• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

超高效合相色谱串联四极杆飞行时间质谱在司盘组成分析方法中的应用研究

李樾, 许凯, 杨锐, 杨会英

李樾,许凯,杨锐,等. 超高效合相色谱串联四极杆飞行时间质谱在司盘组成分析方法中的应用研究[J]. 中国药科大学学报,2024,55(6):742 − 749. DOI: 10.11665/j.issn.1000-5048.2024010502
引用本文: 李樾,许凯,杨锐,等. 超高效合相色谱串联四极杆飞行时间质谱在司盘组成分析方法中的应用研究[J]. 中国药科大学学报,2024,55(6):742 − 749. DOI: 10.11665/j.issn.1000-5048.2024010502
LI Yue, XU Kai, YANG Rui, et al. Application of ultra-high performance convergence chromatography-tandem quadrupole time-of-flight mass spectrometry in the analysis of Span composition[J]. J China Pharm Univ, 2024, 55(6): 742 − 749. DOI: 10.11665/j.issn.1000-5048.2024010502
Citation: LI Yue, XU Kai, YANG Rui, et al. Application of ultra-high performance convergence chromatography-tandem quadrupole time-of-flight mass spectrometry in the analysis of Span composition[J]. J China Pharm Univ, 2024, 55(6): 742 − 749. DOI: 10.11665/j.issn.1000-5048.2024010502

超高效合相色谱串联四极杆飞行时间质谱在司盘组成分析方法中的应用研究

详细信息
    通讯作者:

    杨锐: Tel:010-67095720 E-mail:yangr@nifdc.org.cn

    杨会英: Tel:010-53852486 E-mail:yanghuiying@nifdc.org.cn

  • 中图分类号: R917

Application of ultra-high performance convergence chromatography-tandem quadrupole time-of-flight mass spectrometry in the analysis of Span composition

  • 摘要:

    采用超高效合相色谱串联四极杆飞行时间质谱(UPCC-QTOF-MS)检测方法,建立定性分析药用辅料司盘组成的方法。采用VIRIDIS HSS C18 SB 100A 色谱柱 (3.0 mm×150 mm,18 μm),以CO2和异丙醇-四氢呋喃(98∶5)为流动相,梯度洗脱,柱温为50 ℃,流速为1 mL/min,以异丙醇-0.1%甲酸水溶液(8∶2)为补偿溶剂,背压为13.78 MPa,离子化模式为ESI+,采集模式为MSE,扫描范围m/z 100~1200,分别测定司盘20、40、60、80、85样品。 建立的方法可区分不同牌号司盘间组成差异,对各司盘组分进行定性分析,其中司盘20可分析得到21种组分,司盘40可分析得到7种组分,司盘60可分析得到13种组分,司盘80可分析得到9种组分,司盘85可分析得到9种组分,并根据各组分质谱图开展了结构分析。本研究建立的方法可区分不同牌号司盘间的组成差异,同时也可用于分析不同牌号的司盘组成及结构,此方法绿色环保,对司盘质量控制、工艺评价、制剂应用选择等具有指导意义。

    Abstract:

    A method for the qualitative analysis of the composition of pharmaceutical excipient Span was established by ultra-high performance convergence chromatography-tandem quadrupole time-of-flight mass spectrometry (UPCC-QTOF-MS). The separation was performed on a VIRIDIS HSS C18 SB 100A column (3.0 mm×150 mm, 18 μm) with gradient elution using CO2 and isopropanol-tetrahydrofuran (98∶5) as the mobile phase. The column temperature was 50 °C. The flow rate was 1 mL/min. Isopropanol and 0.1 % formic acid aqueous solution (8∶2) were used as the compensation solvent. The back pressure was 13.78 MPa. The ionization mode was ESI +, the acquisition mode was MSE, and the m/z scanning range was from 100 to 1200. The samples of Span 20, 40, 60, 80 and 85 were determined respectively. The established method could distinguish the composition differences between different brands of Span, and it could analyze the components of different brands of Span as well. 21 components could be analyzed by Span 20, 7 by Span 40, 13 by Span 60, 9 by Span 80, and 9 by Span 85, and the structural analysis of each component was carried out. The method established in this paper can distinguish the composition differences between different brands of Span. It can also be used to analyze the composition and structure of different brands of Span. This method is green and environmentally friendly with guiding significance for Span quality control, process evaluation, and preparation application selection, etc.

