UreB重组全人源化单域抗体的基因工程表达及分子改造[J]. 中国药科大学学报,2024,55(5):666 − 672. DOI: 10.11665/j.issn.1000-5048.2023122903
WANG Xuefang, ZHAO Yang, LIU Zhuqing, et al. Genetic engineering and molecular modification of recombinant fully humanized single-domain antibody against Helicobacter pylori UreB[J]. J China Pharm Univ, 2024, 55(5): 666 − 672. DOI: 10.11665/j.issn.1000-5048.2023122903
Citation: WANG Xuefang, ZHAO Yang, LIU Zhuqing, et al. Genetic engineering and molecular modification of recombinant fully humanized single-domain antibody against Helicobacter pylori UreB[J]. J China Pharm Univ, 2024, 55(5): 666 − 672. DOI: 10.11665/j.issn.1000-5048.2023122903

抗幽门螺杆菌UreB重组全人源化单域抗体的基因工程表达及分子改造

基金项目: 宁夏回族自治区重点研发计划项目(2020BFG02012);国家重点研发计划项目(2018YFA0901700;2017YFD0400303)
详细信息
    通讯作者:

    罗学刚: Tel:022-60601104 E-mail:luoxuegang@hotmail.com

  • 中图分类号: Q786

Genetic engineering and molecular modification of recombinant fully humanized single-domain antibody against Helicobacter pylori UreB

Funds: This study was supported by the Key Research and Development Project of Ningxia Hui Autonomous Region (2020BFG02012) and the National Key Research and Development Program Project (2018YFA0901700; 2017YFD0400303)
  • 摘要:

    为了构建针对幽门螺杆菌(Helicobacter pylori,Hp)脲酶的单域抗体的基因工程表达系统。首先利用Pymol、I-TASSER和ClussPro2等AI辅助工具分析比较了不同抗体与Hp脲酶亚单位B(UreB)之间的分子间作用力,确定了VL全人源化单域抗体UreBAb作为重点研究对象。根据大肠埃希菌密码子偏好性优化了UreBAb基因序列,并将其分别插入pET28a、pE-SUMO等表达载体,转化大肠埃希菌Rosetta(DE3)获得了重组表达菌株,通过IPTG诱导制备重组抗体蛋白,并利用提取的Hp脲酶作为抗原,分析验证了重组表达抗体的活性。SDS-PAGE检测结果显示UreBAb和SUMO-UreBAb均获得了正确的表达,纯化后的蛋白产率分别为0.34和0.41 mg/mL。单向免疫扩散实验结果证实这两种重组表达抗体均与Hp UreB抗原具有良好的亲和力,对脲酶的抑制率分别为51.27%和74.07%。进而,结合AlphaFold2、cluspro2、mCSM-AB、OSPREY和FoldX等人工智能工具,评估分析了影响抗原-抗体复合物稳定性的关键位点及其突变策略,随后进一步构建了9个UreBAb进化突变体表达菌株,活性分析结果显示,这些突变体与抗原的结合活性均得到了提高,其中以I107W突变体的活性提升最为显著,相较于野生型UreBAb,提高了24.95%。本研究为Hp全人源化单域抗体的开发奠定了良好的基础。

    Abstract:

    To construct a recombinant expression system for a single-domain antibody targeting the urease of Helicobacter pylori (Hp), this study employed several strategies. First, using artificial intelligence (AI) auxiliary tools such as Pymol, I-TASSER, and ClussPro2, the molecular interactions between different antibodies and Hp urease subunit B (UreB) were analyzed. The fully humanized single-domain antibody UreBAb was identified as the primary research target. Next, the UreBAb gene sequence was optimized based on Escherichia coli codon preferences, and was inserted into expression vectors such as pET28a and pE-SUMO. The resulting recombinant expression strains were obtained by transforming Escherichia coli Rosetta(DE3). Recombinant antibody proteins were prepared through IPTG induction, and its activity was detected using extracted Hp urease as the antigen. SDS-PAGE analysis confirmed the correct expression of both UreBAb and SUMO-UreBAb, with protein yields of 0.34 mg/mL and 0.41 mg/mL, respectively. Unidirectional immunodiffusion experiments further confirmed that both recombinant antibodies exhibited strong affinity for Hp UreB antigen, with inhibition rates of 51.27% and 74.07%, respectively. Additionally, leveraging artificial intelligence tools such as AlphaFold2, cluspro2, mCSM-AB, OSPREY, and FoldX, the study evaluated and analyzed key binding sites and mutational strategies affecting the stability of the antigen-antibody complex. Subsequently, nine UreBAb evolution mutants were constructed, and their binding activities with the antigen were enhanced. Among these, the I107W mutant showed the most significant improvement, achieving a 24.95% increase compared to the wild-type UreBAb. This research lays a solid foundation for the development of fully humanized single-domain antibodies against Hp.

