• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

幽门螺杆菌脂多糖抗原表位片段的化学合成及抗体亲和力研究

赵慧, 邹小鹏, 肖蕾, 胡静, 尹健

赵慧,邹小鹏,肖蕾,等. 幽门螺杆菌脂多糖抗原表位片段的化学合成及抗体亲和力研究[J]. 中国药科大学学报,2024,55(5):645 − 656. DOI: 10.11665/j.issn.1000-5048.2024031201
引用本文: 赵慧,邹小鹏,肖蕾,等. 幽门螺杆菌脂多糖抗原表位片段的化学合成及抗体亲和力研究[J]. 中国药科大学学报,2024,55(5):645 − 656. DOI: 10.11665/j.issn.1000-5048.2024031201
ZHAO Hui, ZOU Xiaopeng, XIAO Lei, et al. Chemical synthesis and antibody affinity of epitope fragments from Helicobacter pylori lipopolysaccharide[J]. J China Pharm Univ, 2024, 55(5): 645 − 656. DOI: 10.11665/j.issn.1000-5048.2024031201
Citation: ZHAO Hui, ZOU Xiaopeng, XIAO Lei, et al. Chemical synthesis and antibody affinity of epitope fragments from Helicobacter pylori lipopolysaccharide[J]. J China Pharm Univ, 2024, 55(5): 645 − 656. DOI: 10.11665/j.issn.1000-5048.2024031201

幽门螺杆菌脂多糖抗原表位片段的化学合成及抗体亲和力研究

基金项目: 国家自然科学基金项目( No. 22207042, No. 22177041, No. 22277042, No. 22325803);江南大学糖化学与生物技术教育部重点实验室开放课题(No. KLCCB-KF202203)
详细信息
    通讯作者:

    胡静: Tel:0510-85197039 E-mail:hujing@jiangnan.edu.cn

    尹健: Tel:0510-85328229 E-mail:jianyin@jiangnan.edu.cn

    ##ZHAO Hui and ZOU Xiaopeng contributed equally to this work#赵慧与邹小鹏为共同第一作者

  • 中图分类号: O629.1;R914

Chemical synthesis and antibody affinity of epitope fragments from Helicobacter pylori lipopolysaccharide

Funds: This study was supported by the National Natural Science Foundation of China (No. 22207042, No. 22177041, No. 22277042, No. 22325803);and the Open Project of Key Laboratory of Carbohydrate Chemistry and Biotechnology (Ministry of Education), Jiangnan University (No. KLCCB-KF202203)
  • 摘要:

    幽门螺杆菌(Helicobacter pylori, Hp)是引发慢性胃炎、消化性溃疡,甚至胃癌的重要致病菌,目前尚无上市预防或治疗Hp感染的疫苗。本研究通过化学法合成了Hp脂多糖核心寡糖中不同链长的α-1,6-葡聚糖片段(二糖至六糖),使用基于酰基远程参与作用和溶剂效应的协同糖基化策略成功构建了1,2-顺式-糖苷键。糖芯片筛选结果显示,脂多糖免疫兔血清和患者血清中的IgG抗体均能与合成的α-1,6-葡聚糖片段结合;脂多糖免疫兔血清IgG抗体与α-1,6-葡聚三糖具有较强的结合能力;绝大多数Hp感染患者血清IgG抗体能够很好地识别α-1,6-葡聚三糖和五糖,部分患者血清IgG抗体与α-1,6-葡聚二糖具有较强的结合作用。此研究结果表明,α-1,6-葡聚二糖、三糖和五糖可能是Hp脂多糖中的重要糖抗原片段。

    Abstract:

    Helicobacter pylori (Hp) is responsible for chronic gastritis, peptic ulcers, and even gastric cancers. Currently, there is no vaccine to prevent or treat Hp infections. Here, we described the chemical synthesis of α-1,6-glucans with different lengths (di- to hexasaccharide), which are present in the core oligosaccharide of Hp lipopolysaccharide (LPS). The 1,2-cis-glucosidic bonds were constructed successfully using a synergistic glycosylation strategy based on acyl remote participation and solvent effects. The results of glycan microarrays indicated that all synthesized α-1,6-glucan fragments possessed a strong binding to IgG antibodies in both rabbit serum immunized with Hp O1 LPS and patient serum infected with Hp. The α-1,6-linked trisaccharide exhibited strong binding affinity to anti-LPS rabbit IgG antibodies. The α-1,6-glucan trisaccharide and pentasaccharide elicited a strong response to IgG antibodies in sera of most Hp-infected patients. Some patients’ sera exhibited strong binding activity with α-1,6-linked disaccharide. The results suggest that the α-1,6-glucan disaccharide, trisaccharide and pentasaccharide could be important carbohydrate antigen fragments in Hp lipopolysaccharide.

  • 幽门螺杆菌(Helicobacter pylori, Hp)是一种螺旋弯曲状且含有多条鞭毛的革兰氏阴性菌,通常定植于人类的胃上皮细胞[1]。全球44亿以上人口感染了Hp,感染率超过50%[2]。长期感染Hp会导致慢性胃炎、消化性溃疡、黏膜相关淋巴组织(MALT)淋巴瘤,甚至胃癌等疾病[34]。早在1994年,世界卫生组织就将Hp定义为Ⅰ级致癌物[56]。2021年,美国卫生与公众服务部在第15版致癌物报告中又将Hp列为明确致癌物[7]。目前治疗Hp感染主要使用以抗生素为主的三联疗法[阿莫西林、质子泵抑制剂(PPI)和克拉霉素或甲硝唑]或含铋制剂的四联疗法(PPI、甲硝唑、铋剂和四环素)[89]。由于抗生素的广泛使用而导致细菌耐药性的增强,使用抗生素去除Hp的效率大大降低,在一些经济相对落后的地区,Hp根除率下降至80%以下[1012]。因此研究Hp感染的替代疗法十分迫切,开发Hp疫苗被认为是一种安全、有效的预防和治疗Hp感染的手段[1314]。近几十年来,各国学者在Hp疫苗的开发研究中做了许多工作并取得了重要进展。目前Hp疫苗中的保护性抗原研究主要集中在灭活全菌、尿素酶(Ure)、空泡毒素(VacA),毒素相关蛋白A(CagA)、热休克蛋白(Hsp)、中性粒细胞激活蛋白(NAP)、脂多糖等[15]。大多数候选疫苗在动物实验中表现出较好的保护效果,但在临床试验中未能提供有效的保护作用[16]。Zeng等[17]设计了一种含有尿素酶B亚基和不耐热肠毒素B亚基新型口服重组疫苗,在Ⅲ期临床中显示出71.8%的保护效力,并可提供长达3年的持续性保护。然而,至今还没有用于预防和治疗的Hp疫苗上市。

    细菌表面的脂多糖或荚膜多糖是重要的毒力因子,能够引发宿主的免疫反应,然而单独的糖物质通常是T细胞非依赖性抗原,不能在机体中(特别是两岁以下的婴幼儿)引发持续的免疫反应及免疫记忆[1820]。将多糖或者寡糖通过共价键与载体蛋白[破伤风类毒素(TT)、白喉毒素突变体CRM197等]偶联制成的糖-蛋白缀合物为T细胞依赖性抗原,可引发机体产生特异性的IgG抗体和激活记忆细胞[2122]。针对肺炎链球菌(Streptococcus pneumoniae)、脑膜炎奈瑟菌(Neisseria meningitidis)和b型流感嗜血杆菌(Haemophilus influenzae type b, Hib)的糖缀合物疫苗已经批准上市,这些糖缀合物疫苗的使用有效遏制了肺炎、脑膜炎、菌血症等疾病的发生[23]