  • 铜绿假单胞菌(Pseudomonas aeruginosa, PA)是一种常见的医院感染病原体[1],可在患有慢性阻塞性肺疾病、囊性纤维化、癌症、创伤、烧伤及免疫缺陷个体中发生急性或慢性感染[2]。近年来,随着广谱抗生素的广泛使用,多重耐药(multidrug-resistant, MDR)的PA引起的感染变得越来越常见。多重耐药指的是对3种或3种以上类别的抗生素不敏感,因此临床上治疗手段非常有限,而多黏菌素类抗生素是为数不多的对MDR-PA仍然有效的药物[3]

    多黏菌素类抗生素是20世纪40年代开发的一类用于治疗革兰氏阴性菌感染的脂肽类抗生素[4]。由于其抗菌谱窄,并具有明显的肾毒性和神经毒性,逐渐退出了临床[5]。然而,随着MDR革兰氏阴性菌感染逐年增加,尤其是耐碳青霉烯类革兰氏阴性菌的出现,使得多黏菌素类抗生素又重新在临床上使用[6]

    临床上使用的多黏菌素类抗生素主要有多黏菌素B和多黏菌素E。其中,多黏菌素B作为带有正电荷的阳离子多肽,可与革兰氏阴性菌外膜上带负电荷的脂多糖(lipopolysaccharide, LPS)结合,使得外膜破裂进而胞内容物流失,最终导致细菌死亡[7]。然而,PA可通过修饰LPS的脂质A成分,从而降低多黏菌素B与LPS的亲和力,最终导致耐药[8]。由arnBCADTEF操纵子编码的蛋白质介导,在脂质A成分中添加带正电荷的4-氨基-L-阿拉伯糖(4-amino-4-deoxy-L-arabinose, L-Ara4N),是PA的LPS修饰的常见形式[910]。而上述操纵子基因的表达可由双组分系统PmrA-PmrB调控[11]。有研究表明,PA的pmrB上的碱基发生突变,可导致PA对多黏菌素B产生抗性。如Abraham等[12]从临床上发现的一株耐多黏菌素B的PA,其pmrB第292位碱基发生(T→C)突变;Barrow 等[13]发现pmrB在739位的(G→A)突变也可引起PA对多黏菌素B的耐药。

    本研究通过阶梯式诱导的方式,获得了一株对多黏菌素B耐药的PA菌株。全基因组测序结果显示其pmrB基因第514−516位发生了缺失突变。通过同源重组、转录组测序(RNA sequencing,RNA-seq)、反转录荧光定量PCR(reverse transcription quantitative PCR, RT-qPCR)以及抗菌活性检测发现该缺失突变可导致pmrApmrBarnBCADTEF操纵子基因的转录水平升高,细菌对多黏菌素B的敏感性下降。因此,本研究发现了一个新的可引起PmrA-PmrB功能改变的缺失突变形式,从而拓展了人们对多黏菌素B耐药机制的认识。

    PA标准菌株ATCC27853购自ATCC菌株保藏中心,pEX18Tc质粒购自上海禾午生物科技有限公司,大肠埃希菌DH5α感受态细胞、含有pUC57-pmrB514-516质粒的大肠埃希菌Top10菌株购自上海生工生物工程有限公司。

    LB液体培养基:10 g/L胰蛋白胨、5 g/L酵母粉、5 g/L NaCl。BHI(brain heart infusion)液体培养基:脑心浸粉17.5 g/L、葡萄糖2 g/L、胰蛋白胨10 g/L、NaCl 5 g/L、Na2HPO4 2.5 g/L。TYS10(tryptone yeast extract and sucrose 10)培养基:蛋白胨10 g/L,酵母提取物5 g/L,10%的过滤(0.22 µm)蔗糖。固体培养基:加琼脂粉于上述液体培养基至15 g/L。除特殊提及外,菌株在37 ℃的LB或BHI液体培养基中220 r/min振荡培养,37 ℃的LB或BHI固体培养基中静置培养。

    MH(Mueller Hinton)培养基、胰蛋白胨、酵母粉、琼脂粉等(英国Oxoid公司);NaCl、MgSO4、Na2HPO4(上海BBI生命科学有限公司);质粒小提试剂盒、细菌基因组DNA提取试剂盒、细菌总RNA提取试剂盒(北京天根生化科技有限公司);氨苄西林、四环素、RT Master Mix for qPCR Ⅱ试剂盒、SYBR Green qPCR Master Mix试剂盒(美国MedChem Express公司)。引物的合成由上海生工生物工程有限公司完成。微量分光光度计(美国Biochrom SimpliNano公司),PCR扩增仪、实时荧光定量PCR仪、Gene Pulser Xcell™ 电穿孔仪(美国Bio-Rad公司)。

    将单菌落的PA ATCC27853接种在含有多黏菌素B (1 mg/mL)2 µL的LB液体培养基2 mL中培养过夜。按1∶100转移到含有多黏菌素B(1 mg/mL)4 µL的LB液体培养基2 mL中继续培养过夜。重复上述操作,逐级增加多黏菌素B的浓度,直至细菌无法生长。将在多黏菌素B最大浓度下能够生长的细菌涂布在LB平板上,挑取单菌落后接种至LB液体培养基3 mL中培养至A600 为 0.6~0.8。采用微量肉汤稀释法测定出多黏菌素B对纯化菌株的最低抑菌浓度( MIC),对MIC发生变化的菌株进行全基因组测序。