  • 幽门螺杆菌(Helicobacter pylori,Hp)是一种微需氧的革兰氏阴性菌,定植在人和动物的胃中,形成慢性感染,是人类最常见的寄生细菌之一。Hp可导致多种上消化道疾病,如慢性胃炎、消化性溃疡病、胃黏膜相关的淋巴样组织淋巴瘤(MALT)和胃癌[1]。全世界每年有70多万人死于胃癌[2],因此世界卫生组织建议考虑根除Hp以降低胃癌的风险[3]

    目前,抗生素治疗是主要的Hp治疗方案,但存在耐药性、不利的胃酸环境、不良反应等问题[4]。因此,发现和开发新的抗Hp药物变得越来越重要。研究表明,特异性抗体能有效抑制多种消化道病原体感染,在控制或治疗Hp感染方面也具有重要应用潜力[5],小型化、人源化和功能化是当前基因工程抗体药物的三大主要发展趋势。小分子抗体主要包括Fab抗体、单链抗体(ScFv)、超变区多肽(MRU)、单域抗体等[6]。这些小分子抗体相较于传统抗体,具备亲和力高、相对分子质量小、稳定性强、渗透性强、易于制备等优势[7]。其中,单域抗体通常仅含有VH或VL一个功能结构域,目前被认为是保持了良好抗原识别和亲和力的最小抗体单位[8],可以用作直接应对Hp等病原体和疾病进行靶向治疗的有力工具。

    近年来,计算机人工智能(AI)辅助分析在药物研发中应用广泛[9]。与传统改造方法相比,通过计算机AI辅助改造抗体将极大地节省时间和经济成本,能在短时间内高效获得改良后的突变体,并且能够更直观地分析抗体-抗原之间的作用关系。本研究首先应用Pymol、I-TASSER和ClussPro2等AI软件比较分析不同小分子抗体与Hp脲酶亚单位B(UreB)的分子间作用力,优选亲和力最佳的研究对象,然后构建其基因工程表达系统,明确其表达效率及生物活性,进而应用Alpha Flod2、mCSM-AB、OSPREY、FoldX等AI技术,对影响抗原-抗体复合物稳定性的关键位点进行分析并指导设计进化突变策略,再次构建系列突变体基因工程表达系统,通过对表达产物的分析比较,最终获得活性显著提升的进化突变体基因工程表达菌株,从而为抗Hp单域抗体的开发奠定良好的基础。

    微需氧产气袋(日本三菱公司);幽门螺杆菌培养添加剂、幽门螺杆菌固体培养基(青岛海博生物技术有限公司);酚红指示剂、二硫苏糖醇(DTT)、苯酚红试剂、尿素(北京索莱宝科技有限公司);BamHⅠ限制性内切酶及XhoⅠ限制性内切酶(美国Thermo Scientific公司);PCR引物和基因合成以及序列测序均由金唯智生物科技有限公司(苏州)完成。

    琼脂糖凝胶水平电泳槽(上海伯乐生命医学有限公司)、高速冷冻离心机(德国Hettich公司)、琼脂糖水平电泳仪(北京六一仪器厂)、UV-3200紫外可见分光光度(上海美谱达仪器有限公司)、PCR仪(美国Bio-Rad Laboratories公司)。

    大肠埃希菌(Escherichia coli)DH5α菌株、Rosetta (DE3)菌株以及pET28a、pE-SUMO等质粒均由本实验室保存。

    从Hp培养物(4 ℃,6000 r/min,10 min)中收集菌体,用0.05 mol/L PBS缓冲液洗涤菌体两遍后,用0.05 mol/L PBS缓冲液及蛋白酶抑制剂混悬菌体,超声破碎菌体后4 ℃,8000 r/min,20 min,收集上清液,并透析24 h。

