• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

IL-27抑制小胶质细胞过度激活的作用研究

武陵溪, 杜怡萱, 高向东

武陵溪,杜怡萱,高向东. IL-27抑制小胶质细胞过度激活的作用研究[J]. 中国药科大学学报,2024,55(6):801 − 808. DOI: 10.11665/j.issn.1000-5048.2024022702
引用本文: 武陵溪,杜怡萱,高向东. IL-27抑制小胶质细胞过度激活的作用研究[J]. 中国药科大学学报,2024,55(6):801 − 808. DOI: 10.11665/j.issn.1000-5048.2024022702
WU Lingxi, DU Yixuan, GAO Xiangdong. Inhibitory effect of IL-27 on the overactivation of microglia[J]. J China Pharm Univ, 2024, 55(6): 801 − 808. DOI: 10.11665/j.issn.1000-5048.2024022702
Citation: WU Lingxi, DU Yixuan, GAO Xiangdong. Inhibitory effect of IL-27 on the overactivation of microglia[J]. J China Pharm Univ, 2024, 55(6): 801 − 808. DOI: 10.11665/j.issn.1000-5048.2024022702

IL-27抑制小胶质细胞过度激活的作用研究

基金项目: 国家自然科学基金项目(No.82073755)
详细信息
    通讯作者:

    高向东: Tel:025-83271543 E-mail:xdgao@cpu.edu.cn

  • 中图分类号: R743

Inhibitory effect of IL-27 on the overactivation of microglia

Funds: This study was supported by the National Natural Science Foundation of China (No. 82073755)
  • 摘要:

    小胶质细胞介导的神经炎症对阿尔茨海默病(Alzheimer’s disease,AD)的发生发展至关重要。通过分析GEO数据库,发现IL-27在AD患者大脑皮质和海马中表达均下降。本研究建立了Aβ1-42损伤BV-2细胞的AD细胞模型、脂多糖(LPS)损伤BV-2细胞的炎症细胞模型和炎症动物模型,给予IL-27以评估其对调节小胶质细胞表型和神经炎症的作用。在动物模型中,通过免疫组化检测海马中Iba1+小胶质细胞数量,通过qPCR、ELISA和Western blot检测TNF-α、IL-1β和IL-6等促炎因子表达水平;在细胞模型中,通过qPCR检测小胶质细胞M1/M2表型标志物的表达水平。为进一步探究IL-27的作用机制,通过Western blot检测给予IL-27和Aβ1-42后小胶质细胞中NF-κB、p-NF-κB、IκBα和p-IκBα的表达水平。研究结果表明,IL-27缓解了LPS诱导的脑内小胶质细胞异常激活,降低TNF-α、IL-1β和IL-6等促炎因子表达水平;将 LPS或Aβ1-42诱导的小胶质细胞从神经毒性的M1型转化为神经保护的M2型,改善了Aβ1-42诱导的细胞内NF-κB和IκBα的异常磷酸化水平。本研究提示IL-27可调控Aβ1-42或LPS诱导下的小胶质细胞M1/M2极化,进而缓解神经炎症。

    Abstract:

    Neuroinflammation mediated by microglia is essential for the occurrence and development of Alzheimer’s disease (AD). Through the analysis of the GEO database, it was found that IL-27 expression decreased in both the cerebral cortex and hippocampus of AD patients. In this study, the AD cell model of BV-2 cells injured by Aβ1-42, the inflammatory cell model of BV-2 cells damaged by LPS, and the inflammatory animal model were established and the effects of IL-27 after its administration in the above models in regulating microglial phenotype and neuroinflammation were evaluated. In the animal models, the number of Iba1+ microglia in the hippocampus was detected by immunohistochemistry, the expression of pro-inflammatory factors such as TNF-α, IL-1β and IL-6 was detected by qPCR, ELISA and Western blot, and the expression of M1/M2 phenotypic markers in microglia was detected by qPCR. To further explore the action mechanism of IL-27, Western blot was used to detect the expression levels of NF-κB, p-NF-κB, IκBα and p-IκBα in microglia after administration of IL-27 and Aβ1-42. The results showed that IL-27 alleviated the abnormal activation of microglia induced by lipopolysaccharide (LPS), decreased the expression of pro-inflammatory factors such as TNF- α, IL-1β and IL-6, transformed microglia induced by LPS or Aβ1-42 from neurotoxic M1 to neuroprotective M2, and improved the abnormal phosphorylation of NF-κB and IκBα induced by Aβ1-42. The research suggested that IL-27 can regulate the M1/M2 polarization of microglia induced by Aβ1-42 or LPS, and alleviate neuroinflammation.

