高级检索

不同阶段 Gao-Binge 模型中游离脂肪酸、三羧酸循环及酮体代谢谱研究

黎安沁, 庞陆鑫, 柴媛媛, 俞沁玮, 江振洲, 张陆勇

黎安沁,庞陆鑫,柴媛媛,等. 不同阶段 Gao-Binge 模型中游离脂肪酸、三羧酸循环及酮体代谢谱研究[J]. 中国药科大学学报,2025,56(2):196 − 206. DOI: 10.11665/j.issn.1000-5048.2024030502
引用本文: 黎安沁,庞陆鑫,柴媛媛,等. 不同阶段 Gao-Binge 模型中游离脂肪酸、三羧酸循环及酮体代谢谱研究[J]. 中国药科大学学报,2025,56(2):196 − 206. DOI: 10.11665/j.issn.1000-5048.2024030502
LI Anqin, PANG Luxin, CHAI Yuanyuan, et al. Plasma and hepatic free fatty acid, tricarboxylic acid cycle, and ketone bodies metabolic profiles in progressive Gao-Binge model[J]. J China Pharm Univ, 2025, 56(2): 196 − 206. DOI: 10.11665/j.issn.1000-5048.2024030502
Citation: LI Anqin, PANG Luxin, CHAI Yuanyuan, et al. Plasma and hepatic free fatty acid, tricarboxylic acid cycle, and ketone bodies metabolic profiles in progressive Gao-Binge model[J]. J China Pharm Univ, 2025, 56(2): 196 − 206. DOI: 10.11665/j.issn.1000-5048.2024030502

不同阶段 Gao-Binge 模型中游离脂肪酸、三羧酸循环及酮体代谢谱研究

基金项目: 国家自然科学基金项目 (No. 81773827,No. 82304642)
详细信息
    通讯作者:

    江振洲: Tel:025-83271043 E-mail:beaglejiang@cpu.edu.cn

    张陆勇: Tel:025-83271043 E-mail:lyzhang@gdpu.edu.cn

  • 中图分类号: R965

Plasma and hepatic free fatty acid, tricarboxylic acid cycle, and ketone bodies metabolic profiles in progressive Gao-Binge model

Funds: This study was supported by the National Natural Science Foundation of China (No. 81773827, No. 82304642)
  • 摘要:

    肝细胞内脂质蓄积是酒精性脂肪肝 (AFLD) 的重要病理学特征,其形成与游离脂肪酸 (FFAs)、三羧酸 (TCA) 循环、酮体代谢密切相关。为揭示 AFLD 中肝脏脂质蓄积与 FFAs、TCA 循环、酮体代谢的相关性。采用 C57BL/6N 小鼠构建慢性酒精喂养加急性酒精灌胃(Gao-Binge 模型)来模拟不同阶段的 AFLD,运用液相色谱-质谱联用技术 (LC-MS/MS) 检测小鼠肝组织和血浆中的 FFAs、TCA 循环中间产物和酮体水平,并进行 Pearson 相关性分析。研究结果显示,长短期 AFLD 小鼠模型中,血浆和肝脏中的总 FFAs、饱和FFAs、短链 FFAs 以及酮体 β-羟丁酸 (HDBT) 水平均显著增加,提示 FFAs 代谢谱在 Gao-Binge 模型下出现紊乱。此外,长短期模型中均发现乙酸 (AA)、2-甲基丁酸 (2-meBA)、HDBT 与肝脏损伤指标在血浆和肝脏样本中呈现出显著正相关性(以短期模型中血浆数据为例,r = 0.834、0.699、0.818, P<0.05),而丙酮酸 (PRA) 表现出显著负相关性 (r = −0.66, P<0.05)。结果表明,长短期 AFLD 小鼠模型中出现 FFAs、TCA 循环、酮体代谢紊乱,AA、2-meBA、HDBT、PRA 等代谢物可作为 AFLD 的潜在生物标志物,有助于该疾病的诊断和治疗。

    Abstract:

    To investigate the correlation between hepatic lipid accumulation and the metabolic profiles of free fatty acids(FFAs), tricarboxylic acid (TCA) cycle, and ketone body in alcoholic fatty liver disease (AFLD), a chronic plus acute alcohol feeding model (Gao-Binge model) was employed using C57BL/6N mice to simulate different stages of AFLD. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to measure the levels of FFAs, TCA cycle intermediates, and ketone bodies in mouse liver tissue and plasma, followed by Pearson correlation analysis. The study revealed that both acute and chronic models showed significant increases in total FFAs, saturated FFAs and short-chain FFAs, as well as β-hydroxybutyric acid(HDBT) in plasma and liver, indicating FFA metabolic profile disturbances in the Gao-Binge model. Moreover, in both models, acetic acid (AA), 2-Methylbutyric acid (2-meBA), and HDBT displayed strong positive correlations with hepatic injury markers in plasma and liver samples (for instance, in the acute model plasma data, r = 0.834, 0.699, 0.818, P<0.05), while pyruvic acid (PRA) showed a strong negative correlation (r = −0.66, P<0.05). These findings suggest that FFAs, TCA cycle, and ketone body metabolism are disrupted in the alcoholic liver disease in mice model, and metabolites such as AA, 2-meBA, HDBT and PRA may serve as potential biomarkers for AFLD, which would be helpful in the diagnosis and treatment of this disease.

  • Figure  1.   Establishment of a short-term Gao-Binge alcohol-induced liver disease mouse model($\bar{x}\pm s $, control group: n = 6; Ethanol group: n = 8)

    A: Average daily food intake; B: Daily weight change; C: Liver injury-related markers; D: Pathologic staining results*P<0.05, **P<0.01, ***P<0.001 vs control group

    Figure  2.   Establishment of a long-term Gao-Binge alcohol-induced liver disease mouse model($ \bar{x} \pm s $, control group: n = 7; Ethanol group: n = 9)

    A: Average daily food intake; B: Daily weight change; C: Liver injury-related markers; D: Pathologic staining results *P<0.05, **P<0.01, ***P<0.001 vs control group

    Figure  3.   Changes in endogenous substances in short-term models

    A: Levels of different classes of fatty acids in plasma; B: Levels of energy-related carboxylic acids in plasma; C: Specific levels of fatty acids in plasma; D: Levels of different classes of fatty acids in liver; E: Levels of energy-related carboxylic acids in liver; F: Specific levels of fatty acids in liver ($ \bar{{x}}\pm s $, control group: n = 6; Ethanol group: n = 8, *P<0.05, **P<0.01, ***P<0.001 vs control group) Total FFAs: Total free fatty acids; SCFA:Short-chain fatty acids; MCFA: Medium-chain fatty acids; LCFA: Long-chain fatty acids; VLCFA: Very-long-chain fatty acids; SFA: Saturated fatty acids; UFA: Unsaturated fatty acids; Total CA:Total carboxylic acids of energy-related; HDBT: β-Hydroxybutyric acid; CTA: Citric acid; MLA: Malic acid; PRA:Pyruvic acid; MVA: Mevalonic acid; LTA: Lactic acid; SCA: Succinic acid; FMA: Fumaric acid; AA: Acetic acid; PPA: Propionic acid; BA: Butyric acid; VA: Valeric acid; HXA: Hexanoic acid; iso-BA: Isobutyric acid; 2-meBA: 2-methylbutyric acid; iso-VA: Isovaleric acid; 3-mePTA: 3-methylpentanoic acid; OTA: Octanoic acid; DA: Decanoic acid; DDA: Dodecanoic acid; MRA: Myristic acid; PA: Palmitic acid; SA: Stearic acid; PMA: Palmitoleic acid; OA: Oleic acid; LA: Linolenic acid; LLA: Linoleic acid; ESA: Eicosenoic acid; ARA: Arachidonic acid; EPA: Eicosapentaenoic acid; LNA: Lignoceric acid; BHA: Behenic acid; EA: Erucic acid; DHA: Docosahexaenoic acid; NVA: Nervonic acid

    Figure  4.   Changes in endogenous substances in long-term models

    A: Levels of different classes of fatty acids in plasma; B: Levels of energy-related carboxylic acids in plasma; C: Specific levels of fatty acids in plasma; D: Levels of different classes of fatty acids in liver; E: Levels of energy-related carboxylic acids in liver; F: Specific levels of fatty acids in liver ($ \bar{x}\pm s $, control group: n = 7; Ethanol group: n = 9, *P<0.05, **P<0.01, ***P<0.001 vs control group)

