• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

抗人Ⅰ型干扰素受体亚基1人源化单克隆抗体的制备和鉴定

裘霁宛, 孔永, 陈卫, 徐蕾, 曹纯洁, 陈涛, 吴亦亮

裘霁宛,孔永,陈卫,等. 抗人Ⅰ型干扰素受体亚基1人源化单克隆抗体的制备和鉴定[J]. 中国药科大学学报,2024,55(3):404 − 411. DOI: 10.11665/j.issn.1000-5048.2024031401
引用本文: 裘霁宛,孔永,陈卫,等. 抗人Ⅰ型干扰素受体亚基1人源化单克隆抗体的制备和鉴定[J]. 中国药科大学学报,2024,55(3):404 − 411. DOI: 10.11665/j.issn.1000-5048.2024031401
QIU Jiwan, KONG Yong, CHEN Wei, et al. Generation and characterization of humanized monoclonal antibody against human IFNAR1[J]. J China Pharm Univ, 2024, 55(3): 404 − 411. DOI: 10.11665/j.issn.1000-5048.2024031401
Citation: QIU Jiwan, KONG Yong, CHEN Wei, et al. Generation and characterization of humanized monoclonal antibody against human IFNAR1[J]. J China Pharm Univ, 2024, 55(3): 404 − 411. DOI: 10.11665/j.issn.1000-5048.2024031401

抗人Ⅰ型干扰素受体亚基1人源化单克隆抗体的制备和鉴定

详细信息
    通讯作者:

    裘霁宛: Tel:0523-80276311 E-mail:qiujiwan@qyuns.net

  • 中图分类号: R593.2;R967

Generation and characterization of humanized monoclonal antibody against human IFNAR1

  • 摘要:

    Ⅰ型干扰素在系统性红斑狼疮(SLE)等自身免疫性疾病的发病机制中发挥重要作用,采用抗体阻断其信号转导通路具有潜在的治疗作用。本研究以人Ⅰ型干扰素受体亚基1(IFNAR1)重组蛋白为抗原免疫新西兰白兔,采用B细胞克隆技术筛选兔抗人IFNAR1单克隆抗体,经过人源化改造获得QX006N。体外研究结果显示,QX006N能特异性地结合人IFNAR1,亲和力约108 pmol/L,可阻断Ⅰ型干扰素信号通路及其介导的生物学效应。本研究为开发靶向干预Ⅰ型干扰素信号途径用于治疗SLE的抗体药物提供了坚实的基础。

    Abstract:

    Type I interferons play an important role in the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE). Monoclonal antibody shows therapeutic potential by blocking the signaling pathway. This study used recombinant human subunit 1 of the type I interferon receptor (IFNAR1) protein to immunize New Zealand white rabbits, and applied B cell cloning technology to screen and obtain rabbit parental antibodies. After humanization modification, QX006N was obtained. In vitro biological studies showed that QX006N could specifically bind to human IFNAR1 with an affinity of 108 pmol/L, and neutralize the type I interferon signaling pathway and this pathway mediated biological effects. This study provides a solid foundation for the development of antibody drugs targeting the type I interferon signaling pathway for the treatment of SLE.

  • Figure  1.   Human IFNAR1-ECD amino acid sequence

    Underlined sequence is the signal peptide sequence, and the amino acid sequences with blue, green, yellow and gray backgrounds constitute Domain1 to Domain4 of IFNAR1-ECD, respectively

    Figure  2.   Neutralizing activity of 13 recombinant rabbit monoclonal antibodies compared to anifrolumab

    Figure  3.   Amino acid sequence alignment between the variable region of rabbit mAb 362# and 1203#

    CDR region of the antibody is marked with an underscore according to the Kabat numbering scheme; “-” means the amino acid of 1203# is identical to 362#; VH:Heavy-chain variable region; VL:Light-chain variable region

    Figure  4.   Amino acid sequence alignment between the variable regions of humanized anti-IFNAR1 rabbit monoclonal antibodies

    “-” denotes residues that are identical to human germline at the corresponding positions; “#” denotes the residues in human framework regions were back-mutated; “*” denotes the different residues between rabbit antibodies 362# and 1203#

    Figure  5.   Binding map of QX006N to related proteins

    A: hIFNAR2 and hIFNGR1; B: hIFNGR2 and hIFN-α2b; C: hIFN-β and hIFN-γ; D: hIFN-ε and hIFN-ω1