    挑取对MIC发生变化的菌株的单菌落,加入到LB培养液5 mL中培养过夜,按照细菌基因组DNA提取试剂盒提取DNA,取基因组DNA 1 µg(质量浓度≥10 ng/µL,A260/280=1.8~2.0)送至上海生工生物工程股份有限公司进行全基因组测序。使用Qubit 3.0对文库浓度进行初步定量,使用Agilent 2100检测文库片段的完整性。文库检测通过后,使用Illumina Hiseq 2000进行测序。测序得到的原始数据经过质控筛选、去除接头等后,利用SPAdes 3.12.0进行基因组组装,得到菌株PA-PBsr基因组序列。

    将含有pUC57-pmrB514-516 质粒的大肠埃希菌TOP10单菌落接种于含有氨苄西林(50 µg/mL)的LB培养基5 mL中培养过夜;使用质粒小提试剂盒提取质粒。在冰上,将pUC57-pmrB514-516 质粒5 µg与DH5α感受态细胞100 µL混合后孵育30 min,2.5 kV条件下于2 mm电转杯中电转, 添加LB培养基700 µL后转移至1.5 mL离心管培养1.5 h,5000 r/min离心5 min,弃去部分上清液,留培养基100 µL重悬细菌并涂布于含氨苄西林(50 µg/mL)的LB平板继续培养;挑取单菌落接种至LB培养基3 mL培养过夜,提取质粒后使用引物pmrB-MUT-CXF1和pmrB-MUT-CXR1进行PCR验证。

    使用KpnⅠ和HindⅢ对pUC57-pmrB514-516进行双酶切。酶切体系为:10×buffer(Cutsmart)10 µL,DNA模板4 µg,KpnⅠ(20000 U/mL)2 µL,HindⅢ(20000 U/mL)2 µL,ddH2O补充至100 µL。使用KpnⅠ和HindⅢ对pEX18Tc质粒进行双酶切,酶切体系为:10 × buffer(Cutsmart)20 µL,DNA模板8 µg,KpnⅠ(20000 U/mL)4 µL,HindⅢ(20000U/mL)4 µL,ddH2O补充至200 µL。37 ℃水浴酶切过夜进行胶回收。使用连接酶将回收后的目标片段和载体片段连接,酶连体系为:10 × T4 DNA 连接酶缓冲液 10 µL,T4 DNA 连接酶(40000 U/mL)2 µL,目标片段5 µg,载体片段5 µg,ddH2O补充至100 µL,16 ℃孵育过夜。将pEX18Tc-pmrB514-516电转至(方法同上)DH5α感受态细胞100 µL,将菌液涂布于含四环素(20 µg/mL)的BHI平板继续培养。挑取单菌落培养后以pEX18-F和PA-pmrB-R引物进行PCR验证。将PCR阳性菌落接种至含有四环素(20 µg/mL)的LB培养基中,37 ℃振荡培养过夜后提取质粒(pEX18Tc-pmrB514-516)。

    取PA ATCC27853单菌落,接种至LB培养基5 mL中,42 ℃静置培养过夜,12000 r/min离心1 min后,使用MgSO4(1 mmol/L)1 mL洗涤3次,室温下重悬于MgSO4(1 mmol/L)50 µL中。冰上将pEX18Tc- pmrB514-516 质粒5 µg与上述感受态50 µL混合孵育30 min,2.2 kV条件下于2 mm电转杯中电转,添加BHI培养基700 µL后转移至1.5 mL离心管后培养3 h,6000 r/min离心3 min后弃部分上清液,留培养基100 µL重悬细菌并涂布于含四环素(100 µg/mL)的BHI平板中培养64 h。挑取单菌落接种至含有四环素(20 µg/mL)的LB培养基3 mL中培养过夜,提取基因组DNA,以pEX18-F和PA-pmrB-R为引物进行PCR反应;将PCR结果为阳性的菌液涂布至含有四环素(100 µg/mL)的BHI平板培养过夜,挑取单菌落接种至TYS10平板上23 ℃培养64 h,挑取单菌落至LB培养基5 mL中培养过夜后提取基因组DNA,以pmrB-MUT-CXF1和pmrB-MUT-CXR1为引物进行PCR验证。扩增产物送上海生工生物工程有限公司进行测序验证。本研究所用引物参见表1