    Figure  5.   Pearson correlation analysis of liver injury biomarkers with FFAs, TCA cycle, and ketone body metabolic profiles

    A: Plasma samples in short-term model; B: Liver samples in short-term model; C: Plasma samples in long-term model; D: Liver samples in long-term model *P<0.05, **P<0.01, ***P<0.001

  • [1]

    Kourkoumpetis T, Sood G. Pathogenesis of alcoholic liver disease: an update[J]. Clin Liver Dis, 2019, 23(1): 71-80. doi: 10.1016/j.cld.2018.09.006

    [2]

    Osna NA, Donohue TM Jr, Kharbanda KK. Alcoholic liver disease: pathogenesis and current management[J]. Alcohol Res, 2017, 38(2): 147-161.

    [3]

    You M, Arteel GE. Effect of ethanol on lipid metabolism[J]. J Hepatol, 2019, 70(2): 237-248. doi: 10.1016/j.jhep.2018.10.037

    [4]

    Jump DB. Fatty acid regulation of gene transcription[J]. Crit Rev Clin Lab Sci, 2004, 41(1): 41-78. doi: 10.1080/10408360490278341

    [5]

    Wrzosek M, Zawadzka Z, Sawicka A, et al. Impact of fatty acids on obesity-associated diseases and radical weight reduction[J]. Obes Surg, 2022, 32(2): 428-440. doi: 10.1007/s11695-021-05789-w

    [6]

    Cotter DG, Ercal B, Huang XJ, et al. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia[J]. J Clin Invest, 2014, 124(12): 5175-5190. doi: 10.1172/JCI76388

    [7]

    Pan A, Sun XM, Huang FQ, et al. The mitochondrial β-oxidation enzyme HADHA restrains hepatic glucagon response by promoting β-hydroxybutyrate production[J]. Nat Commun, 2022, 13(1): 386. doi: 10.1038/s41467-022-28044-x

    [8]

    Satapati S, Sunny NE, Kucejova B, et al. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver[J]. J Lipid Res, 2012, 53(6): 1080-1092. doi: 10.1194/jlr.M023382

    [9]

    Sunny NE, Parks EJ, Browning JD, et al. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease[J]. Cell Metab, 2011, 14(6): 804-810. doi: 10.1016/j.cmet.2011.11.004

    [10]

    Patterson RE, Kalavalapalli S, Williams CM, et al. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity[J]. Am J Physiol Endocrinol Metab, 2016, 310(7): E484-E494. doi: 10.1152/ajpendo.00492.2015

    [11]

    Lamas-Paz A, Hao FJ, Nelson LJ, et al. Alcoholic liver disease: utility of animal models[J]. World J Gastroenterol, 2018, 24(45): 5063-5075. doi: 10.3748/wjg.v24.i45.5063

    [12]

    Brandon-Warner E, Schrum LW, Schmidt CM, et al. Rodent models of alcoholic liver disease: of mice and men[J]. Alcohol, 2012, 46(8): 715-725. doi: 10.1016/j.alcohol.2012.08.004

    [13] Liu X, Zhang QQ, Wang SX, et al. Influencing factors and research progress of establishing animal models of rodent alcohol drinking[J]. Chin J Pharmacol Toxicol (中国药理学与毒理学杂志), 2017, 31(6): 607-614.
    [14]

    Bertola A, Mathews S, Ki SH, et al. Mouse model of chronic and binge ethanol feeding (the NIAAA model)[J]. Nat Protoc, 2013, 8(3): 627-637. doi: 10.1038/nprot.2013.032

    [15]

    Alcohol consumption among young adults ages 18–24 in the United States: results from the 2001–2002 NESARC survey[J]. Alcohol Res Health, 2004, 28 (4): 269-280.