    本研究首先结合文献及数据库调研[1011],并从中分析获得了3条抗Hp脲酶的小分子抗体,分别为SCFV(GenBank序列号LC373564.1)、Fab片段(GenBank序列号LC373561.1)、VL全人源化单域抗体(GenBank序列号LC375193.1),利用ClussPro2软件进行UreB-抗体的对接预测,通过Pymol软件进行分子间作用力分析,氢键筛选范围≤3Å。

    抗Hp UreB单域抗体(UreBAb)的序列,由苏州金唯智生物科技有限公司合成pUC57-UreBAb克隆载体,将目的片段PCR扩增后与pET28a、pE-SUMO质粒分别使用BamHⅠ、XhoⅠ于25 ℃双酶切2 h,电泳后回收,使用T4 DNA连接酶25 ℃连接1 h,转化进DH5α感受态,挑取转化子进行验证,将正确的菌株送测。设计合成引物如表1所示。

    Table  1.  Primers used in plasmids construction
    Primer Primer sequence(5′→3′)Purpose
    pET28a-UreBAb-FCGCGGATCCACCGATATTCAGATGACGUsed to amplify the target gene UreBAb
    pET28a-UreBAb-RCCGCTCGAGATGATGATGATGATGATGCGC
    K43T-FCAGCAGAAACCGGGCACCGCGCCGAAACTGCTGATTTATGMutation for K43T and K43M
    K43M-FCAGCTATCTGAACTGGTATCAGCAGATGCCGGGCAAAGCGCC
    K43L-FCAGCTATCTGAACTGGTATCAGCAGCTGCCGGGCAAAGCGCC
    K43-RCAGCAGTTTCGGCGCCGTGCCCGGTTTCTGCTGATACC
    E82W-RATAGGTCGCAAAATCCCACGGCTGCAGGCTACTAATGGTCAMutation for E82W
    E82W-FAGTAGCCTGCAGCCGTGGGATTTTGCGACCTATTATTGTCAGCAGT
    I107P-FCTTTGGCCAAGGCACCAAAGTGGAACCGAAACGCGCGGCGGCGMutation for I107P, I107W, and I107F
    I107W-FGGCACCAAAGTGGAATGGAAACGCGCGGCGG
    I107F-FGGCACCAAAGTGGAATTTAAACGCGCGGCGG
    I107-RCGCCGCCGCGCGTTTAAATTCCACTTTGGTGCC
    R109N-FAAAGTGGAAATTAAAAACGCGGCGGCGCATCAMutation for R109N and R109P
    R109P-FAAAGTGGAAATTAAACCGGCGGCGGCGCATCA
    R109-RATGATGCGCCGCCGCGCGTTTAATTTCCACTTTGGTGCCTTGGCC
    Note: Underlined bases are enzyme cleavage sites, while bolded ones are protective bases
    下载: 导出CSV 
    | 显示表格

    把pET28a-UreBAb、pE-SUMO-UreBAb成功鉴定的重组菌培养4 h后,加入IPTG(终浓度为1 mmol/L),于20 ℃,200 r/min条件下进行诱导培养20 h。离心收集菌体,超声破碎,低温离心收集上清液,弃沉淀。取上清液,用60 mol/L咪唑进行Ni-NTA亲和色谱纯化目标蛋白。将纯化后的蛋白15% SDS-PAGE分析,并使用Bradford对蛋白定量。

    将1%的脲酶与琼脂糖混匀,浇注成板并在凝固后用牛津杯在平板上打孔,孔中分别加入UreBAb、SUMO-UreBAb 100 μL,于37 ℃下静止反应24~36 h,此时脲酶会向孔的四周扩散并与琼脂中的UreBAb、SUMO-UreBAb结合,形成白色沉淀环。

    将Hp尿酶50 μL和抗体50 μL混合,在96孔微量滴定板中于4 ℃过夜。然后向上述混合物中加入酚红指示剂100 μL,并在23 ℃培养3 h以上,在550 nm处测量显色,并计算抑制率。

    利用Alpha fold2对UreBAb结构进行同源建模[12],评估后进行模拟蛋白对接,从PDB数据库获取抗原Hp脲酶6EHW的pdb文件,除去离子等干扰因素后,使用ClussPro2进行模拟对接。对突变位点的分析,为了尽可能避免漏掉关键氨基酸位点,本研究同时选择Interprosurf和Pymol两种方法来分析确定突变位点。进而,对重组单域抗体进行突变评估,通过3种鉴定方法(i-mutant、FlodX和mCMS-AB)[13],将筛选出的位点突变成其他19种氨基酸。