    目前,大部分多糖蛋白结合疫苗中的糖抗原依赖于从细菌表面提取得到,存在细菌培养困难、关键抗原表位易丢失及提取多糖结构不均一等问题,限制了糖疫苗品质的提升[24]。化学合成法不仅可以制备结构明确、均一的致病菌表面寡/多糖抗原,为进一步深入探究结构与免疫活性之间的关系提供物质基础,还可对糖抗原结构进行不同的官能团修饰,提高糖链的稳定性及免疫活性[25]

    Hp的脂多糖与其他革兰氏阴性菌相似,由类脂A、结构保守的核心寡糖和O-抗原3部分组成(图1-A),其中核心寡糖包含一条α-1,6-葡聚糖链,不同菌株的α-1,6-葡聚糖链长度不同,平均含3~4个葡萄糖残基[2627]。Monteiro等[28]证明提取的Hp脂多糖与牛血清蛋白(BSA)结合制成的糖缀合物可以在小鼠中引起强烈的免疫反应,诱导产生的IgG和IgM抗体可与脂多糖核心结构及其他血清型脂多糖产生交叉反应。Harrison等[29]制备了抗α-1,6-葡聚糖单克隆抗体,发现其对含有α-1,6-葡聚糖链的Hp脂多糖表现出极好的特异性结合能力。近期Altman等[30]通过化学酶法合成了α-1,6-葡聚糖的混合物,将其与BSA或TT载体蛋白偶联后在小鼠和兔体内诱导了具备交叉反应能力的IgG抗体。2022年,本课题组使用化学法合成了Hp脂多糖结构中的核心十一糖、外核心八糖、外核心五糖、内核心三糖、磷酸化内核心三糖及α-1,6-葡聚三糖,并使用糖芯片技术对合成寡糖的抗体亲和力进行评估。实验结果表明α-1,6-葡聚三糖对大部分Hp感染患者血清IgG抗体表现出良好结合能力,此研究证明α-1,6-葡聚糖可能是Hp脂多糖重要的抗原表位[31]

    Figure  1.  Helicobacter pylori (Hp) lipopolysaccharide (LPS) and target oligosaccharides
    A: General structure of Hp LPS(P:phosphate group; AEP:2-aminoethylphosphate; Glc:glucose; Gal:galactose; D,D-Hep:D-glycero-D-manno-heptose; L,D-Hep:L-glycero-D-manno-heptose; Kdo:3-deoxy-D-manno-octulosonic acid;n = 3–4 (average); B: Target α-1,6-glucans 1–5

    基于上述研究背景,为进一步明确α-1,6-葡聚糖糖链长度与抗体亲和力之间的构效关系,本研究通过化学法合成结构明确的α-1,6-葡聚二糖、三糖、四糖、五糖、六糖(图1-B),利用糖芯片技术,探究不同链长α-1,6-葡聚糖与Hp O1、O2和O6血清型脂多糖免疫兔血清抗体及Hp感染患者血清抗体的结合能力。

    单糖供体7和受体10的合成如路线1所示,以已报道的化合物6[32]为起始原料,在N-碘代琥珀酰亚胺(NIS)的作用下,水解端基位的4-甲基苯硫基(STol)得到半缩醛中间体,而后半缩醛中间体与2,2,2-三氟-N-苯基亚氨代乙酰氯在1,8-二氮杂双环[5.4.0]十一碳-7-烯(DBU)催化作用下反应生成N-苯基三氟乙酰亚胺酯供体7。以三氟甲磺酸三甲基硅脂(TMSOTf)作为催化剂,糖基供体7与五碳氨基连接臂8进行糖基化反应得到化合物9。在甲醇钠的作用下,化合物9脱去C6号位苯甲酰基,生成单糖受体10

    如路线2-A所示,糖基供体7和受体10在TMSOTf的催化作用下进行糖基化实现了二糖11的合成。在甲醇钠的条件下,脱除二糖11非还原端糖环上的C6苯甲酰基,得到二糖受体12。在相同的糖基化条件下将供体7与受体进行偶联,得到的化合物继续与甲醇钠反应脱除C6位苯甲酰基,重复该步骤实现糖链延长,制备寡糖14161820。如路线2-B所示,使用甲醇、四氢呋喃、水和乙酸作为溶剂,在氢气和钯碳(Pd/C)的催化作用下脱除寡糖上的苄基和苄氧羰基得到目标寡糖1~5

      1.  Synthesis of building blocks 7 and 10
      2.  Synthesis of oligosaccharides 1–5

    本研究所使用的化学试剂均为市售分析纯,使用时无进一步纯化;除非另有说明,反应均在氮气或氩气保护下进行,反应中添加的4Å分子筛使用微波炉进行活化,石油醚和乙酸乙酯经过蒸馏纯化后用于硅胶柱色谱,二氯甲烷、乙醚、N,N-二甲基甲酰胺等溶剂经溶剂干燥系统处理后使用。使用薄层色谱法(TLC)监测反应进程,TLC在254 nm的紫外光下检测后,用CAM显色剂进行显色,200~300目硅胶用于硅胶柱色谱。

    硅胶板、硅胶(青岛海洋化工有限公司);氢离子交换树脂(百灵威化学技术有限公司);牛血清蛋白(上海源叶生物科技有限公司);糖芯片玻片(Surmodics公司);钯碳催化剂、Sephadex LH-20凝胶、Cy3偶联的山羊抗人IgG抗体、Alexa Flour 532偶联的山羊抗兔IgG抗体(Sigma-Aldrich公司)。

    MBraun MB-SPS 800溶剂干燥系统(德国Mbraun公司);Avance Ⅲ 400 MHz、Avance Ⅲ 600 MHz核磁共振仪(德国Bruker公司);Agilent 6220高分辨质谱仪(美国Agilent公司);ultrafleXtreme激光解析电离串联飞行时间质谱仪(美国Bruker公司);UniPo1 L 1000全自动旋光仪(德国Schmidt & Haensch公司);ZR-3中压氢化仪(北京佳维科创科技有限公司);FreeZone 6 plus冷冻干燥机(美国Labconco公司);Electro-X多功能生物芯片点样仪(江苏瑞明生物科技有限公司);LuxScan 10K/B微阵列芯片扫描仪(成都博奥晶芯生物科技有限公司)。

    将化合物6(4.71 g, 7.13 mmol)溶解于丙酮-水(10∶1, 71 mL)溶液中,加入NIS(4.81 g, 21.4 mmol)并在室温下搅拌1 h,使用二氯甲烷对反应液进行稀释并用0.1 g/mL硫代硫酸钠洗涤,有机相经无水硫酸钠干燥后减压浓缩,粗产物通过硅胶柱色谱(石油醚-乙酸乙酯,6∶1)纯化,得到半缩醛中间体(3.56 g, 6.42 mmol)。将半缩醛中间体(500 mg, 0.90 mmol)溶于二氯甲烷(9.0 mL)中,冷却至0 ℃后,加入2,2,2-三氟-N-苯基亚氨代乙酰氯(0.7 mL, 4.50 mmol)和DBU(0.4 mL, 2.70 mmol),将反应液恢复至室温继续搅拌5 h,浓缩后使用硅胶柱色谱(石油醚-乙酸乙酯,30∶1)进行纯化得到白色浆状供体7(653 mg, 0.90 mmol),两步总收率90%。结构鉴定数据与报道文献一致[33]