  • 氟溴唑仑(flubromazolam,Flub)是通过改造阿普唑仑结构获得的一种新型苯二氮䓬类精神活性物质,其化学结构与阿普唑仑(alprazolam)类似,是在阿普唑仑结构8位添加了一个氟原子,并用溴取代了2′位氯原子。据报道,Flub具有快速且持久的中枢抑制作用,可使人体暂时性遗忘、昏迷、呼吸抑制[1]。2014年,德国首次发现Flub在人群中滥用[2]。2018年,中国也监测到Flub滥用[3]。2019–2021年,美国缉毒局(DEA)报告Flub滥用的案例逐年增加[46]。目前,关于Flub研究主要集中在定性定量分析及其代谢动力学等方面[710],其成瘾性及其机制尚不清楚。本研究拟建立小鼠条件性位置偏好(CPP)模型,以CPP评分评价Flub的奖赏效应,并检测腹侧被盖区(VTA)多巴胺(DA)能神经元以及喙内侧被盖核(RMTg)→VTA神经环路对Flub奖赏效应调控作用,为深入了解Flub成瘾性、开发安全有效的防治方法奠定基础。

    氟溴唑仑(国家禁毒委员会办公室-中国药科大学禁毒关键技术联合实验室提供);羟丙基-β-环糊精,氟马西尼(flumazenil,FMZ)(上海源叶生物科技有限公司);氯氮平-N-氧化物(clozapine-n-oxide,CNO)(美国MCE公司);异氟烷(深圳瑞沃德生命科技有限公司);驴血清(江苏碧云天生物科技有限公司);酪氨酸羟化酶(tyrosine hydroxylase,TH)抗体(美国CST公司);c-Fos抗体(美国 Abcam公司);Alexa Fluor 594标记驴抗兔IgG,Alexa Fluor 488标记山羊抗小鼠IgG(上海翌圣生物科技有限公司);4',6-二脒基-2-苯基吲哚(4',6-diamidino-2-phenylindole,DAPI,北京索莱宝科技有限公司);其他试剂均为市售分析纯。

    腺相关病毒包括AAV-TH-hM4Di-mCherry、AAV-GAD67-hM3Dq-mCherry、AAV-GAD67-hM4Di-mCherry、retro-AAV-GAD67-Cre-EGFP、retro-AAV-VGAT1-Cre、AAV-hSyn-DIO-hM3Dq-mCherry,均购自武汉枢密脑科学技术有限公司。AAV-TH-hM4Di-mCherry用于化学遗传调控VTA DA能神经元和相关环路;AAV-hSyn-DIO-hM3Dq-mCherry和retro-AAV-VGAT1-Cre用于化学遗传调控RMTg→VTA环路;AAV-GAD67-hM3Dq-mCherry用于顺向追踪RMTg脑区神经元的投射;retro-AAV-GAD67-Cre-EGFP用于VTA脑区神经元逆向追踪;AAV-GAD67-hM4Di-mCherry用于化学遗传调控RMTg→VTA环路。

    电子分析天平(德国Sartorius公司);倒置荧光显微镜,组织包埋机及石蜡切片机,CM1950冰冻切片机(德国Leica仪器有限公司);ANY-maze动物行为采集分析软件(美国Stoelting公司)。

    C57BL/6J小鼠,SPF级,8周龄,体重20~25 g,由南京青龙山动物繁殖中心提供,合格证号:SCXK(浙)2019-0002。实验动物饲养于12 h昼夜交替的环境中,室温维持在(24±1)℃,湿度(55±5)%,动物可以自由饮水和摄食,实验开始前先适应性饲养1周。对动物的所有处理均遵循动物伦理委员会标准。