    Table  1.  Primers used in this study
    Primer Sequence(5′→3′) Sources
    pmrB-MUT-CXF1 CGCCTGCTGGTCAACCT This study
    pmrB-MUT-CXR1 CAGCAGGAGGTTGAGTTCGT This study
    pEX18-F GGCTCGTATGTTGTGTGGAATTGTG This study
    PA-pmrB-R GCAGGAGGTTGAGTTCGTCG This study
    rpsL-QF GTGGTGAAGGTCACAACCTG [14]
    rpsL-QR CCTGCTTACGGTCTTTGACA [15]
    pmrA-QF CACCAGGTGACCCTGTCC [14]
    pmrA-QR CGTAGAGGCTCTGCTCCAGT [15]
    pmrB-QF CCTCTCGCTGAAGCAGGTGA [15]
    pmrB-QR CTGGTCTTCGGTGGCAAGGT [16]
    arnB-QF CGCGATCAAGAACCTGACCT This study
    arnB-QR GGTCGGCCAGGTTGTATTTG This study
    arnC-QF AGTTGCGGTTGAGGATCACC This study
    arnC-QR TCTACAACGAGGAAGCCAGC This study
    arnA-QF CATCGGCATCCATTCGGAGT This study
    arnA-QR CGTTTGCCGTATTTCACGCA This study
    arnD-QF GCGACCTTCTTCTTCAGCGT This study
    arnD-QR AGCAGGATGTCCCAGCCATA This study
    arnT-QF CCGCAATTCACCTTCTGGGTC [16]
    arnT-QR CGAGGAAGCCCTTGGTCAGG [16]
    arnE-QF TCTGCTGGCTGCTGCTCCTG [16]
    arnE-QR CATCGAAGACGAAGCGTGCC [16]
    arnF-QF GTGCTTTCCTCGACGGATGA This study
    arnF-QR CAGTACCAGCAAGACCCTGG This study
    下载: 导出CSV 
    | 显示表格

    使用Ca2+、Mg2+调节过的MH培养基将对数生长期(A600 = 0.6~0.8)的PA野生株、PA-PBsr及PA-pmrB514-516稀释至A600 为 0.001,96孔板第1孔加入待测菌液200 µL,第2孔至第10孔每孔加入菌液100 µL;第1孔加入多黏菌素B(1 mg/mL)6.4 µL,混匀后吸取菌液100 µL至第2孔,以此类推进行倍比稀释直至最后一孔混匀后弃掉100 µL。MH培养基、不含药物的菌液及DMSO 100 µL分别作阴性、阳性和空白对照。37 ℃静置培养18 h后,在每孔加入噻唑蓝(5 mg/mL)10 µL,37 ℃静置培养30 min后测量595 nm波长下的吸收度。

    分别挑取PA野生株和PA-pmrB514-516单菌落至LB培养基3 mL,培养至A600 为0.5。加入多黏菌素B至野生株与突变株菌液,使终浓度为0、16、32 µg/mL,在96孔板中按每孔总体积200 µL,37 ℃条件下培养。以2 h的间隔测量600 nm波长下的吸收度,平行试验3次,数据取均值。

    分别用棉拭子蘸取麦氏浊度0.5的野生株PA和突变株PA-pmrB514-516的菌液,均匀涂布在MH平板上。滴加多黏菌素B(0.1 mg/mL)3 µL至MH平板,以生理盐水为阴性对照,37 ℃条件下培养过夜。游标卡尺测量抑菌圈直径,平行试验3次,数据取均值。

    分别培养野生株PA和突变株PA-pmrB514-516 3 mL至对数生长期(A600 = 0.6~0.8),使用细菌总RNA提取试剂盒提取总RNA,取总RNA (质量浓度>50 ng/µL,A260/280=1.8~2.0)1 µg。使用RT Master Mix for qPCR Ⅱ 试剂盒进行反转录,使用NEB Next® Ultra™ Directional RNA Library Prep Kit for Illumina®试剂盒对样本进行建库。文库构建完成并质检后,使用Illumina Novaseq 6000进行转录组测序。采用DESeq2进行基因差异表达分析。差异基因筛选条件以差异倍数(Fold change,FC)和P值作为参考指标。|log2FC| > 0.5和P < 0.05作为差异基因判断标准。测序工作主要由上海伟寰生物科技有限公司完成。

    取对数生长期(A600 = 0.6~0.8)的PA野生株及PA-pmrB514-516 3 mL,使用细菌总RNA提取试剂盒提取总RNA。取总RNA 2 µg,使用RT Master Mix for qPCR Ⅱ 试剂盒进行反转录后,使用SYBR Green qPCR Master Mix试剂盒检测基因表达水平。以rpsL的表达作为内参对照,采用2−ΔΔCt法分析基因表达的相对变化。两组之间的比较采用非配对t检验。

    采用GraphPad Prism 8.0.2对试验数据进行数据处理,P< 0.05作为显著性差异的标准。

    通过阶梯式诱导的方式获得了一株对多黏菌素B耐药的PA菌株PA-PBsr(MIC=8 µg/mL),与野生型相比,其MIC增加到了原来的4倍。全基因组测序显示,与亲本株ATCC27853相比,PA-PBsr的pmrB基因第514−516位碱基发生了缺失突变,导致其编码蛋白同步发生了第172位亮氨酸缺失突变。

    图1所示,pmrB-MUT-CXF1和pmrB-MUT-CXR1扩增条带大小为657 bp,表明pUC57-pmrB514-516成功电转至感受态细胞中;pEX18-F和PA-pmrB-R扩增条带大小为325 bp(图2),表明已成功将pmrB514-516片段连接至pEX18Tc。引物pmrB-MUT-CXF1和pmrB-MUT-CXR1扩增产物测序结果见图3,测序结果表明pmrB的第514−516位碱基缺失突变株构建成功。