    [16]

    Aroor AR, Jackson DE, Shukla SD. Elevated activation of ERK1 and ERK2 accompany enhanced liver injury following alcohol binge in chronically ethanol-fed rats[J]. Alcohol Clin Exp Res, 2011, 35(12): 2128-2138. doi: 10.1111/j.1530-0277.2011.01577.x

    [17]

    Zhang JW, Zhao Y, Xu CF, et al. Association between serum free fatty acid levels and nonalcoholic fatty liver disease: a cross-sectional study[J]. Sci Rep, 2014, 4: 5832. doi: 10.1038/srep05832

    [18]

    Walle P, Takkunen M, Männistö V, et al. Fatty acid metabolism is altered in non-alcoholic steatohepatitis independent of obesity[J]. Metabolism, 2016, 65(5): 655-666. doi: 10.1016/j.metabol.2016.01.011

    [19]

    Yang LL, Yang X, Kong XL, et al. Covariation analysis of serumal and urinary metabolites suggests aberrant Glycine and fatty acid metabolism in chronic hepatitis B[J]. PLoS One, 2016, 11(5): e0156166. doi: 10.1371/journal.pone.0156166

    [20]

    Yoo HJ, Jung KJ, Kim M, et al. Liver cirrhosis patients who had normal liver function before liver cirrhosis development have the altered metabolic profiles before the disease occurrence compared to healthy controls[J]. Front Physiol, 2019, 10: 1421. doi: 10.3389/fphys.2019.01421

    [21] Gao ZH, Shen YQ. Analysis of serum free fatty acid levels in patients with non-alcoholic fatty liver disease[J]. Chin Prac Med (中国实用医药), 2015, 10(28): 43-44.
    [22] Gou XJ, Feng Q, Hu YY. Effects of qushi Huayu formula on serum free fatty acid profile in non-alcoholic fatty liver disease model rats[J]. China Pharm (中国药房), 2018, 29(24): 3330-3335.
    [23]

    Ueno A, Lazaro R, Wang PY, et al. Mouse intragastric infusion (iG) model[J]. Nat Protoc, 2012, 7(4): 771-781. doi: 10.1038/nprot.2012.014

    [24]

    Leung TM, Lu YK, Yan W, et al. Argininosuccinate synthase conditions the response to acute and chronic ethanol-induced liver injury in mice[J]. Hepatology, 2012, 55(5): 1596-1609. doi: 10.1002/hep.25543

    [25]

    Gorica E, Calderone V. Arachidonic acid derivatives and neuroinflammation[J]. CNS Neurol Disord Drug Targets, 2022, 21(2): 118-129. doi: 10.2174/1871527320666210208130412

    [26] Chai YY. Research on the effect and mechanism of disrupted metabolic profiling in liver injury induced by co-administration of valproic acid and acetaminophen(丙戊酸和对乙酰氨基酚联合用药致小鼠肝脏损伤的代谢轮廓改变及其机制研究)[D]. Nanjing: China Pharmaceutical University, 2022.
    [27]

    Jia JP. Statistics[M]. 7th ed. Beijing: China Renmin University Press, 2018: 240.

    [28]

    Lefkowitch JH. Morphology of alcoholic liver disease[J]. Clin Liver Dis, 2005, 9(1): 37-53. doi: 10.1016/j.cld.2004.11.001

    [29]

    Zhao ZW, Yu MG, Crabb D, et al. Ethanol-induced alterations in fatty acid-related lipids in serum and tissues in mice[J]. Alcohol Clin Exp Res, 2011, 35(2): 229-234. doi: 10.1111/j.1530-0277.2010.01338.x

    [30] Zhao ZH, Shi AM, Wang Q. Research progress and development trend of high-oleic acid peanuts[J]. Cereals Oils (粮食与油脂), 2019, 32(9): 1-4.
    [31]

    Chaaba R, Bouaziz A, Ben Amor A, et al. Fatty acid profile and genetic variants of proteins involved in fatty acid metabolism could be considered as disease predictor[J]. Diagnostics, 2023, 13(5): 979. doi: 10.3390/diagnostics13050979

    [32]

    Gunduz F, Aboulnasr FM, Chandra PK, et al. Free fatty acids induce ER stress and block antiviral activity of interferon alpha against hepatitis C virus in cell culture[J]. Virol J, 2012, 9: 143. doi: 10.1186/1743-422X-9-143

    [33]

    Oscarsson J, Önnerhag K, Risérus U, et al. Effects of free omega-3 carboxylic acids and fenofibrate on liver fat content in patients with hypertriglyceridemia and non-alcoholic fatty liver disease: a double-blind, randomized, placebo-controlled study[J]. J Clin Lipidol, 2018, 12 (6): 1390-1403. e4.