    实验装置由两个大小相同的正方体(24 cm×24 cm×30 cm)和一个长方体中间室(24 cm×10 cm×30 cm)构成,两个正方体的内壁颜色及底板触感不同,三室所连接隔板取出后小鼠可以在三室自由探索,实验开始时将小鼠从中间室放入,第1天和第2天将隔板取出,让小鼠在装置中自由探索15 min,第1天让小鼠熟悉实验环境,第2天进行前测,记录小鼠在初始偏好侧和初始非偏好侧(药物配对侧)的停留时间,第3~10天将隔板插入,第3,5,7,9天腹腔注射Flub后放入初始非偏好室训练40 min,第4,6,8,10天腹腔注射对照溶液后放入初始偏好室训练40 min。第11天进行测试,隔板取出后将小鼠从中间室放入,让小鼠在实验装置里探索15 min,记录小鼠在各室的停留时间,计算条件性位置偏好评分(CPP评分=测试时小鼠在药物配对侧停留时间–前测时小鼠在药物配对侧停留时间)。在化学遗传学实验中,将腺相关病毒注入目标脑区,病毒表达3~4周,在每次药物配对侧训练前30 min,腹腔注射CNO(2 mg/kg)或套管给予CNO(3 μmol/L,每侧200 nL)。氟马西尼(0.2 nmol/L,每侧200 nL)在每次药物配对侧训练前10 min套管注入RMTg脑区。

    用异氟烷气体吸入麻醉动物,分别用PBS和4%多聚甲醛心脏灌注,分离脑组织,用4%多聚甲醛固定48 h后,包埋、切片,石蜡切片厚度为8 μm,冰冻切片厚度为25 μm。石蜡组织切片在免疫荧光染色前进行抗原修复,脑片在4 ℃条件下孵育TH抗体(1∶500)、c-Fos抗体(1∶300)。4 ℃过夜后,PBS清洗切片3次,每次10 min,室温下避光孵育二抗2 h,用PBS清洗3次,每次10 min,随后孵育DAPI染色液(1∶100),10 min后PBS洗片3次,每次5 min。脑片干燥后滴加防猝灭剂封片,在荧光显微镜下观察。

    用异氟烷气体吸入麻醉动物,用宠物剃毛刀将小鼠头部毛发剔除,放置于定位框架上,碘伏消毒,随后用手术剪刀将小鼠头皮剪开大约1 cm小口,用颅骨钻在合适位置钻孔,脑立体定位注入工具病毒后用可吸收缝合线缝合。病毒注射位点为AP:–3.28 mm,ML:±0.5 mm,DV:–4.4 mm(VTA);AP:–4.04 mm,ML:±0.3 mm,DV:–4.3 mm(RMTg)注射病毒100 nL,表达3~4周后用于后续化学遗传学实验。

    用异氟烷气体吸入麻醉动物,剔除小鼠头部毛发,放置于定位框架上,碘伏消毒,随后用手术剪刀将小鼠头皮剪开大约1 cm小口,用颅骨钻在目标区域上方钻孔,磨薄颅骨表面,拧上经酒精消毒的螺丝钉,将套管固定于套管夹持器上,待下落到目标区域后用牙科水泥固定,术后恢复1周再进行后续实验。通过注射内管将药物缓慢注入目标脑区,完成注射后将停针5 min,随后缓慢拔出注射内管,旋紧套管帽将小鼠放回笼中,待小鼠在笼内适应10 min后再进行药物配对训练。

    采用GraphPad Prism 9统计学软件对研究数据进行统计分析。计量资料以$ \bar{x} $±s表示,两组数据的比较用非配对t检验,两组以上数据组间比较采用单因素方差分析(One-Way ANOVA)检验或双因素方差分析(Two-Way ANOVA)检验。P<0.05表示差异具有统计学意义。