    Figure  1.  pUC57-pmrB514-516 positive bacteria were verified by PCR
    M: DL1200 DNA Maker; Lane 1: Negative control (empty plasmid); Lane 2: Blank control (without plasmid); Lane 3: Experimental hole
    Figure  2.  pEX18Tc- pmrB514-516 positive bacteria were verified by PCR
    M: DL1200 DNA Maker; Lane 1: Negative control (empty plasmid); Lane 2: Blank control (without plasmid); Lane 3: Experimental hole
    Figure  3.  Deletion mutation site sequencing verification results
    A: Wild-type strain; B: Strain after homologous recombination

    多黏菌素B对野生株PA及突变株PA-pmrB514-516的MIC分别是2和8 µg/mL,表明pmrB第514−516位点缺失突变与PA对多黏菌素B的耐药性改变有关。

    时间杀菌曲线结果表明,如图4所示,多黏菌素B对野生株PA及PA-pmrB514-516的最低杀菌浓度分别为16和32 µg/mL,表明PA-pmrB514-516对多黏菌素B表现出更强的耐受性。

    Figure  4.  Time-kill curve of the wild and mutant strains subjected to polymyxin B

    当多黏菌素B质量浓度为0.1 mg/mL时,野生株PA和突变株PA-pmrB514-516形成的抑菌圈如图5所示。野生株PA的抑菌圈平均值为11.4 mm,突变株PA-pmrB514-516的抑菌圈平均直径为6.1 mm,表明突变株对多黏菌素B敏感性降低。

    Figure  5.  Comparison of wild and mutant strains bacteriostatic circle

    图6所示,与野生株PA相比,突变株PA-pmrB514-516总共有787个基因发生显著变化,其中有418个基因表达上调,369个基因表达下调。其中,与多黏菌素B耐药性相关的pmrApmrBarnBCADTEF都发生了上调(表2)。

    Figure  6.  Differentially expressed gene volcano plot
    |log2FC| > 0.5, P < 0.05
    Table  2.  Changes in the related gene expression regulated by pmrB
    Symbol log2 Fold change P Stat Product
    pmrA 5.9 0 up PmrA: two-component regulator system response regulator PmrA
    pmrB 6.1 1.1 × 10−260 up PmrB: two-component regulator system signal sensor kinase PmrB
    arnB 7.5 7.3 × 10−5 up ArnB
    arnC 6.9 4.0 × 10−212 up ArnC
    arnA 7.2 0 up ArnA
    arnD 8.1 8.9 × 10−8 up ArnD
    arnT 7.0 0 up inner membrane L-Ara4N transferase ArnT
    arnE 7.4 1.6 × 10−26 up ArnE
    arnF 7.4 6.5 × 10−7 up ArnF
    下载: 导出CSV 
    | 显示表格

    图7所示,与野生型相比,在PA-pmrB514-516中,受PmrB调控的基因pmrApmrBarnBCADTEF的表达量均显著升高。其中pmrApmrB基因表达分别升高8.6倍和 3.4倍,而arnBCADTEF操纵子各基因组分的表达量分别升高31.3、56.9、43.8、5.1、45.2、5.3和19.9倍。结果与转录组测序结果相一致。

    Figure  7.  Histogram of RT-qPCR to validate of microarray results
    **P < 0.01, ***P < 0.001, ****P < 0.000 1 vs control group

    随着抗生素的广泛使用,对抗生素产生耐药性的PA越来越常见。全国细菌耐药监测网显示,2021年我国PA对碳青霉烯类抗生素的耐药率为17.7%[17]。多黏菌素B是治疗对碳青霉烯耐药PA的重要手段。细胞外膜脂质A成分的修饰可使PA对多黏菌素B产生耐受性,其常见形式是在脂质A成分中添加正电荷的L-Ara4N,从而降低多黏菌素B与LPS的亲和力,而该过程是由arnBCADTEF操纵子编码的蛋白质介导的,该操纵子则受双组分系统PmrA-PmrB调控。目前已有文献表明,PA对多黏菌素B产生抗性,与PA的pmrB上的碱基发生突变存在一定关系[1213]

    本研究使用多黏菌素B对PA进行亚抑菌浓度诱导,获得了一株PA-PBsr,该菌株在pmrB基因发生了第514−516位的缺失突变。我们通过同源重组,构建PA-pmrB514-516突变株后发现,该突变可介导PA对多黏菌素B产生抗性。另外,RNA-seq和RT-qPCR结果显示该突变可引起pmrApmrB和操纵子arnBCADTEF表达量升高,提示PmrA-PmrB功能表达增强。因此,本研究明确了一个可以引起PA对多黏菌素B产生耐药性的新的pmrB突变形式,对于进一步认识和了解PA对多黏菌素B的耐药机制提供了新的数据。鉴于该突变形式目前还未在临床耐药株中发现,因此,在今后使用多黏菌素B治疗PA感染时应注意由该突变引起的耐药,从而体现了本研究对于临床用药的指导意义。然而,PA的pmrB514-516突变是如何导致双组分系统PmrA-PmrB功能增强,其具体作用机制还需要进一步研究。