    在氩气保护下,将供体7(1.50 g, 2.07 mmol)和连接臂8(1.02 g, 3.11 mmol)溶于无水二氯甲烷-无水乙醚(1∶3, 69 mL)中,加入活化的4Å分子筛和噻吩(2.5 mL, 31.1 mmol),反应液在室温下搅拌0.5 h。冷却至0 ℃,滴加TMSOTf(56 μL, 0.31 mmol),继续在0 ℃下搅拌4 h。使用三乙胺淬灭反应,经硅藻土过滤,用二氯甲烷稀释和饱和碳酸氢钠水溶液洗涤,经无水硫酸钠干燥后减压浓缩。粗产物通过硅胶柱色谱(石油醚-乙酸乙酯,12∶1)纯化,得到白色浆状物9(1.50 g, 1.74 mmol),收率(84%, αβ = 9∶1)。结构鉴定数据与报道文献一致[34]

    将化合物9(2.07 g, 2.40 mmol)溶解在甲醇-四氢呋喃(1∶1, 24 mL)溶液中,加入甲醇钠(64.8 mg, 1.20 mmol),在室温下搅拌4 h后,用氢离子交换树脂调节反应液pH至7左右,过滤并减压浓缩后,粗产物通过硅胶柱色谱(石油醚-乙酸乙酯,5∶1)进行纯化,得到白色浆状物10(1.78 g, 2.35 mmol),收率98%。结构鉴定数据与报道文献一致[34]

    在氩气保护下,将受体(1.0 eq)和供体7(1.5 eq)溶于无水二氯甲烷-无水乙醚(1∶3, 0.03 mmol/L)中,加入活化的4Å分子筛和噻吩(15 eq),在室温下搅拌0.5 h后,冷却至0 ℃并滴加TMSOTf(0.15 eq),在0 ℃反应4 h后,加入三乙胺淬灭反应并经硅藻土过滤,混合物使用二氯甲烷稀释和饱和碳酸氢钠水溶液洗涤,收集的有机相用无水硫酸钠干燥并减压浓缩,通过硅胶柱色谱(石油醚-乙酸乙酯,8∶1→5∶1)进行纯化得到产物。

    二糖11  透明浆状,收率88%。$[\text{α}]^{20}_{\rm{D}} $ = +45.32° (c 1.00, CHCl3)。1H NMR (600 MHz, CDCl3) δ: 7.99~7.95 (2H, m, Ar-H), 7.55~7.50 (1H, m, Ar-H), 7.39 (2H, dd, J = 7.6, 7.6 Hz, Ar-H), 7.36~7.26 (23H, m, Ar-H), 7.25~7.18 (17H, m, Ar-H), 5.15 (2H, d, J = 16.6 Hz, CH2-Cbz), 4.99 (1H, d, J = 3.4 Hz, H-1b), 4.97~4.94 (2H, m, CH2-Bn), 4.93~4.87 (2H, m, CH2-Bn), 4.81~4.76 (2H, m, CH2-Bn), 4.68 (1H, d, J = 12.0 Hz, CH2-Bn), 4.66~4.61 (4H, m, H-1a, CH2-Bn), 4.59 (1H, d, J = 11.0 Hz, CH2-Bn), 4.53~4.43 (4H, m, H-6b, CH2-Bn), 4.39 (1H, dd, J = 11.9, 4.4 Hz, H-6b'), 4.02~3.93 (3H, m, H-3b, H-5b, H-3a), 3.85~3.80 (1H, m, H-6a), 3.79~3.73 (1H, m, H-5a), 3.71~3.63 (2H, m, H-6a', H-4b), 3.61~3.52 (3H, m, H-4a, H-2b, CH2-Linker), 3.37 (1H, dd, J = 9.6, 3.6 Hz, H-2a), 3.35~3.26 (1H, m, CH2-Linker), 3.25~3.11 (2H, m, CH2-Linker), 1.61~1.44 (4H, m, CH2-Linker), 1.33~1.22 (2H, m, CH2-Linker)。13C NMR (151 MHz, CDCl3) δ: 166.19, 138.94, 138.51, 138.35, 138.33, 137.98, 133.03, 129.97, 129.64, 128.53, 128.42, 128.41, 128.38, 128.35, 128.19, 127.95, 127.94, 127.85, 127.82, 127.81, 127.77, 127.71, 127.64, 127.55, 96.95 (C-1b), 96.62 (C-1a), 82.07, 81.76, 80.39, 80.19, 77.81, 77.51, 75.77, 75.62, 75.12, 75.06, 73.07, 72.31, 70.54, 68.88, 67.89, 67.13, 65.87, 63.42, 50.25, 46.31, 29.11, 28.05, 23.50。HRMS(ESI) m/z Calcd. for C81H85NO14Na [M+Na]+ 1318.5862, Found 1318.5856

    三糖13  透明浆状,收率86%。$[\text{α}]^{20}_{\rm{D}} $ = +83.25° (c 2.00, CHCl3)。1H NMR (600 MHz, CDCl3) δ: 7.96 (2H, d, J = 7.7 Hz, Ar-H), 7.52 (1H, dd, J = 7.4, 7.4 Hz, Ar-H), 7.38 (2H, dd, J = 7.7, 7.7Hz, Ar-H), 7.35~7.26 (27H, m, Ar-H), 7.26~7.10 (28H, m, Ar-H), 5.15 (2H, d, J = 16.9 Hz, CH2-Cbz), 5.04 (1H, d, J = 3.5 Hz, H-1c), 4.97~4.87 (7H, m, H-1b, CH2-Bn), 4.81~4.73 (3H, m, CH2-Bn), 4.70~4.53 (8H, m, H-1a, CH2-Bn), 4.52~4.42 (5H, m, H-6c, CH2-Bn), 4.38 (1H, dd, J = 12.0, 4.2 Hz, H-6c'), 4.01 (1H, dd, J = 9.2, 9.2Hz, H-3c), 3.98~3.89 (3H, m, H-3a, H-3b, H-5c), 3.86~3.79 (2H, m, H-6a, H-6b), 3.79~3.64 (6H, m, H-4a, H-4b, H-5a, H-5b, H-6a', H-6b'), 3.63~3.50 (3H, m, H-2c, H-4c, CH2-Linker), 3.41~3.34 (2H, m, H-2a, H-2b), 3.34~3.25 (1H, m, CH2-Linker), 3.24~3.11 (2H, m, CH2-Linker), 1.60~1.45 (4H, m, CH2-Linker), 1.35~1.28 (2H, m, CH2-Linker)。13C NMR (151 MHz, CDCl3) δ: 166.18, 138.99, 138.85, 138.59, 138.55, 138.51, 138.48, 138.40, 137.98, 133.01, 129.98, 129.64, 128.52, 128.44, 128.41, 128.38, 128.36, 128.34, 128.31, 128.28, 128.19, 128.04, 127.96, 127.90, 127.86, 127.82, 127.79, 127.73, 127.66, 127.58, 127.55, 127.50, 127.48, 127.38, 97.15 (C-1b), 96.95 (C-1c), 96.71 (C-1a), 82.07, 81.68, 81.65, 80.44, 80.35, 80.26, 77.77, 77.49, 75.73, 75.58, 75.46, 75.06, 74.97, 73.09, 72.26, 72.18, 70.75, 70.68, 68.89, 67.86, 67.12, 65.77, 65.55, 63.38, 50.58, 50.27, 46.25, 29.13, 27.61, 23.52。HRMS(ESI) m/z Calcd. for C108H113NO19Na [M+Na]+1750.7799, Found 1750.7794