    CPP 是一种巴甫洛夫条件反射形式,用于研究与滥用药物相关的奖赏效应。采用隔天训练的CPP范式,其实验流程见图1-A。剂量摸索实验发现,3 mg/kg Flub诱导小鼠CPP评分显著升高(P<0.05),而1、2和4 mg/kg Flub组小鼠CPP评分与对照组小鼠相比无显著性差异(图1-B)。

    Figure  1.  Effects of flubromazolam (Flub) at different dosages on conditioned place preference (CPP) score in mice
    A: Experimental timeline for CPP procedure; B: CPP scores of Flub at the dosage of 1,2,3 and 4 mg/kg($ \mathit{\bar{\rm{\mathit{x}}}\mathit{\mathit{ }}} $±s, n=11)*P<0.05

    VTA多巴胺能神经与药物引起的奖赏效应密切相关。采用免疫荧光检测VTA多巴胺能神经元c-Fos水平。结果显示,Flub诱导CPP小鼠VTA脑区c-Fos阳性细胞数较对照组显著增加(P<0.001)(图2-A ,B),而且c-Fos阳性神经元主要与TH阳性神经元共定位(P<0.01)(图2-A,C)。在VTA中注射携带多巴胺能神经元启动子的化学遗传抑制病毒AAV-TH-hM4Di-mCherry(图2-D,E),此病毒可在VTA DA能神经元上特异性表达带有红色荧光、经过改造的人M4毒蕈碱乙酰胆碱受体(hM4Di)。在药物配对侧训练前30 min腹腔注射CNO,通过hM4Di与特异性配体 CNO结合,特异性抑制VTA中多巴胺能神经元活性。行为学结果显示,化学遗传学抑制VTA中多巴胺能神经元,Flub诱导的小鼠CPP评分显著下降(P<0.05)(图2-F)。结果说明VTA多巴胺能神经元参与且调控Flub诱导的小鼠CPP。

    Figure  2.  Inhibition of ventral tegmental area (VTA) dopaminergic neuronal activity decreased Flub-induced CPP score A: Representative images showing c-Fos-positive cells and co-localization of c-Fos-positive neurons with tyrosine hydroxylase (TH); B: Statistical plot of number of c-Fos-positive neurons($ \mathit{\mathit{\bar{\mathrm{\mathit{x}}}\mathit{\mathit{\mathit{ }}}}} $±s,n=5); C: Statistical plot of co-localization of c-Fos-positive neurons with TH-positive neurons($ \bar{\mathrm{\mathit{x}}} $±s,n=5); D: Schematic diagram of virus injection; E:Expression of TH-hM4Di-mCherry (red) in the VTA; F: CPP score under chemogenetic inhibition of dopaminergic neurons in VTA of mice treated with Flub ($ \bar{\mathrm{\mathit{x}}} $±s,n=10)
    *P<0.05, **P<0.01, ***P<0.001,****P<0.0001

    由于VTA多巴胺能神经元接受VTA尾部RMTg的抑制性神经元投射,在RMTg注射携带GABA能神经元启动子的顺行红色荧光病毒AAV-GAD67-hM3Dq-mCherry(图3-A,B),此病毒可在RMTg GABA能神经元的胞体和轴突特异性表达红色荧光蛋白。病毒表达3周后显微镜观察显示,下游VTA脑区中可见由上游投射的大量红色输入细胞(图3-C)。在VTA注射逆行绿色荧光病毒retro-AAV-GAD67-Cre-EGFP(图3-D,E),此病毒可在上游GABA能神经元轴突和胞体中表达。病毒表达3周,显微镜观察可见RMTg脑区大量绿色病毒荧光(图3-F)。这些实验结果验证了RMTgGABA→VTADA神经环路的存在。