  • Figure  1.   Parent nucleus structures (A−E)

    Figure  2.   Total ion current diagram of each brand of Span

    A: Span 85; B:Span 80; C: Span 60; D: Span 40; E: Span 20

    Figure  3.   Comparison of total ion current of Span 80 from different manufacturers

    A: Pharmaceutical excipients manufacturer Span 80; B: Reagent manufacturer Span 80

    Figure  4.   Comparison of total ion current of Span 80 from different manufacturing techniques

    A: Manufacturing technique 1; B: Manufacturing technique 2

    Table  1   Determination results of fatty acid composition of each brand of Span

    Name of fatty acidsNormalization results/%
    Span 20Span 40Span 60Span 80Span 85
    Methyl caproate0.1////
    Methyl caprylate4.7////
    Methyl decanoate5.4////
    Methyl laurate52.5//0.12/
    Methyl myristate19.9//0.292.8
    Palmitic acid methylester99947.14.974.3
    Methylcis-9-hexadecenoate////4.8
    Methyl stearate5.3/481.541.1
    Methyl oleate///79.2870.8
    Methyl linolenate2//13.2312.9
    下载: 导出CSV

    Table  2   Span 20 structure speculation

    No. m/z Parent nucleus structure Inferred R basis
    1 477.29 A Octanoic acid root,laurate root or decanoate root,laurate root
    2 505.32 A Octanoic acid root,myristic acid root or decanoate root,laurate root
    3 533.35 A Decanoate root,myristic acid root or laurate root,laurate root   or octanoic acid root,palmitate root
    4 561.39 A Laurate root,myristic acid root or decanoate root,palmitate root or octanoic acid root,stearate root
    5 589.42 A Decanoate root,stearate root or laurate root,palmitate root or myristic acid root,myristic acid root
    6 351.19 B Laurate root and H
    7 379.22 B Myristic acid root and H
    8 733.53 C Octanoic acid root,decanoate,stearate root or octanoic acid root,laurate,palmitate or octanoic acid root,myristic acid root,myristic acid root or decanoate,decanoate,palmitate or decanoate,laurate,myristic acid root or laurate,laurate,laurate
    9 435.28 A Stearate root
    10 789.59 C Octanoic acid root,myristic acid root,stearate root or octanoic acid root,palmitate root,palmitate root or decanoate root,laurate root,stearate root or decanoate root,myristic acid root,palmitate root or laurate root,laurate root,palmitate root or laurate root,myristic acid root, myristic acid root
    11 495.3 D Octanoic acid root,laurate root or decanoate root,decanoate root
    12 523.33 D Octanoic acid root,myristic acid root or decanoate root,laurate root
    13 407.25 B Palmitate root and H
    14 551.36 D Decanoate root,myristic acid root or laurate root,laurate root or octanoic acid root,palmitate root
    15 579.39 D Octanoic acid root,stearate root or decanoate root,palmitate root or laurate root,myristic acid root
    16 607.42 D Decanoate root,stearate root or laurate root,palmitate root or myristic acid root ,myristic acid root
    17 635.45 D Laurate root,stearate root or myristic acid root,palmitate root
    18 313.14 E Octanoic acid root
    19 341.17 E Decanoate root
    20 369.2 E Laurate root
    21 397.23 E Myristic acid root
    下载: 导出CSV

    Table  3   Span 40 structure speculation

    No. m/z Parent nucleus structure Inferred R basis
    1 407.25 B Palmitate root and H
    2 393.27 E Myristic acid root
    3 901.71 C Myristic acid root,palmitate root,stearate root,laurate root,stearate root,stearate root or palmitate root,palmitate root,palmitate root
    4 791.53 C Octanoic acid root,palmitate root,linoleic acid root or decanoate root,myristic acid root,linoleic acid root or laurate root,laurate root,linoleic acid root
    5 663.48 D Myristic acid root,stearate root or palmitate root,palmitate root
    6 425.26 E Palmitate root
    7 631.50 A Laurate root,linoleic acid root
    下载: 导出CSV

    Table  4   Span 60 structure speculation

    No. m/z Parent nucleus structure Inferred R basis
    1 673.51 A Palmitate root, stearate root
    2 407.25 B Palmitate root and H
    791.53 C Octanoic acid root,palmitate root,linoleic acid root or decanoate root,myristic acid root,linoleic acid root or laurate root,laurate root,linoleic acid root
    3 701.54 A Stearate root,stearate root
    C Octanoic acid root,octanoic acid root,linoleic acid root
    4 435.28 B Stearate root and H
    847.59 C Decanoate root,stearate root,linoleic acid root or decanoate root,oleate root,oleate root or laurate root,palmitate root,linoleic acid root
    5 645.48 A Myristic acid root,stearate root or palmitate root,palmitate root or aurate root,stearate root,stearate root
    6 901.71 C Palmitate root,palmitate root,palmitate root or myristic acid root,palmitate root,stearate root
    7 929.74 C Myristic acid root,stearate root ,stearate root or palmitate root,palmitate root,stearate root
    8 663.49 D Palmitate root,palmitate root or myristic acid root,stearate root
    9 985.80 C Stearate root,stearate root,stearate root  
    10 957.78 C Palmitate root,stearate root ,stearate root  
    C Stearate root,oleate root,linoleic acid root  
    11 425.26 E Palmitate root
    12 691.52 D Palmitate root,stearate root
    13 719.55 D Stearate root,stearate root
    下载: 导出CSV