    用 GraphPad Prism5软件进行数据统计学分析,对两组样本采用Student’s t-test比较差异显著性,P<0.05被认为具有统计学意义。

    首先,利用Pymol、I-TASSER及ClussPro2等软件,对UreB与SCFV、Fab片段抗体、VL全人源化单域抗体等不同小分子抗体之间的分子间作用力进行分析。结果显示VL全人源化单域抗体与UreB间的相互作用力显著强于SCFV和Fab,其结构与PDB数据库中的6EHW结构模型的匹配评分最高(图1),因此,后续重点选择此抗体进行研究,为方便表述,在下面的研究中把该抗体命名为UreBAb。

    Figure  1.  Three-dimensional docking prediction analysis of antibody and UreB (Pymol)
    A: Prediction of docking between Fab and UreB; B: Prediction of docking between SCFV and UreB; C: Prediction of docking between engineered VL and UreB

    图2-A和图2-B所示,在成功扩增目的基因UreBAb后,进一步构建了pE-SUMO-UreBAb、pET28a-UreBAb重组质粒,并通过测序确认了序列的准确性。由图2-C和图2-D可知,经过ITPG于20 ℃,200 r/min诱导15 h后,转入pE-SUMO-UreBAb、pET28a-UreBAb的重组大肠埃希菌Rosetta(DE3)均可检测到目的蛋白的表达,亲和色谱纯化后通过Quick Start Bradford蛋白定量,结果显示SUMO-UreBAb、UreBAb的重组蛋白产率分别为0.41和0.34 mg/mL。

    Figure  2.  Agarose gel electrophoresis analysis of recombinant expression plasmid of UreBAb
    A: PCR verification of the transformant(M: DNA 2000bp marker; 1: pE-SUMO-UreBAb; 2:pET28a-UreBAb); B: Schematic diagram of plasmid pE-SUMO-UreBAb and pET28a-UreBAb; C: Total protein of recomninant E. coli carrying pE-SUMO-UreBAb and pET28a-UreBAb (20 ℃, 15 h)(M: Protein Marker; 1: pET28a; 2: pE-SUMO; 3-4: Different concentrations of pE-SUMO-UreBAb; 5: pET28a-UreBAb); D: Purified SUMO-UreBAb and UreBAb(M: Protein Marker; 1-2: Purification of SUMO-UreBAb at different concentrations; 3: Purified UreBAb)

    图3-A和图3-B所示,基因工程表达产物SUMO-UreBAb、UreBAb与脲酶孵育后,均有白色沉淀环形成,证明重组抗体可以和脲酶抗原具有良好的亲和力。此外,为进一步证明抗体SUMO-UreBAb、UreAb对脲酶的抑制活性,分析了其对脲酶分解尿素能力的影响。由于脲酶能分解尿素产生碱,会造成pH的变化,这种变化可通过酚红试剂的颜色变化进行观测,并可以测定550 nm处吸收度变化进行定量分析。由图3-C可得出,重组SUMO-UreBAb、UreBAb可以有效地中和脲酶,使之活性降低。

    Figure  3.  Affinity and activity analysis of recombinant SUMO-UreBAb and UreBAb with urease($\bar{x}\pm s $,n=3)
    A: Affinity of recombinant SUMO-UreBAb with urease(1: PBS; 2-3: SUMO-UreBAb); B: Affinity of r UreBAb with urease(1: PBS; 2: UreBAb); C: Analysis of the effect of recombinant SUMO-UreBAb and UreBAb on urease activity

    为了进一步比较SUMO-UreBAb、UreBAb的活性特点,将纯化后的产物与脲酶按1∶1的量分别在4 ℃、16 ℃、23 ℃、30 ℃孵育过夜,后加入尿素、酚红等反应6~10 h。结果如图4所示,重组SUMO-UreBAb和UreBAb在23 ℃抑制效率最高,分别为74.07%和51.27%。

    Figure  4.  Inhibition rate of SUMO-UreBAb and UreBAb against urease antigen at different temperatures($\bar{x}\pm s $,n=3)