    Figure  3.  Suppression of rostrum tegmental nucleus (RMTg) inhibitory projections to VTA dopaminergic neurons is necessary for Flub-induced CPP A,D: Schematic diagram of virus injection; B: Expression of GAD67-mCherry (red) in the RMTg; C: mCherry-positive neuronal fibers from VTA-projecting RMTg γ-aminobutyric acid (GABA) neurons; E: Expression of EGFP(green) in the VTA; F:Expression of EGFP in the RMTg; G: Schematic diagram of virus injection; H: The expression of DIO-hM3Dq-mCherry (red) in the RMTg; I: CPP score in chemogenetic activation of RMTgGABA→VTA ($ \mathit{\bar{\mathrm{\mathit{x}}}\mathit{\mathit{\mathit{\mathit{ }}}}} $±s,n=10); J: Schematic diagram of virus injection; K: Representative diagram of cannula track in the VTA; L: CPP score in chemogenetic inhibitions of RMTgGABA→VTA and dopaminergic neurons in VTA($ \mathit{\bar{\mathrm{\mathit{x}}}\mathit{\mathit{\mathit{ }}}} $±s,n=12)
    **P<0.01

    为探究RMTgGABA→VTADA环路对Flub诱导的小鼠CPP是否有调控作用,在RMTg注射Cre依赖的红色荧光病毒AAV-hSyn-DIO-hM3Dq-mCherry,在VTA中注射retro-AAV-VGAT1-Cre病毒(图3-G,H),AAV-hSyn-DIO-hM3Dq-mCherry在 Cre 重组酶的作用下可在RMTg GABA 能神经元中特异性表达红色荧光蛋白和经改造的人M3 毒蕈碱受体(hM3Dq),通过给予特异性配体 CNO ,可启动下游 G蛋白信号通路,兴奋 GABA 能神经元。病毒表达3周后进行CPP实验,在药物配对侧训练前30 min腹腔给予CNO激活该环路。实验结果显示,激活环路RMTgGABA→VTADA后Flub诱导的小鼠CPP评分显著下降(P<0.01)(图3-I)。 此外,在RMTg注射AAV-GAD67-hM4Di-mCherry,在VTA注射AAV-TH-hM4Di-mCherry病毒,病毒表达3周后在VTA植入套管(图3-J),1周后进行CPP实验,在药物配对侧训练前30 min通过套管在VTA注射CNO(图3-K),通过hM4Di与特异性配体 CNO 结合,抑制该环路和VTA中多巴胺能神经元。实验结果显示,抑制RMTgGABA→VTADA环路和VTA多巴胺能神经元后Flub诱导的小鼠CPP评分与对照组相比,差异无统计学意义(图3-L)。这说明RMTgGABA→VTADA环路是通过VTA多巴胺能神经元调控Flub诱导的小鼠CPP。

    为了探究Flub是否作用于RMTg脑区苯二氮䓬受体(亦称GABAA受体)产生奖赏效应,在RMTg植入套管(图4-A,B),1周后进行CPP实验,在药物配对侧训练前10 min通过套管在RMTg注入苯二氮䓬受体拮抗剂FMZ。实验结果显示,FMZ阻断RMTg中的苯二氮䓬受体显著降低Flub诱导的小鼠CPP评分(图4-C),这说明RMTg中的苯二氮䓬受体参与Flub诱导的奖赏效应。

    Figure  4.  Intra-RMTg infusion of flumazenil (FMZ) significantly reduced Flub-induced CPP score A: Schematic diagram of cannula track in the RMTg; B: Representative diagram of cannula track in the RMTg; C: CPP score in intra-RMTg of FMZ 10 min before administration of Flub (ip)($ \bar{\mathrm{\mathit{x}}} $±s,n= 9)
    **P<0.01

    Flub属于未经批准上市的苯二氮䓬类新精神活性物质,其药理作用与阿普唑仑相似。本研究发现,Flub以3 mg/kg剂量腹腔注射4次小鼠CPP评分显著增加,而1 或2 mg/kg给药4次不能诱导小鼠CPP评分显著增加。Flub 4 mg/kg给药使小鼠出现反射减弱、镇静、呼吸抑制等中枢抑制作用,也不能诱导小鼠CPP评分显著增加。说明该药物的奖赏效应与剂量有关,这也从动物实验水平初步解释了Flub服用者描述在服药后感受到欣快感[11]