    Table  5   Span 80 structure speculation

    No. m/z Parent nucleus structure Inferred R basis
    1 671.49 A Oleate root,palmitate root
    A Linoleic acid root,linoleic acid root
    2 695.49 A Oleate root,linoleic acid root
    D Oleate root,stearate root or stearate root,linoleic acid root
    3 697.51 A Oleate root,oleate root
    D Stearate root,stearate root
    4 431.25 B Linoleic acid root and H
    5 433.27 B Oleate root and H
    6 977.74 C Stearate root,linoleic acid root ,linoleic acid root or oleate root,oleate root,linoleic acid root  
    7 979.76 C Stearate root,oleate root,linoleic acid root or oleate root ,oleate root,oleate root
    8 715.52 D Oleate root,oleate root stearate root,linoleic acid root
    9 713.5 D Oleate root,linoleic acid root
    下载: 导出CSV

    Table  6   Span 85 structure speculation

    No. m/z Parent nucleus structure Inferred R basis
    1 643.46 A Myristic acid root,oleate root or palmitate root ,palm oil acid root
    2 669.48 A Palmitatet,linoleic acid root or palm oil acid root ,oleate root
    3 695.49 A Oleate root,linoleic acid root
    D Oleate root, stearate root
    4 697.51 A Stearate root,linoleic acid root or oleate root ,oleate root
    D Stearate root
    5 433.27 B Oleate root and H
    6 715.52 D Stearate root,Linoleic acid root or oleate root,oleate root
    7 979.76 C Stearate root,oleate root,linoleic acid root or oleate root,oleate root,oleate root
    8 953.74 C Palmitate,stearate root ,linoleic acid root or palmitate root,oleate root,oleate root or palm oil acid root,oleate root,stearate root
    C Oleate root,linoleic acid root,linoleic acid root
    9 641.45 A Myristic acid root,linoleic acid root
    D Myristic acid root,stearate root or palmitate root,palmitate root
    下载: 导出CSV
  • [1] Li J, Hu P, Xiao GL, et al. Analysis on influence factors affecting quality indexes of span 80[J]. Adv Fine Petrochem (精细石油化工进展), 2013, 14(2): 25-28.
    [2] LV Y. Synthesis and properties of SPAN-SA-COONa series surfactants [J]. Technol Innovation Newsletter(科技创新导报), 2014 (2): 115-116.
    [3] Pang YF, Xu MY, Lin S, et al. Research and market development of synthetic methods of non-ionic surfactants[J]. Appl Chem Ind (应用化工), 2023, 52(2): 546-550.
    [4] Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia: part 4 (中华人民共和国药典: 四部) [S]. Beijing: China Medical
    [5] Liu WL, Liu W, Yin TT, et al. Preparation and characterization of W/O medium-chain fatty acid microemulsion[J]. Mod Food Sci Technol (现代食品科技), 2009, 25(5): 503-506.
    [6] Wang K, Xu ST, Xiao M, et al. Effects of span-80 on the properties of konjac glucomannan-zein blend films[J]. Sci Technol Food Ind (食品工业科技), 2016, 37(23): 267-271.
    [7] Zhang XF, Zhou ZC. New food additives Span and Twain [J]. Zhejiang Chem Ind (浙江化工), 1988 (3): 41-43.
    [8] Cheng BB. Application of food emulsifier compounding in food production [J]. Food Safety Guide(食品安全导刊), 2021 (24): 133, 135.
    [9]

    Li ZL. Evaluation of the immune effect of paratyphoid A flagellin combined with emulsion adjuvant on rabies vaccine [D]. Beijing: Beijing Union Medical College, Chinese Academy of Medical Sciences, 2019.

    [10]

    Shi XG. Study on the preparation and effect of self-assembled nano vaccine [D]. Tianjin: Tianjin University, 2020.

    [11]

    Hou ZS, Zhu WW, Xiu YH. Recent progress in catalytic selective dehydration of sorbitol[J]. Chin Sci Bull, 2015, 60(16): 1443-1451. doi: 10.1360/N972015-00030

    [12] Bao Y, Wu CL, Ma JZ. Effect of emulsion method and co-emulsifier on performance of castor oil emulsion[J]. Chin Sur Det Cos(日用化学工业), 2012, 42(1): 39-42.
    [13] Li XM, Yu WQ, Zhang Y, et al. Advances in waters ACQUITY UPC2 and its methods establish[J]. Guangdong Chem Ind (广东化工), 2020, 47(6): 103-105,94.
    [14]

    Wang Y, Ju ZC, Li LN, et al. A complementary chromatographic strategy for integrated components characterization of Imperatae Rhizoma based on convergence and liquid chromatography combined with mass spectrometry and molecular network[J]. J Chromatogr A, 2022, 1678(2022): 463342.