    四糖15  透明浆状,收率90%。$[\text{α}]^{20}_{\rm{D}} $ = +82.11° (c 1.0, CHCl3)。1H NMR (600 MHz, CDCl3) δ: 7.98~7.95 (2H, m, Ar-H), 7.54~7.49 (1H, m, Ar-H), 7.38 (2H, dd, J = 7.7, 7.7 Hz, Ar-H), 7.35~7.26 (31H, m, Ar-H), 7.25~7.10 (39H, m, Ar-H), 5.14 (2H, d, J = 13.9 Hz, CH2-Cbz), 5.04 (1H, d, J = 3.5 Hz, H-1d), 4.97~4.86 (10H, m, H-1b, H-1c, CH2-Bn), 4.80~4.72 (4H, m, CH2-Bn), 4.69~4.56 (8H, m, H-1a, CH2-Bn), 4.56~4.52 (2H, m, CH2-Bn), 4.50~4.42 (6H, m, H-6d, CH2-Bn), 4.38 (1H, dd, J = 11.9, 4.2 Hz, H-6d'), 4.00 (1H, dd, J = 9.2, 9.2Hz, H-3d), 3.97~3.91 (3H, m, H-3a, H-3b, H-3c), 3.91~3.87 (1H, m, H-5d), 3.85~3.65 (10H, m, H-4a, H-4b, H-4c, H-5a, H-5b, H-5c, H-6a, H-6b, H-6a', H-6b'), 3.64~3.51 (5H, m, H-2d, H-4d, H-6c, H-6c', CH2-Linker), 3.39~3.33 (3H, m, H-2a, H-2b, H-2c), 3.33~3.24 (1H, m, CH2-Linker), 3.23~3.10 (2H, m, CH2-Linker), 1.57~1.42 (4H, m, CH2-Linker), 1.35~1.27 (2H, m, CH2-Linker)。13C NMR (151 MHz, CDCl3) δ: 166.18, 138.85, 138.65, 138.53, 138.37, 137.94, 133.02, 129.94, 129.63, 128.52, 128.41, 128.33, 128.27, 128.21, 128.03, 127.98, 127.90, 127.82, 127.73, 127.66, 127.50, 127.46, 127.41, 127.34, 97.19 (C-1b, C-1c), 96.98 (C-1d), 96.70 (C-1a), 82.05, 81.64, 80.35, 80.24, 77.71, 75.73, 75.57, 75.43, 75.08, 74.97, 73.09, 72.29, 72.16, 70.77, 68.86, 67.83, 67.12, 65.71, 65.52, 65.44, 63.35, 50.56, 46.33, 29.12, 28.21, 23.52。MS (MALDI-TOF) Calcd. for C135H141NO24Na[M+Na]+ 2182.9736, Found2182.847

    五糖17  透明浆状,收率88%。$[\text{α}]^{20}_{\rm{D}} $ = +92.29° (c 1.0, CHCl3)。1H NMR (600 MHz, CDCl3) δ: 7.96 (2H, d, J = 7.7 Hz, Ar-H), 7.51 (1H, dd, J = 7.4, 7.4 Hz, Ar-H), 7.38 (2H, dd, J = 7.7, 7.7 Hz, Ar-H), 7.34~7.26 (40H, m, Ar-H), 7.25~7.10 (45H, m, Ar-H), 5.14 (2H, d, J = 13.7 Hz, CH2-Cbz), 5.03 (1H, d, J = 3.5 Hz, H-1e), 4.97~4.86 (13H, m, H-1b, H-1c, H-1d, CH2-Bn), 4.80~4.71 (5H, m, CH2-Bn), 4.68~4.57 (9H, m, H-1a, CH2-Bn), 4.55~4.50 (3H, m, CH2-Bn), 4.49~4.42 (7H, m, H-6e, CH2-Bn), 4.38 (1H, dd, J = 12.0, 4.1 Hz, H-6e'), 4.00 (1H, dd, J = 9.2, 9.2Hz, H-3e), 3.97~3.91 (4H, m, H-3a, H-3b, H-3c, H-3d), 3.91~3.87 (1H, m, H-5e), 3.84~3.65 (13H, m, H-4a, H-4b, H-4c, H-4d, H-5a, H-5b, H-5c, H-5d, H-6a, H-6a', H-6b, H-6b', H-6d), 3.64~3.51 (6H, m, H-2e, H-4e, H-6c, H-6c', H-6d', CH2-Linker), 3.39~3.33 (4H, m, H-2a, H-2b, H-2c, H-2d), 3.32~3.23 (1H, m, CH2-Linker), 3.23~3.10 (2H, m, CH2-Linker), 1.54~1.41 (4H, m, CH2-Linker), 1.35~1.28 (2H, m, CH2-Linker)。13C NMR (151 MHz, CDCl3) δ: 166.18, 138.98, 138.86, 138.67, 138.65, 138.59, 138.56, 138.53, 138.38, 137.95, 133.03, 129.94, 129.64, 128.52, 128.41, 128.38, 128.35, 128.32, 128.30, 128.27, 128.26, 128.21, 128.05, 128.02, 127.98, 127.91, 127.86, 127.82, 127.79, 127.73, 127.67, 127.65, 127.57, 127.54, 127.51, 127.49, 127.46, 127.44, 127.40, 127.38, 127.34, 127.32, 127.30, 97.28 (C-1d), 97.23 (C-1b, C-1c), 96.98 (C-1e), 96.68 (C-1a), 82.05, 81.66, 81.63, 81.57, 80.43, 80.36, 80.25, 77.71, 77.46, 77.37, 75.73, 75.58, 75.42, 75.40, 75.08, 74.98, 74.93, 74.91, 73.08, 72.29, 72.14, 70.87, 70.82, 70.77, 70.70, 68.87, 67.12, 65.73, 65.54, 65.43, 63.35, 46.27, 29.12, 28.05, 23.52。MS (MALDI-TOF) Calcd. for C162H169NO29Na [M+Na]+ 2615.1672, Found 2615.072