    [34]

    Zhao X, Zhang XY, Ye B, et al. Effect of unsaturated fatty acids on glycation product formation pathways[J]. Food Res Int, 2021, 143: 110288. doi: 10.1016/j.foodres.2021.110288

    [35]

    Mortensen MS, Ruiz J, Watts JL. Polyunsaturated fatty acids drive lipid peroxidation during ferroptosis[J]. Cells, 2023, 12(5): 804. doi: 10.3390/cells12050804

    [36]

    Lawman HG, D Fryar C, Gu QP, et al. The role of prescription medications in the association of self-reported sleep duration and obesity in U. S. adults, 2007—2012[J]. Obesity, 2016, 24(10): 2210-2216. doi: 10.1002/oby.21600

    [37]

    Takeuchi T, Kameyama K, Miyauchi E, et al. Fatty acid overproduction by gut commensal microbiota exacerbates obesity[J]. Cell Metab, 2023, 35 (2): 361-375. e9.

    [38]

    Calder PC. Functional roles of fatty acids and their effects on human health[J]. JPEN J Parenter Enteral Nutr, 2015, 39 (1 Suppl): 18S-32S.

    [39]

    Setshedi M, Wands JR, de la Monte SM. Acetaldehyde adducts in alcoholic liver disease[J]. Oxid Med Cell Longev, 2010, 3(3): 178-185. doi: 10.4161/oxim.3.3.12288

    [40]

    Kendrick SFW, O’Boyle G, Mann J, et al. Acetate, the key modulator of inflammatory responses in acute alcoholic hepatitis[J]. Hepatology, 2010, 51(6): 1988-1997. doi: 10.1002/hep.23572

    [41]

    Liangpunsakul S, Rahmini Y, Ross RA, et al. Imipramine blocks ethanol-induced ASMase activation, ceramide generation, and PP2A activation, and ameliorates hepatic steatosis in ethanol-fed mice[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(5): G515-G523. doi: 10.1152/ajpgi.00455.2011

    [42]

    Shen Z, Ajmo JM, Rogers CQ, et al. Role of SIRT1 in regulation of LPS- or two ethanol metabolites-induced TNF-alpha production in cultured macrophage cell lines[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 296(5): G1047-G1053. doi: 10.1152/ajpgi.00016.2009

    [43] Chang BX, Wang H, Zou ZS, et al. Pathogenesis and novel therapeutic targets of alcoholic liver disease[J]. J Clin Hepatol (临床肝胆病杂志), 2014, 30(2): 113-117.
    [44]

    Puchalska P, Crawford PA. Metabolic and signaling roles of ketone bodies in health and disease[J]. Annu Rev Nutr, 2021, 41: 49-77. doi: 10.1146/annurev-nutr-111120-111518

    [45]

    Tao L. Oxidation of polyunsaturated fatty acids and its impact on food quality and human health[J]. Adv Food Technol Nutr Sci Open J, 2015, 1(6): 135-142. doi: 10.17140/AFTNSOJ-1-123

    [46]

    Morigny P, Boucher J, Arner P, et al. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics[J]. Nat Rev Endocrinol, 2021, 17(5): 276-295. doi: 10.1038/s41574-021-00471-8

    [47]

    Brestoff JR, Wilen CB, Moley JR, et al. Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity[J]. Cell Metab, 2021, 33(2): 270-282. doi: 10.1016/j.cmet.2020.11.008

    [48]

    Xu X, So JS, Park JG, et al. Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP[J]. Semin Liver Dis, 2013, 33(4): 301-311. doi: 10.1055/s-0033-1358523

    [49]

    Hui S, Ghergurovich JM, Morscher RJ, et al. Glucose feeds the TCA cycle via circulating lactate[J]. Nature, 2017, 551(7678): 115-118. doi: 10.1038/nature24057

  • 期刊类型引用(1)

    1. 陈力菡,宋文婧,吴民民,朱路文. 基于鼻-脑轴治疗神经系统疾病的研究进展. 中国医药导报. 2025(10): 38-42+53 . 百度学术

    其他类型引用(0)

图(5)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  11
  • PDF下载量:  9
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-03-04
  • 刊出日期:  2025-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