    为了进一步提升单域抗体的活性,应用AI工具对其进行了同源建模及分子动力学分析。首先,运用ClusPro2对抗体-抗原复合物进行对接,分析了其三维结构(图5-A)。在这个结构中,脲酶被灰色标识,抗体则以蓝色呈现。其中,红色部分代表了预测的对接位点,这些位点是通过Pymol及Interprosurf精确预测出的距离不超过5Å的氨基酸残基。其次,如图5-B所示,韦恩图中蓝色代表mCSM-AB、黄色代表FoldX、绿色代表i-mutant,三者交叉部分表示通过3轮不同计算后所共有的进化突变关键位点情况。这9个AI预测推荐突变体分别为K43L、K43T、K43M、E82W、I107P、I107W、I107F、R109P、R109N。

    Figure  5.  Rational mutation of UreBAb based on AI analysis
    A:Structure of antigen-antibody docking complex (the red part is the predicted binding site); B: Prediction sites of mCSM-AB, FoldX, and i-mutant

    为了验证AI预测突变体的活性,本研究进一步构建了上述9种不同的突变体,PCR及测序结果均显示构建成功(图6)。

    Figure  6.  PCR and sequencing analysis for UreBAb mutations
    A: PCR analysis of mutation clones; B: Sequencing confirmation of the UreBAb mutants

    转化获得重组表达菌株并经诱导表达后,9种突变体重组蛋白质均得到了良好的表达(图7-A)。进一步分析显示,9种重组单域抗体突变体与抗原的结合及抑制活性均得到了提高,其中最为显著的是107位点的异亮氨酸突变为色氨酸的突变体I107W,与原始抗体UreBAb相比,其结合活性提高了24.95%,达到了66.57%。

    Figure  7.  Recombinant expression and activity analysis of mutated UreBAbs ($\bar{x}\pm s $,n=3)
    A: SDS-PAGE analysis of recombinant wild-type UreBAb and 9 mutant UreBAbs (M: Protein Marker; 1:Blank Control;2-3:WT; 4: K43M; 5: K43L; 6: E82W; 7: I107P; 8: R109P; 9: R109N; 10: K43T; 11: I107W; 12: I107F); B: Antigen (urease) inhibition rate of UreBAb and 9 mutants at 37 °C *P<0.05, **P<0.01, ***P<0.001 vs UreBAb

    Hp会导致严重的健康问题,抗体治疗可以有效避免传统抗生素治疗带来的危害,本研究中的单域抗体能特异性针对Hp的脲酶,脲酶作为Hp的关键酶,是其生存不可或缺的部分。它可以把体液中的尿素分解并产生大量的氨,来缓冲胞质和胞外的pH[1415]。这样一方面可以中和胃酸以保护自己免受杀灭,同时也使胃黏液细胞减少分泌黏液,造成黏液层变薄[16]

    本研究结合AI分析,优选了抗Hp单域抗体,并构建了系列基因工程表达菌株。尽管SUMO标签可能有助于提高蛋白的溶解度和稳定性,但单点突变通常是为了研究特定氨基酸残基对蛋白质功能的影响。因此在后续单点突变的过程中,使用的不带标签的Ab可以确保任何观察到的功能变化都是由突变引起的,并且可以简化纯化过程,减少生产成本,避免潜在后续研究中产生免疫原性问题等。根据抗原抗体复合物三维结构进行的AI分析结果显示,I107位点位于UreAb的活性口袋,位点107与抗原的位点541Y之间存在氢键作用,经过重组表达及活性分析,也证实107位点的异亮氨酸突变为色氨酸后单域抗体对Hp的抑制率的确得到了显著的提升。究其原因,可能是因为异亮氨酸到色氨酸的突变增强了氢键作用,且引起了疏水性和结构上的差异变化。异亮氨酸通常具有较高的亲疏水性,而色氨酸的大芳香环状结构可能与脲酶形成更紧密的结合。此外,蛋白质结构变化也可能影响了抗体的功能性区域,使其更有效地与脲酶互相作用。

    此外,大肠埃希菌虽然是目前最为成熟的基因工程表达体系,但其安全性依然存在不足,所表达的重组单域抗体必须进行分离纯化后方可应用。而Hp作为一种经口而入的胃内寄生性病原体,如能实现单域抗体的口服递送及病灶原位拮抗,将具有重要的意义。未来的研究中,本课题组将在进一步优化大肠埃希菌表达工艺的同时,构建益生菌等更安全、更便捷的重组表达系统,以探索抗Hp单域抗体的口服递送。