    六糖19  透明浆状,收率79%。$[\text{α}]^{20}_{\rm{D}} $ = +83.60° (c 1.0, CHCl3)。1H NMR (600 MHz, CDCl3) δ: 7.98~7.95 (2H, m, Ar-H), 7.53~7.49 (1H, m, Ar-H), 7.37 (2H, dd, J = 7.8, 7.8 Hz, Ar-H), 7.33~7.26 (21H, m, Ar-H), 7.26~7.09 (79H, m, Ar-H), 5.14 (2H, d, J = 14.0 Hz, CH2-Cbz), 5.04 (1H, d, J = 3.5 Hz, H-1f), 4.97~4.85 (16H, m, H-1b, H-1c, H-1d, H-1e, CH2-Bn), 4.80~4.70 (6H, m, CH2-Bn), 4.68~4.56 (10H, m, H-1a, CH2-Bn), 4.55~4.50 (4H, m, CH2-Bn), 4.48~4.41 (8H, m, H-6f, CH2-Bn), 4.38 (1H, dd, J = 12.0, 4.1 Hz, H-6f), 4.00 (1H, dd, J = 9.2, 9.2Hz, H-3f), 3.96~3.91 (5H, m, H-3a, H-3b, H-3c, H-3d, H-3e), 3.90~3.87 (1H, m, H-5f), 3.85~3.50 (23H, m, H-2f, H-4f, H-4a, H-4b, H-4c, H-4d, H-4e, H-5a, H-5b, H-5c, H-5d, H-5e, H-6a, H-6a', H-6b, H-6b', H-6c, H-6c', H-6d, H-6d', H-6e, H-6e', CH2-Linker), 3.38~3.32 (5H, m, H-2a, H-2b, H-2c, H-2d, H-2e), 3.31~3.23 (1H, m, CH2-Linker), 3.23~3.09 (2H, m, CH2-Linker), 1.57~1.42 (4H, m, CH2-Linker), 1.36~1.28 (2H, m, CH2-Linker)。13C NMR (151 MHz, CDCl3) δ: 166.17, 138.97, 138.87, 138.66, 138.59, 138.53, 138.37, 137.95, 133.02, 129.94, 129.63, 128.51, 128.45, 128.40, 128.39, 128.34, 128.31, 128.29, 128.26, 128.25, 128.20, 128.04, 128.02, 127.97, 127.90, 127.86, 127.81, 127.78, 127.72, 127.67, 127.64, 127.57, 127.53, 127.51, 127.48, 127.45, 127.42, 127.39, 127.35, 127.32, 127.30, 127.29, 127.26, 97.33 (C-1e), 97.31 (C-1d), 97.24 (C-1b, C-1c), 96.97 (C-1f), 96.68 (C-1a), 82.04, 81.65, 81.61, 81.56, 80.43, 80.38, 80.35, 80.24, 77.70, 77.45, 77.37, 77.33, 75.72, 75.56, 75.42, 75.38, 75.07, 74.98, 74.91, 73.07, 72.26, 72.13, 72.10, 70.85, 70.80, 70.77, 70.71, 68.86, 67.11, 65.70, 65.55, 65.42, 63.35, 50.24, 46.21, 29.10, 27.61, 23.51。MS (MALDI-TOF) Calcd. for C189H197NO34Na [M+Na]+ 3047.3609, Found 3047.261

    将原料溶解于甲醇-四氢呋喃(1∶1, 0.1 mol/L)中,加入甲醇钠(0.5 eq)并在室温下搅拌4 h。用氢离子交换树脂中和混合物并过滤,减压浓缩后,粗品使用硅胶柱色谱纯化(石油醚-乙酸乙酯,3∶1),得到化合物12(92%),14(91%),16(87%),18(89%),20(84%)。结构鉴定数据与报道文献一致[34]

    将原料溶解于甲醇-四氢呋喃-水-醋酸(10∶5∶2.5∶1, 4.0 mmol/L)中并加入Pd/C(10%), 在室温下搅拌15 min。将反应瓶放入氢气反应器中,使用氢气置换反应瓶中气体三次后在室温下反应48 h。对混合物进行过滤并减压浓缩,使用Sephadex LH-20凝胶柱纯化。

    α-1,6-葡聚二糖1  透明糖浆,收率90%。1H NMR (600 MHz, D2O) δ: 4.95 (1H, d, J = 3.0 Hz, H-1b), 4.93 (1H, d, J = 3.2 Hz, H-1a), 4.01~3.96 (1H, m, H-6), 3.88~3.83 (2H, m, H-5, H-6), 3.80~3.66 (6H, m, 2 × H-3, H-5, 2 × H-6, CH2-Linker), 3.60~3.49 (4H, m, 2 × H-2, H-4, CH2-Linker), 3.44 (1H, dd, J = 9.5, 9.5Hz, H-4), 3.02 (2H, dd, J = 7.7, 7.7 Hz, CH2-Linker), 1.74~1.65 (4H, m, CH2-Linker), 1.52~1.42 (2H, m, CH2-Linker)。13C NMR (151 MHz, D2O) δ: 98.12 (C-1a), 97.82 (C-1b), 73.41, 73.07, 71.81, 71.41, 71.17, 70.22, 69.47, 69.44, 67.90, 65.52, 60.43, 39.36, 28.01, 26.51, 22.42。HRMS (ESI) m/z Calcd. for C17H34NO11[M+H]+ 428.2126, Found 428.2122

    α-1,6-葡聚三糖2  透明糖浆,收率88%。结构鉴定数据与报道文献一致[35]

    α-1,6-葡聚四糖3  透明糖浆,收率90%。1H NMR (600 MHz, D2O) δ: 5.00~4.95 (3H, m, H-1b, H-1c, H-1d), 4.93 (1H, d, J = 3.8 Hz, H-1a), 4.03~3.95 (3H, m, 3 × H-6), 3.95~3.89 (2H, m, 2 × H-5), 3.88~3.83 (2H, m, H-5, H-6), 3.79~3.67 (10H, m, 4 × H-3, H-5, 4 × H-6, CH2-Linker), 3.62~3.49 (8H, m, 4 × H-2, 3 × H-4, CH2-Linker), 3.43 (1H, dd, J = 10.0, 9.1 Hz, H-4), 3.02 (2H, dd, J = 7.6, 7.6 Hz, CH2-Linker), 1.74~1.65 (4H, m, CH2-Linker), 1.52~1.42 (2H, m, CH2-Linker)。13C NMR (151 MHz, D2O) δ: 98.12 (C-1a), 97.76 (C-1b), 97.72 (C-1c), 97.65 (C-1d), 73.44, 73.38, 73.34, 73.06, 71.81, 71.45, 71.35, 71.31, 71.17, 70.23, 70.13, 69.53, 69.47, 67.90, 65.56, 65.49, 60.44, 39.36, 28.02, 26.50, 22.42。HRMS (ESI) m/z Calcd. for C29H54NO21[M+H]+ 752.3183, Found 752.3185

    α-1,6-葡聚五糖4  透明糖浆,收率92%。1H NMR (600 MHz, D2O) δ: 4.99~4.96 (4H, m, H-1b, H-1c, H-1d, H-1e), 4.93 (1H, d, J = 3.8 Hz, H-1a), 4.02~3.96 (4H, m, 4 × H-6), 3.94~3.90 (3H, m, 3 × H-5), 3.87~3.83 (2H, m, H-5, H-6), 3.79~3.67 (12H, m, 5 × H-3, H-5, 5 × H-6, CH2-Linker), 3.61~3.50 (10H, m, 5 × H-2, 4 × H-4, CH2-Linker), 3.44 (1H, dd, J = 10.0, 9.0 Hz, H-4), 3.02 (2H, dd, J = 7.6, 7.6 Hz, CH2-Linker), 1.75~1.65 (4H, m, CH2-Linker), 1.53~1.42 (2H, m, CH2-Linker)。13C NMR (151 MHz, D2O) δ: 98.12 (C-1a), 97.76 (C-1b), 97.72 (C-1c), 97.67 (C-1d), 97.64 (C-1e), 73.44, 73.36, 73.34, 73.06, 71.81, 71.45, 71.36, 71.31, 71.17, 70.23, 70.13, 69.51, 69.47, 67.90, 65.56, 60.44, 39.36, 28.02, 26.50, 22.43。HRMS (ESI) m/z Calcd. for C35H64NO26 [M+H]+ 914.3711, Found 914.3707