    精神活性物质所产生的欣快感在成瘾中起正性强化作用,VTA是药物奖赏的重要脑区,VTA多巴胺能神经元投射作用于伏隔核、杏仁核和前额叶皮层等多个脑区,形成中脑边缘奖赏系统,在成瘾药物诱导的奖励驱动行为过程中发挥重要作用[12]。化学遗传学抑制VTA中多巴胺能神经元可以降低Flub诱导的小鼠CPP评分,证实了VTA 多巴胺能神经元参与Flub诱导的奖赏效应。有研究表明苯二氮䓬类药物作用于GABAAα1亚基导致成瘾[13],因此,推测Flub可能通过与VTA上游脑区GABA能神经元GABAA受体结合,进而抑制GABA能神经元的活性,解除对VTA中多巴胺能神经元的抑制作用,从而使VTA多巴胺能神经元兴奋性增加,产生奖赏效应。RMTg是VTA多巴胺神经元抑制性GABA能输入的主要来源[14],越来越多研究表明,RMTg参与调节奖赏、动机、厌恶和行为回避[1521]。Jalabert等[22]通过在RMTg注入顺行示踪剂或VTA注入逆行示踪剂来探究RMTg-VTA路的联系,发现在VTA中有顺行示踪剂,而在RMTg中检测到逆行示踪剂。本研究通过化学遗传学激活RMTgGABA→VTADA神经环路显著抑制Flub诱导的小鼠CPP,在RMTg经套管给予FMZ,阻断苯二氮䓬受体,也能够抑制Flub诱导的小鼠CPP。这提示Flub分布到RMTg 脑区,通过激动GABA能神经元GABAA受体,减少抑制性神经冲动至VTA多巴胺能神经元,使VTA多巴胺能神经元兴奋,产生奖赏效应。

    综上所述,本研究采用评价药物精神依赖性的经典CPP动物模型,从分子、神经核团和神经环路水平揭示了Flub诱导奖赏效应的机制,为进一步研究Flub成瘾机制以及防治方法奠定了实验基础。

  • Figure  1.   Analysis of IL-27 expression in the brains of normal and Alzheimer’s disease(AD) patients. In Hippocampus region, control group n=19, AD group n=19. In the entorhinal cortex region, control group n=19, AD group n=15. In the frontal cortex region, control group n=27, AD group n=21. (ns: no significance vs control group)

    Figure  2.   Effect of IL-27 on activation of microglia in lipopolysaccharide(LPS)-induced mice brain

    A: Expression of Iba1 in the brain of normal mice, LPS-induced inflammation mice, and IL-27 treated mice after LPS-induced inflammation was detected by immunohistochemistry (Scale bar=100 μm); B: Quantitative analysis of Iba1+ levels in A ($\bar{x} $ ± s, n=3, ###P < 0.001 vs control group; **P < 0.01 vs LPS group)

    Figure  3.   Effect of IL-27 on the expression of inflammatory factors in the brain of mice induced by LPS ($\bar{x} $ ± s)

    A: mRNA levels of Il1b, Il6 and Tnf were detected by RT-qPCR; B: Levels of IL-1β, IL-6, TNF-α were detected by ELISA; C: Representative images of the levels of IL-1β, TNF-α were detected by Western blot; D-E: Quantitative analysis of protein levels of TNF-α/actin and IL-1β/actin(n=5 in ELISA, the other n=3) ###P < 0.001, ##P < 0.01 vs control group; ***P < 0.001, **P < 0.01 vs LPS group

    Figure  4.   Effect of IL-27 on mRNA expression of M1/M2 cell markers in LPS-induced microglia ($\bar{x} $ ± s, n=3)

    A: mRNA levels of M1-specific makers Il1b, Tnf, Nos2, Nlrp3, Fcgr2b, Cd86 and Fcgr3 were detected by RT-qPCR; B: mRNA levels of M2-specific makers Il10, Chil3 and Arg1 were detected by RT-qPCR ###P < 0.001, ##P < 0.01, #P < 0.05 vs control group; ***P < 0.001, **P < 0.01, *P < 0.05 vs LPS group