    [15]

    Zhu RY, Xu XF, Shan QY, et al. Determination of differentiating markers in coicis Semen from multi-sources based on structural similarity classification coupled with UPCC-xevo G2-XS QTOF[J]. Front Pharmacol, 2020, 11: 549181. doi: 10.3389/fphar.2020.549181

    [16] Yang GY, Liang QY, Yang S, et al. Determination of 19 sex hormones in health foods by ultra performance convergence chromatography-tandem mass spectrometry with pass-through solid phase extraction[J]. Food Sci (食品科学), 2022, 43(20): 370-376.
    [17] Hu S, HuaZD, HuangY, et al. Fast separation and detection of fentanyls isomers by ultra performance convergence chromatography-mass spectrometry[J]. Chin J Anal Chem (分析化学), 2022, 50(6): 964-972.
    [18] Li P, Yao CL, Zhang JQ, et al. Analysis of the lipids of Descurainiae Semen and Lepidii Semen based on three chromatography tandem mass spectrometry techniques[J]. Chin Tradit Herb Drugs (中草药), 2023, 54(2): 484-497.
    [19] SongY, Guan YY, Zou ZF, et al. Determination of butylhydroxyanisole and dibutylhydroxytoluene in vegetable oil by ultra performance convergence chromatography[J]. Occupation Health(职业与健康), 2016, 32(3): 328-331.
    [20] Ding JY, Liu FG, Wng H, et al. Determination of R-valsartan in valsartan active pharmaceutical ingredients by ultra performance convergence chromatography [J]. Analy Test Tech Instruments(分析测试技术与仪器), 2022, 28 (4):405-410.

    Ding JY, Liu FG, Wng H, et al. Determination of R-valsartan in valsartan active pharmaceuticalingredients by ultra performance convergence chromatography [J]. Analy Test Tech Instruments(分析测试技术与仪器), 2022, 28(4):405-410.

    [21] Zhu WX, Yang R, Xu YW, et al. Qualitative analysis of medium/long chain triglyceride composition by ultra performance convergence chromatography tandem quadrupole time-of-flight mass spectrometry[J]. Chin Pharm J(中国药学杂志), 2016, 51(15): 1324-1329.
    [22]

    Zhang XH, Qi C, Tao GJ, et al. Rapid analysis of triglyceride composition in Vegetable oils by ultra performance convergence chromatography with quadrupole time-of-flight mass spectrometry[J]. Chin Oils Fats, 2018, 43(11): 127-132.

    [23] Li T, Wang J, Yuan M, et al. Analysis of UPCC-Q-TOF-MS components and safety of polyoxyethylene 35 castor oil[J]. Acta Pharm Sin (药学学报), 2020, 55(11): 2688-2694.
    [24] Wu WY. Study on the material basis of traditional Chinese medicine based on UPCC / Q-TOF MS technology [C]. // Proceedings of the 10th Shanghai International Conference on Traditional Chinese Medicine and Natural Medicine(第十届上海中医药与天然药物国际大会论文集). 2017: 35-36.
    [25] ZhouY, Zhao X, Hu N, et al. A method for rapid analysis of polysorbate 80 components[J]. J Chin Pharm Univ(中国药科大学学报), 2022, 53(2): 192-199.
    [26]

    Yang K, Han XL. Accurate quantification of lipid species by electrospray ionization mass spectrometry - Meet a key challenge in lipidomics[J]. Metabolites, 2011, 1(1): 21-40. doi: 10.3390/metabo1010021

    [27]

    Schwartzberg LS, Navari RM. Safety of polysorbate 80 in the on c ology setting[J]. Adv Ther, 2018, 35 (6): 754-767.

    [28]

    Puschmann J, Evers DH, Müller-Goymann CC, et al. Development of a design of experiments optimized method for quantification of polysorbate 80 based on oleic acid using UHPLC-MS[J]. J Chromatogr A, 2019, 1599(2019): 136-143.

    [29] Wang J, Xu K, Yang Y, et al. Establishment of fingerprints and identification method of polysorbates[J]. China Pharm (中国药业), 2023, 32(6): 55-60.
    [30] E GY. Simulation and optimization of tetrahydrofuran recovery system in pharmaceutical waste liquid [J]. Chem Indus Manag(化工管理), 2017 (35): 236.
    [31]

    Zhao B. Mass spectrometry study on the conformation of superoxide dismutase and its interaction with small molecules [D]. Anhui: University of Science and Technology of China, 2019.

图(4)  /  表(6)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  29
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-04
  • 刊出日期:  2024-12-24

目录

/

返回文章
返回
x 关闭 永久关闭