    α-1,6-葡聚六糖5  透明糖浆,收率89%。1H NMR (600 MHz, D2O) δ: 5.00~4.96 (5H, m, H-1b, H-1c, H-1d, H-1e, H-1f), 4.94 (1H, d, J = 3.8 Hz, H-1a), 4.03~3.96 (5H, m, 5 × H-6), 3.95~3.90 (4H, m, 4 × H-5), 3.86 (2H, m, H-5, H-6), 3.80~3.67 (14H, m, 6 × H-3, H-5, 6 × H-6, CH2-Linker), 3.62~3.50 (12H, m, 6 × H-2, 5 × H-4, CH2-Linker), 3.44 (1H, dd, J = 9.5, 9.5Hz, H-4), 3.02 (2H, dd, J = 7.6, 7.6 Hz, CH2-Linker), 1.76~1.66 (4H, m, CH2-Linker), 1.53~1.44 (2H, m, CH2-Linker)。13C NMR (151 MHz, D2O) δ: 98.10 (C-1a), 97.74 (C-1b), 97.70 (C-1c, C1-d), 97.65 (C-1e, C1-f), 73.41, 73.34, 73.03, 71.78, 71.43, 71.34, 71.14, 70.21, 70.11, 69.45, 67.88, 65.51, 60.41, 39.34, 28.00, 26.48, 22.40。HRMS (ESI) m/z Calcd. for C41H74NO31[M+H]+ 1076.4239, Found 1076.4232

    根据江南大学临床研究伦理委员会批准的《人类生物医学研究国际伦理准则》(CIOMS)(批准编号:JNU20210318IRB09)对人血清临床样本进行收集和使用,Hp感染情况通过13C尿素呼气试验确定。基于本课题组之前的研究结果[31],采用能够识别α-1,6-葡聚三糖的Hp感染患者血清对本研究中不同链长α-1,6-葡聚糖的IgG抗体亲和力进行评估。

    Hp O1, O2, O6血清型脂多糖免疫兔血清为课题组前期制备,脂多糖的热苯酚法提取方法和动物免疫已在前期发表文章中详细报道[31, 3637]

    将合成寡糖1~5和提取的Hp O1血清型脂多糖分别溶解在磷酸钠缓冲液(50 mmol/L,pH = 8.5)中,使用芯片点样仪将样品点样至玻片上,用脂多糖免疫兔血清或感染患者血清对芯片进行孵育,使合成寡糖与血清中的IgG抗体结合,分别将荧光标记的二抗(Alexa Flour 532偶联的山羊抗兔 IgG抗体或Cy3偶联的山羊抗人IgG抗体)进行二次孵育,使其结合已和寡糖连接的IgG抗体,使用微阵列芯片扫描仪扫描芯片,通过分析结合后芯片的荧光强度,从而对合成聚糖的抗体亲和力进行评估。

    本研究设计的目标α-1,6-葡聚糖1~5端基位均含有五碳氨基连接臂,为后续糖芯片及糖缀合物的制备做准备。高立体选择性合成α-1,6-葡聚糖中的1,2-顺式-糖苷键是本合成中的一个重要难点,如何高效获得不同链长的α-1,6-葡聚糖也是设计合成策略中需要重点考虑的问题[38]。如路线1及2-A所示,糖砌块7的C6位羟基使用苯甲酰基保护,C2位羟基使用非参与性苄基保护,采用基于C6位苯甲酰基远程参与作用和乙醚溶剂效应的协同糖基化策略将三氟乙酰亚胺酯基供体7与不同受体(81012141618)进行偶联,高立体选择性地实现了葡聚糖中α糖苷键的制备。在此基础上,利用[n+1]迭代的糖链延长策略,高效合成了α-1,6-葡聚二糖11(88%)、三糖13(86%)、四糖15(90%)、五糖17(88%)、六糖19(79%)。

    对化合物(1214161820)进行全脱保合成目标寡糖1~5时,尝试使用甲醇、水和乙酸作为反应溶剂体系,由于半脱保的葡聚糖在该溶剂体系中的溶解性不佳,导致脱保护反应时间较长,反应效率降低,从而限制了规模化制备目标寡糖。经多次条件优化,发现使用甲醇、四氢呋喃、水和乙酸作为溶剂体系时(路线2-B),起始反应物能够充分溶解,反应产率较高,成功制备得到全脱保的α-1,6-葡聚二糖1(90%)、α-1,6-葡聚三糖2(88%)、α-1,6-葡聚四糖3(90%)、α-1,6-葡聚五糖4(92%)、α-1,6-葡聚六糖5(89%)。此脱保护方法重复性好,产率稳定,可用于α-1,6-葡聚糖规模化制备。

    通过糖芯片筛选可以检测合成寡糖与血清抗体的结合能力,从而分析寡糖片段链长与IgG抗体亲和力之间的关系。合成的α-1,6-葡聚糖片段端基位含有氨基连接臂,通过共价键可以负载到芯片表面。糖芯片与Hp O1脂多糖免疫兔血清的筛选结果显示,血清中IgG抗体与α-1,6-葡聚糖二至六糖(1~5)均有结合作用,其中抗体对α-1,6-葡聚三糖2、四糖3、五糖4均有较强的识别(图2)。与Hp O2、O6 脂多糖免疫兔血清的筛选结果显示,α-1,6-葡聚三糖2与IgG抗体的结合信号远强于其他链长的α-1,6-葡聚寡糖。由此可见,血清抗体对α-1,6-葡聚糖片段的识别效果受不同血清型脂多糖影响。

    Figure  2.  Antibody affinity evaluation of synthetic α-1,6-glucans by glycan microarrays with Hp (serotype O1, O2, and O6) LPS immunized rabbit sera
    A: Printing pattern. Samples: 1–5 (di- to hexasaccharide). Negative control: Cb (a synthetic Clostridium bolteae disaccharide, α-D-Manp-(1→4)-β-D-Rhap). Positive control: O1 LPS. Blank control: buffer. B-D: Representative array scan of Hp LPS immunized rabbit sera (dilution 1∶50) and quantification of mean fluorescence intensity (MFI) values of each oligosaccharide fragment. Error bars represent standard error of the mean (SEM) of two spots of two separate arrays. a, b, c and d represent the difference level between oligosaccharides 1–5 (P< 0.05). Different lowercase letters at the same concentration indicate significant differences

    接下来使用收集的31例Hp感染患者血清对糖芯片进行筛选以分析α-1,6-葡聚糖片段的IgG抗体亲和力。其中30例血清样本可以识别合成的α-1,6-葡聚糖二至六糖,这说明α-1,6-葡聚糖是Hp脂多糖的重要抗原表位。在31例Hp感染患者血清样本中:有10例血清样本与α-1,6-葡聚二糖1到五糖4的结合随链长延长而逐渐升高,但与六糖5的结合减弱,其中α-1,6-葡聚五糖4与IgG抗体的结合信号最强(图3-B);另有2例血清样本对α-1,6-葡聚糖的识别效果与糖链的长度呈正相关,且与α-1,6-葡聚六糖5的结合信号最强(图3-C);有12例血清样本与α-1,6-葡聚三糖2和五糖4的结合信号都很强,但低浓度情况下,抗体与三糖2的结合强于五糖4图3-D)。值得注意的是,6例血清样本对α-1,6-葡聚糖的识别效果与糖链的长度呈负相关,且与短链的α-1,6-葡聚二糖1的结合信号最强(图3-E)。