    Figure  5.   Effect of IL-27 on mRNA expression of M1/M2 cell markers in Aβ1-42-induced microglia ($\bar{x} $ ± s, n=3)

    A: mRNA levels of M1-specific makers Il1b, Tnf, Nlrp3 and Nos2 were detected by RT-qPCR; B: mRNA levels M2-specific makers of Il10, Chil3 and Arg1 were detected by RT-qPCR ###P < 0.001, ##P < 0.01, #P < 0.05 vs control group; ***P < 0.001, **P < 0.01, *P < 0.05 vs1-42 group

    Figure  6.   Effect of IL-27 on activation of NF-κB, p-NF-κB, IκBα, and p-IκBα in microglia induced by Aβ1-42

    A: Levels of NF-κB, p-NF-κB, IκBα and p-IκBα were detected by Western blot; B-C: Quantitative analysis of protein levels of p-NF-κB/NF-κB and p-IκBα/ IκBα in A (`x ± s, n=3, ###P < 0.001, ##P < 0.01, #P < 0.05 vs control group; ***P < 0.001, **P < 0.01, *P < 0.05 vs1-42 group)

    Table  1   Primer sequences for RT- PCR

    Biological indicator Forward primer (5'→3') Reverse primer (5'→3')
    TnfTTGGTGGTTTGTGAGTGTGAGGACGTGGAACTGGCAGAAGAG
    Il6TTGGTCCTTAGCCACTCCTTTAGTCCTCCTACCCCAATT
    Il1bATCTTTTGGGGTCCGTCAACTGCAACTGTTCCTGAACTCAACT
    Nos2GTGGACGGGTCGATGTCACGTTCTCAGCCCAACAATACAAA
    Nlrp3ACAAGCCTTTGCTCCAGACCCTATTGCTCTTCACTGCTATCAAGCCCT
    Fcgr2bGGGAACCAATCTCGTAGTGTCTGTCCAGAAAGGCCAGGATCTAGTG
    Cd86GAGCGGGATAGTAACGCTGAGGCTCTCACTGCCTTCACTC
    Fcgr3GTCCAGTTTCACCACAGCCTTCGCCAATGGCTACTTCCACCAC
    Chil3GGGCATACCTTTATCCTGAGCCACTGAAGTCATCCATGTC
    Il10GGTTGCCAAGCCTTATCGGAACCTGCTCCACTGCCTTGCT
    Arg1GTGAAGAACCCACGGTCTGTCTGGTTGTCAGGGGAGTGTT
    ActbAGCCATGTACCTAGCCATCCTTTGATGTCACGCACGATTT
    下载: 导出CSV
  • [1]

    Nayak D, Roth TL, McGavern DB. Microglia development and function[J]. Annu Rev Immunol, 2014, 32: 367-402. doi: 10.1146/annurev-immunol-032713-120240

    [2]

    Lull ME, Block ML. Microglial activation and chronic neurodegeneration[J]. Neurotherapeutics, 2010, 7(4): 354-365. doi: 10.1016/j.nurt.2010.05.014

    [3]

    Fernando KKM, Wijayasinghe YS. Sirtuins as potential therapeutic targets for mitigating neuroinflammation associated with Alzheimer’s disease[J]. Front Cell Neurosci, 2021, 15: 746631. doi: 10.3389/fncel.2021.746631

    [4]

    Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes[J]. Transl Neurodegener, 2020, 9(1): 42. doi: 10.1186/s40035-020-00221-2

    [5]

    Bachiller S, Jiménez-Ferrer I, Paulus A, et al. Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response[J]. Front Cell Neurosci, 2018, 12: 488.