  • Figure  1.   Three-dimensional docking prediction analysis of antibody and UreB (Pymol)

    A: Prediction of docking between Fab and UreB; B: Prediction of docking between SCFV and UreB; C: Prediction of docking between engineered VL and UreB

    Figure  2.   Agarose gel electrophoresis analysis of recombinant expression plasmid of UreBAb

    A: PCR verification of the transformant(M: DNA 2000bp marker; 1: pE-SUMO-UreBAb; 2:pET28a-UreBAb); B: Schematic diagram of plasmid pE-SUMO-UreBAb and pET28a-UreBAb; C: Total protein of recomninant E. coli carrying pE-SUMO-UreBAb and pET28a-UreBAb (20 ℃, 15 h)(M: Protein Marker; 1: pET28a; 2: pE-SUMO; 3-4: Different concentrations of pE-SUMO-UreBAb; 5: pET28a-UreBAb); D: Purified SUMO-UreBAb and UreBAb(M: Protein Marker; 1-2: Purification of SUMO-UreBAb at different concentrations; 3: Purified UreBAb)

    Figure  3.   Affinity and activity analysis of recombinant SUMO-UreBAb and UreBAb with urease($\bar{x}\pm s $,n=3)

    A: Affinity of recombinant SUMO-UreBAb with urease(1: PBS; 2-3: SUMO-UreBAb); B: Affinity of r UreBAb with urease(1: PBS; 2: UreBAb); C: Analysis of the effect of recombinant SUMO-UreBAb and UreBAb on urease activity

    Figure  4.   Inhibition rate of SUMO-UreBAb and UreBAb against urease antigen at different temperatures($\bar{x}\pm s $,n=3)

    Figure  5.   Rational mutation of UreBAb based on AI analysis

    A:Structure of antigen-antibody docking complex (the red part is the predicted binding site); B: Prediction sites of mCSM-AB, FoldX, and i-mutant

    Figure  6.   PCR and sequencing analysis for UreBAb mutations

    A: PCR analysis of mutation clones; B: Sequencing confirmation of the UreBAb mutants

    Figure  7.   Recombinant expression and activity analysis of mutated UreBAbs ($\bar{x}\pm s $,n=3)

    A: SDS-PAGE analysis of recombinant wild-type UreBAb and 9 mutant UreBAbs (M: Protein Marker; 1:Blank Control;2-3:WT; 4: K43M; 5: K43L; 6: E82W; 7: I107P; 8: R109P; 9: R109N; 10: K43T; 11: I107W; 12: I107F); B: Antigen (urease) inhibition rate of UreBAb and 9 mutants at 37 °C *P<0.05, **P<0.01, ***P<0.001 vs UreBAb

    Table  1   Primers used in plasmids construction

    Primer Primer sequence(5′→3′)Purpose
    pET28a-UreBAb-FCGCGGATCCACCGATATTCAGATGACGUsed to amplify the target gene UreBAb
    pET28a-UreBAb-RCCGCTCGAGATGATGATGATGATGATGCGC
    K43T-FCAGCAGAAACCGGGCACCGCGCCGAAACTGCTGATTTATGMutation for K43T and K43M
    K43M-FCAGCTATCTGAACTGGTATCAGCAGATGCCGGGCAAAGCGCC
    K43L-FCAGCTATCTGAACTGGTATCAGCAGCTGCCGGGCAAAGCGCC
    K43-RCAGCAGTTTCGGCGCCGTGCCCGGTTTCTGCTGATACC
    E82W-RATAGGTCGCAAAATCCCACGGCTGCAGGCTACTAATGGTCAMutation for E82W
    E82W-FAGTAGCCTGCAGCCGTGGGATTTTGCGACCTATTATTGTCAGCAGT
    I107P-FCTTTGGCCAAGGCACCAAAGTGGAACCGAAACGCGCGGCGGCGMutation for I107P, I107W, and I107F
    I107W-FGGCACCAAAGTGGAATGGAAACGCGCGGCGG
    I107F-FGGCACCAAAGTGGAATTTAAACGCGCGGCGG
    I107-RCGCCGCCGCGCGTTTAAATTCCACTTTGGTGCC
    R109N-FAAAGTGGAAATTAAAAACGCGGCGGCGCATCAMutation for R109N and R109P
    R109P-FAAAGTGGAAATTAAACCGGCGGCGGCGCATCA
    R109-RATGATGCGCCGCCGCGCGTTTAATTTCCACTTTGGTGCCTTGGCC
    Note: Underlined bases are enzyme cleavage sites, while bolded ones are protective bases
    下载: 导出CSV
  • [1] Luo JS, He M, Yang GQ. Clinical diagnosis, formation mechanism and clinical treatment of gastric cancer[J]. Genomics Appl Biol(基因组学与应用生物学), 2021, 40(2): 936-940.
    [2]