    Figure  3.  Antibody affinity evaluation of synthetic α-1,6-glucans by glycan microarrays with Hp-infected patient sera
    A: Printing pattern. Samples: 1-5 (di- to hexasaccharide). Negative control: Cb (a synthetic Clostridium bolteae disaccharide, α-D-Manp-(1→4)-β-D-Rhap). Positive control: O1 LPS. Blank control: buffer. B-D: Representative array scan of Hp-infected patient sera (dilution 1∶20) and quantification of MFI values of each oligosaccharide fragment. Error bars represent SEM of two spots of two separate arrays. a, b, c and d represent the difference level between oligosaccharides 1-5 (P< 0.05). Different lowercase letters at the same concentration indicate significant differences

    Hp感染患者血清对糖芯片的筛选结果显示,α-1,6-葡聚糖是Hp脂多糖中的重要抗原表位,这一发现与之前文献报道的结果一致[2931]。31例Hp血清样本未具体分型,考虑到临床感染的复杂性,因此芯片筛选的结果也呈现一定的多样性。总体来说,血清样本中的抗体呈现出可能优先结合奇数糖的趋势,其中α-1,6-葡聚三糖2和五糖4是被绝大多数Hp感染患者血清识别片段,具有较强的IgG抗体亲和力。而α-1,6-葡聚二糖1对部分血清样本表现出良好的IgG抗体亲和力。

    本研究通过化学法合成了Hp脂多糖核心寡糖中不同链长的α-1,6-葡聚糖,并利用糖芯片对它们的抗体亲和力进行评估。将糖环C6位酰基的远程参与作用与乙醚的溶剂效应相结合,高立体选择性构建了寡糖结构中的α-葡萄糖苷键。采用[n+1]迭代糖基化链延长策略,高效地完成了α-1,6-葡聚二糖至六糖的制备(化合物1~5)。通过糖芯片进行的抗体亲和力检测发现,合成的α-1,6-葡聚糖均能被Hp脂多糖免疫动物和Hp感染患者血清中IgG抗体识别,且不同糖链长度的寡糖片段与血清中抗体的结合能力具有明显差异,其中α-1,6-葡聚二糖、三糖和五糖具有较好的抗体亲和力,需要进一步对其免疫原性进行探究。本研究为Hp糖缀合物疫苗的开发提供了重要的理论基础。

  • Figure  1.   Helicobacter pylori (Hp) lipopolysaccharide (LPS) and target oligosaccharides

    A: General structure of Hp LPS(P:phosphate group; AEP:2-aminoethylphosphate; Glc:glucose; Gal:galactose; D,D-Hep:D-glycero-D-manno-heptose; L,D-Hep:L-glycero-D-manno-heptose; Kdo:3-deoxy-D-manno-octulosonic acid;n = 3–4 (average); B: Target α-1,6-glucans 1–5

    1.   Synthesis of building blocks 7 and 10

    2.   Synthesis of oligosaccharides 1–5

    Figure  2.   Antibody affinity evaluation of synthetic α-1,6-glucans by glycan microarrays with Hp (serotype O1, O2, and O6) LPS immunized rabbit sera

    A: Printing pattern. Samples: 1–5 (di- to hexasaccharide). Negative control: Cb (a synthetic Clostridium bolteae disaccharide, α-D-Manp-(1→4)-β-D-Rhap). Positive control: O1 LPS. Blank control: buffer. B-D: Representative array scan of Hp LPS immunized rabbit sera (dilution 1∶50) and quantification of mean fluorescence intensity (MFI) values of each oligosaccharide fragment. Error bars represent standard error of the mean (SEM) of two spots of two separate arrays. a, b, c and d represent the difference level between oligosaccharides 1–5 (P< 0.05). Different lowercase letters at the same concentration indicate significant differences

    Figure  3.   Antibody affinity evaluation of synthetic α-1,6-glucans by glycan microarrays with Hp-infected patient sera

    A: Printing pattern. Samples: 1-5 (di- to hexasaccharide). Negative control: Cb (a synthetic Clostridium bolteae disaccharide, α-D-Manp-(1→4)-β-D-Rhap). Positive control: O1 LPS. Blank control: buffer. B-D: Representative array scan of Hp-infected patient sera (dilution 1∶20) and quantification of MFI values of each oligosaccharide fragment. Error bars represent SEM of two spots of two separate arrays. a, b, c and d represent the difference level between oligosaccharides 1-5 (P< 0.05). Different lowercase letters at the same concentration indicate significant differences

  • [1]

    Xu DY, Zhao SS, Dou J, et al. Engineered endolysin-based “artilysins” for controlling the gram-negative pathogen Helicobacter pylori[J]. AMB Express, 2021, 11(1): 63. doi: 10.1186/s13568-021-01222-8

    [2]

    Xu WT, Xu LM, Xu CF. Relationship between Helicobacter pylori infection and gastrointestinal microecology[J]. Front Cell Infect Microbiol, 2022, 12: 938608. doi: 10.3389/fcimb.2022.938608

    [3]

    Reyes VE. Helicobacter pylori and its role in gastric cancer[J]. Microorganisms, 2023, 11(5): 1312. doi: 10.3390/microorganisms11051312

    [4]

    Lee YC, Dore MP, Graham DY. Diagnosis and treatment of Helicobacter pylori infection[J]. Annu Rev Med, 2022, 73: 183-195. doi: 10.1146/annurev-med-042220-020814

    [5]

    Abdullah M, Greenfield LK, Bronte-Tinkew D, et al. VacA promotes CagA accumulation in gastric epithelial cells during Helicobacter pylori infection[J]. Sci Rep, 2019, 9(1): 38. doi: 10.1038/s41598-018-37095-4

    [6] Shang Y, Zhao LY, Lu JK. Relationship between inflammatory cytokines and gastric cancer[J]. J China Pharm Univ (中国药科大学学报), 2015, 46(1): 123-128.
    [7]

    Lunn RM, Mehta SS, Jahnke GD, et al. Cancer hazard evaluations for contemporary needs: highlights from new national toxicology program evaluations and methodological advancements[J]. J Natl Cancer Inst, 2022, 114(11): 1441-1448. doi: 10.1093/jnci/djac164

    [8]

    Graham DY. Transitioning of Helicobacter pylori therapy from trial and error to antimicrobial stewardship[J]. Antibiotics, 2020, 9(10): 671. doi: 10.3390/antibiotics9100671

    [9]

    Matos R, Taillieu E, De Bruyckere S, et al. Presence of Helicobacter species in gastric mucosa of human patients and outcome of Helicobacter eradication treatment[J]. J Pers Med, 2022, 12(2): 181. doi: 10.3390/jpm12020181

    [10]

    Jearth V, Rath MM, Chatterjee A, et al. Drug-resistant Helicobacter pylori: diagnosis and evidence-based approach[J]. Diagnostics, 2023, 13(18): 2944. doi: 10.3390/diagnostics13182944

    [11]

    Dascălu RI, Bolocan A, Păduaru DN, et al. Multidrug resistance in Helicobacter pylori infection[J]. Front Microbiol, 2023, 14: 1128497. doi: 10.3389/fmicb.2023.1128497

    [12]

    Imoto I, Yasuma T, D’Alessandro-Gabazza CN, et al. Antimicrobial effects of lactoferrin against Helicobacter pylori infection[J]. Pathogens, 2023, 12(4): 599. doi: 10.3390/pathogens12040599

    [13]

    Dieye Y, Nguer CM, Thiam F, et al. Recombinant Helicobacter pylori vaccine delivery vehicle: a promising tool to treat infections and combat antimicrobial resistance[J]. Antibiotics, 2022, 11(12): 1701. doi: 10.3390/antibiotics11121701

    [14] Xu XD, Ruan QP, Wu WT. Cloning of UreB from Helicobacter pylori and its expression in E. coli[J]. J China Pharm Univ (中国药科大学学报), 2004, 35(2): 183-186.
    [15]

    Friedrich V, Gerhard M. Vaccination against Helicobacter pylori - An approach for cancer prevention[J]? Mol Aspects Med, 2023, 92: 101183.