    [6]

    Wang CC, Zong S, Cui XL, et al. The effects of microglia-associated neuroinflammation on Alzheimer’s disease[J]. Front Immunol, 2023, 14: 1117172. doi: 10.3389/fimmu.2023.1117172

    [7]

    Wolf SA, Boddeke HW, Kettenmann H. Microglia in physiology and disease[J]. Annu Rev Physiol, 2017, 79: 619-643. doi: 10.1146/annurev-physiol-022516-034406

    [8]

    Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms[J]. Nat Rev Neurosci, 2007, 8(1): 57-69. doi: 10.1038/nrn2038

    [9]

    Udeochu JC, Shea JM, Villeda SA. Microglia communication: parallels between aging and Alzheimer’s disease[J]. Clin Exp Neuroimmunol, 2016, 7(2): 114-125. doi: 10.1111/cen3.12307

    [10]

    Stumhofer JS, Hunter CA. Advances in understanding the anti-inflammatory properties of IL-27[J]. Immunol Lett, 2008, 117(2): 123-130. doi: 10.1016/j.imlet.2008.01.011

    [11]

    Luo C, Li BR, Chen L, et al. IL-27 protects the brain from ischemia-reperfusion injury via the gp130/STAT3 signaling pathway[J]. J Mol Neurosci, 2021, 71(9): 1838-1848. doi: 10.1007/s12031-021-01802-0

    [12]

    Pflanz S, Timans JC, Cheung J, et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells[J]. Immunity, 2002, 16(6): 779-790. doi: 10.1016/S1074-7613(02)00324-2

    [13]

    Zhao XR, Ting SM, Liu CH, et al. Neutrophil polarization by IL-27 as a therapeutic target for intracerebral hemorrhage[J]. Nat Commun, 2017, 8(1): 602. doi: 10.1038/s41467-017-00770-7

    [14]

    Xu M, Zhang DF, Luo RC, et al. A systematic integrated analysis of brain expression profiles reveals YAP1 and other prioritized hub genes as important upstream regulators in Alzheimer’s disease[J]. Alzheimers Dement, 2018, 14(2): 215-229. doi: 10.1016/j.jalz.2017.08.012

    [15]

    Alzahrani NA, Bahaidrah KA, Mansouri RA, et al. Investigation of the optimal dose for experimental lipopolysaccharide-induced recognition memory impairment: behavioral and histological studies[J]. J Integr Neurosci, 2022, 21(2): 49. doi: 10.31083/j.jin2102049

    [16]

    Yang L, Zhou RY, Tong Y, et al. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation[J]. Neurobiol Dis, 2020, 140: 104814. doi: 10.1016/j.nbd.2020.104814

    [17]

    Gu SM, Lee HP, Ham YW, et al. Piperlongumine improves lipopolysaccharide-induced amyloidogenesis by suppressing NF-KappaB pathway[J]. Neuromolecular Med, 2018, 20(3): 312-327. doi: 10.1007/s12017-018-8495-9

    [18]

    Vandenbark AA, Offner H, Matejuk S, et al. Microglia and astrocyte involvement in neurodegeneration and brain cancer[J]. J Neuroinflammation, 2021, 18(1): 298. doi: 10.1186/s12974-021-02355-0

    [19]

    Sowrirajan B, Saito Y, Poudyal D, et al. Interleukin-27 enhances the potential of reactive oxygen species generation from monocyte-derived macrophages and dendritic cells by induction of p47phox[J]. Sci Rep, 2017, 7: 43441. doi: 10.1038/srep43441

    [20]

    Nortey AN, Garces KN, Hackam AS. Exploring the role of interleukin-27 as a regulator of neuronal survival in central nervous system diseases[J]. Neural Regen Res, 2022, 17(10): 2149-2152. doi: 10.4103/1673-5374.336134

    [21]

    Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions[J]. Alzheimers Dement, 2016, 12(6): 719-732. doi: 10.1016/j.jalz.2016.02.010

    [22]

    McNamara AJ, Danthi P. Loss of IKK subunits limits NF-κB signaling in reovirus-infected cells[J]. J Virol, 2020, 94(10): e00382-e00320.

    [23]

    Sun E, Motolani A, Campos L, et al. The pivotal role of NF-kB in the pathogenesis and therapeutics of Alzheimer’s disease[J]. Int J Mol Sci, 2022, 23(16): 8972. doi: 10.3390/ijms23168972

图(6)  /  表(1)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  14
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-26
  • 刊出日期:  2024-12-24

目录

/

返回文章
返回
x 关闭 永久关闭