    Banks M, Graham D, Jansen M, et al. British Society of Gastroenterology guidelines on the diagnosis and management of patients at risk of gastric adenocarcinoma[J]. Gut, 2019, 68(9): 1545-1575. doi: 10.1136/gutjnl-2018-318126

    [3]

    Malfertheiner P, Camargo MC, El-Omar E, et al. Helicobacter pylori infection[J]. Nat Rev Dis Primers, 2023, 9(1): 19.

    [4]

    Tshibangu-Kabamba E, Yamaoka Y. Helicobacter pylori infection and antibiotic resistance—from biology to clinical implications[J]. Nat Rev Gastroenterol Hepatol, 2021, 18: 613-629. doi: 10.1038/s41575-021-00449-x

    [5]

    Boquet P, Ricci V. Intoxication strategy of Helicobacter pylori VacA toxin[J]. Trends Microbiol, 2012, 20(4): 165-174. doi: 10.1016/j.tim.2012.01.008

    [6]

    Qin Q, Liu H, He WB, et al. Single Domain Antibody application in bacterial infection diagnosis and neutralization[J]. Front Immunol, 2022, 13: 1014377. doi: 10.3389/fimmu.2022.1014377

    [7]

    Rossotti MA, Bélanger K, Henry KA, et al. Immunogenicity and humanization of single-domain antibodies[J]. FEBS J, 2022, 289(14): 4304-4327. doi: 10.1111/febs.15809

    [8] Wang Y, Zhao YJ, Li S. Application of nano-antibodies in the study of g protein-coupled receptors[J]. Acta Pharm Sin(药学学报), 2022, 57(4): 990-1001.
    [9]

    Barderas R, Desmet J, Timmerman P, et al. Affinity maturation of antibodies assisted by in silico modeling[J]. Proc Natl Acad Sci U S A, 2008, 105(26): 9029-9034. doi: 10.1073/pnas.0801221105

    [10]

    Fouladi M, Sarhadi S, Tohidkia M, et al. Selection of a fully human single domain antibody specific to Helicobacter pylori urease[J]. Appl Microbiol Biotechnol, 2019, 103(8): 3407-3420. doi: 10.1007/s00253-019-09674-6

    [11]

    Fahimi F, Sarhaddi S, Fouladi M, et al. Phage display-derived antibody fragments against conserved regions of VacA toxin of Helicobacter pylori[J]. Appl Microbiol Biotechnol, 2018, 102(16): 6899-6913. doi: 10.1007/s00253-018-9068-4

    [12]

    Mirdita M, Schütze K, Moriwaki Y, et al. ColabFold: making protein folding accessible to all[J]. Nat Methods, 2022, 19(6): 679-682. doi: 10.1038/s41592-022-01488-1

    [13]

    Cheng X, Wang JW, Kang GB, et al. Homology modeling-based in silico affinity maturation improves the affinity of a nanobody[J]. Int J Mol Sci, 2019, 20(17): 4187. doi: 10.3390/ijms20174187

    [14]

    Elbehiry A, Marzouk E, Aldubaib M, et al. Helicobacter pylori infection: current status and future prospects on diagnostic, therapeutic and control challenges[J]. Antibiotics, 2023, 12(2): 191.

    [15]

    De Brito BB, Da Silva FAF, Soares AS, et al. Helicobacter pylori pathogenesis and clinical management of gastric infection[J]. World J Gastroenterol, 2019, 25 (37): 5578-5589.

    [16] Yu HZ, H J, Li BC, et al. Effect of carboxymethyl chitosan bismuth salt on gastric ulcer of Helicobacter pylori in rats[J]. J China Pham Univ(中国药科大学学报), 2008, 39(2): 174-177.
图(7)  /  表(1)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  41
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 刊出日期:  2024-10-24

目录

/

返回文章
返回
x 关闭 永久关闭