    [16]

    Dos Santos Viana I, Cordeiro Santos ML, Santos Marques H, et al. Vaccine development against Helicobacter pylori: from ideal antigens to the current landscape[J]. Expert Rev Vaccines, 2021, 20(8): 989-999. doi: 10.1080/14760584.2021.1945450

    [17]

    Zeng M, Mao XH, Li JX, et al. Efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2015, 386(10002): 1457-1464. doi: 10.1016/S0140-6736(15)60310-5

    [18]

    Zhao Y, Arce-Gorvel V, Conde-Álvarez R, et al. Vaccine development targeting lipopolysaccharide structure modification[J]. Microbes Infect, 2018, 20(9/10): 455-460.

    [19]

    Hulbert SW, Desai P, Jewett MC, et al. Glycovaccinology: the design and engineering of carbohydrate-based vaccine components[J]. Biotechnol Adv, 2023, 68: 108234. doi: 10.1016/j.biotechadv.2023.108234

    [20]

    Nishat S, Andreana PR. Entirely carbohydrate-based vaccines: an emerging field for specific and selective immune responses[J]. Vaccines, 2016, 4(2): 19. doi: 10.3390/vaccines4020019

    [21]

    Feng SJ, Xiong CH, Wang GR, et al. Exploration of recombinant fusion proteins YAPO and YAPL as carrier proteins for glycoconjugate vaccine design against Streptococcus pneumoniae infection[J]. ACS Infect Dis, 2020, 6(8): 2181-2191. doi: 10.1021/acsinfecdis.0c00260

    [22]

    Meena J, Kumar R, Singh M, et al. Modulation of immune response and enhanced clearance of Salmonella typhi by delivery of Vi polysaccharide conjugate using PLA nanoparticles[J]. Eur J Pharm Biopharm, 2020, 152: 270-281. doi: 10.1016/j.ejpb.2020.05.023

    [23] Qin CJ, Xiong DC, Yin J. Development of carbohydrate-based drugs driven by chemical glycobiology[J]. J China Pharm Univ (中国药科大学学报), 2024, 55(4): 429-431. doi: 10.11665/j.issn.1000-5048.2024071002

    Qin CJ, Xiong DC, Yin J. Development of carbohydrate-based drugs driven by chemical glycobiology[J]. J China Pharm Univ (中国药科大学学报), 2024, 55(4): 429-431. doi: 10.11665/j.issn.1000-5048.2024071002

    [24]

    Qin CJ, Tian GZ, Hu J, et al. Recent chemical synthesis and immunological evaluation of glycans related to bacterial lipopolysaccharides[J]. Curr Opin Chem Biol, 2024, 78: 102424. doi: 10.1016/j.cbpa.2023.102424

    [25]

    Del Bino L, Østerlid KE, Wu DY, et al. Synthetic glycans to improve current glycoconjugate vaccines and fight antimicrobial resistance[J]. Chem Rev, 2022, 122(20): 15672-15716. doi: 10.1021/acs.chemrev.2c00021

    [26]

    Sabnis A, Edwards AM. Lipopolysaccharide as an antibiotic target[J]. Biochim Biophys Acta Mol Cell Res, 2023, 1870(7): 119507. doi: 10.1016/j.bbamcr.2023.119507

    [27]

    Britton S, Papp-Szabo E, Simala-Grant J, et al. A novel Helicobacter pylori cell-surface polysaccharide[J]. Carbohydr Res, 2005, 340(9): 1605-1611. doi: 10.1016/j.carres.2005.04.008

    [28]

    Monteiro MA, Britton S, Applebee LA, et al. Synthesis and immunogenicity of a Helicobacter pylori lipopolysaccharide-based conjugate[J]. Vaccine, 2011, 29(17): 3098-3102. doi: 10.1016/j.vaccine.2011.02.063

    [29]

    Harrison BA, Fernández H, Chandan V, et al. Characterization and functional activity of murine monoclonal antibodies specific for α1, 6-glucan chain of Helicobacter pylori lipopolysaccharide[J]. Helicobacter, 2011, 16(6): 459-467. doi: 10.1111/j.1523-5378.2011.00860.x

    [30]

    Altman E, Chandan V, Harrison BA, et al. Chemoenzymatic synthesis of an α-1, 6-glucan-based conjugate vaccine against Helicobacter pylori[J]. Glycobiology, 2022, 32(8): 691-700. doi: 10.1093/glycob/cwac023

    [31]

    Zou XP, Hu J, Zhao M, et al. Chemical synthesis of the highly sterically hindered core undecasaccharide of Helicobacter pylori lipopolysaccharide for antigenicity evaluation with human serum[J]. J Am Chem Soc, 2022, 144(32): 14535-14547. doi: 10.1021/jacs.2c03068

    [32]

    Zhao QP, Zhang H, Zhang YX, et al. Stereoselective synthesis of a branched α-decaglucan[J]. Org Biomol Chem, 2020, 18(33): 6549-6557. doi: 10.1039/D0OB01402H

    [33]

    Komarova BS, Tsvetkov YE, Pier GB, et al. First synthesis of pentasaccharide glycoform I of the outer core region of the Pseudomonas aeruginosa lipopolysaccharide[J]. J Org Chem, 2008, 73(21): 8411-8421. doi: 10.1021/jo801561p

    [34]

    Zhang YQ, He HQ, Chen ZX, et al. Merging reagent modulation and remote anchimeric assistance for glycosylation: highly stereoselective synthesis of α-glycans up to a 30-mer[J]. Angew Chem Int Ed Engl, 2021, 60(22): 12597-12606. doi: 10.1002/anie.202103826

    [35]

    Zou XP, Qin CJ, Pereira CL, et al. Synergistic glycosylation as key to the chemical synthesis of an outer core octasaccharide of Helicobacter pylori[J]. Chemistry, 2018, 24(12): 2868-2872. doi: 10.1002/chem.201800049

    [36]

    Zhao M, Tian GZ, Qin CJ, et al. Immunological exploration of Helicobacter pylori serotype O2 O-antigen by using a synthetic glycan library[J]. Chin J Chem, 2024, 42(3): 243-251. doi: 10.1002/cjoc.202300510

    [37]

    Tian GZ, Hu J, Qin CJ, et al. Chemical synthesis and immunological evaluation of Helicobacter pylori serotype O6 tridecasaccharide O-antigen containing a dd-heptoglycan[J]. Angew Chem Int Ed, 2020, 59(32): 13362-13370. doi: 10.1002/anie.202004267

    [38]

    Ishiwata A, Tanaka K, Ao JM, et al. Recent advances in stereoselective 1, 2-cis-O-glycosylations[J]. Front Chem, 2022, 10: 972429. doi: 10.3389/fchem.2022.972429

  • 期刊类型引用(0)

    其他类型引用(1)

图(5)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  28
  • PDF下载量:  31
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-03-11
  • 刊出日期:  2024-10-24

目录

/

返回文章
返回
x 关闭 永久关闭