    Figure  6.   QX006N inhibits different IFN-I induced STAT1/2 phosphorylation in HEK Blue™ IFN-α/β cells ($ \bar{x} $± s, n = 3)

    A: IFN-α2b; B: IFN-β; C: IFN-ω1

    Figure  7.   QX006N inhibits IFN-α2b induced cell proliferation and cytokine release ($ \bar{x} $± s, n = 3)

    A: Daudi cell proliferation; B: IP-10 release in THP-1 cell; C: BLyS release in THP-1 cell; D: IP-10 release in human whole blood cell

    Table  1   Different neutralization assays to evaluate the potency of QX006N

    Assay Stimulating factor c/(ng/mL) Detection method
    HEK BlueTM
    IFN-α/β cell
    IFN-α2b 0.05 STAT1/2 phosphorylation
    IFN-β 0.005
    IFN-ω1 1
    Daudi cell IFN-α2b 0.2 Cell proliferation
    THP-1 cell IFN-α2b 10 Release of IP-10 and BLyS
    Human whole blood cell IFN-α2b* 1 Release of IP-10
    * with 5 ng/mL of TNFα
    IP-10: Interferon gamma-induced protein 10; BLyS: B lymphocyte stimulator protein
    下载: 导出CSV

    Table  2   Neutralization activity of rabbit mAb 362# and 1203# based on HEK-BlueTM IFN-α/β reporter cells

    SampleIC50/(ng/mL)
    IFN-α2bIFN-βIFN-ω1
    Anifrolumab5.528.323.3
    362#5.827.229.1
    1203#4.723.417.5
    下载: 导出CSV

    Table  3   Summary of humanized anti-IFNAR1 rabbit monoclonal antibodies

    Antibody VH VL SEC-HPLC/% Activity ratio*
    Name Humanization Name Humanization HMW Monomer LMW
    HZD362-1 362VH-Hu1 97.7% 362VK-Hu1 100% 2.7 97.2 0.1 21.2%
    HZD362-5 362VH-Hu1 97.7% 362VK-Hu2 93.8% 1.2 98.8 ND 72.3%
    HZD1203-38 362VH-Hu6 97.7% 362VK-Hu13 98.8% 0.8 99.2 ND 35.0%
    HZD1203-39 362VH-Hu6 97.7% 362VK-Hu14 98.8% 0.8 99.2 ND 34.0%
    HZD1203-45 362VH-Hu6 97.7% 362VK-Hu20 97.5% 1.3 98.7 ND 92.0%
    ND:Not detected; HMW:High molecular weight; LMW:Low molecular weight
    * Neutralization activity of humanized antibodies compared to anifrolumab was measured using HEK Blue™ IFN-α/β reporter cell
    下载: 导出CSV

    Table  4   Affinity of QX006N and anifrolumab binding to human IFNAR1 ($ \bar{x} $± s, n = 3)

    Sampleka/(×105 L∙mol-1∙s-1)kd/(×10-5/s)KD/(×10-10 mol/L)
    QX006N3.473.761.08
    Anifrolumab18.6712.400.67
    下载: 导出CSV

    Table  5   Neutralization activity of QX006N based on HEK Blue™ IFN-α/β cell ($ \bar{x} $± s, n = 3)

    Sample IC50/(ng/mL)
    IFN-α2b IFN-β IFN-ω1
    QX006N 4.6 ± 0.4 17.4 ± 1.2 12.1 ± 1.0
    Anifrolumab 4.0 ± 0.2 17.4 ± 1.3 10.6 ± 0.7
    IgG4 Isotype No neutralizing activity
    下载: 导出CSV

    Table  6   Neutralization activity of QX006N based on Daudi, THP-1 and human whole blood cells ($ \bar{x} $±s, n = 3)

    SampleIC50/(ng/mL)
    Daudi cells proliferationTHP-1 cells IP-10 releaseTHP-1 cells BLyS releaseBlood cells IP-10 release
    QX006N31.4 ± 1.62.0 ± 0.55.9 ± 1.41003 ± 311
    anifrolumab31.3 ± 1.77.1 ± 0.8101.3 ± 28.2904 ± 314
    IgG4 IsotypeNo neutralizing activity
    下载: 导出CSV

    Table  7   QX006N binds to truncated hIFNAR1-ECD mutants

    SampleQX006N
    EC50/(ng/mL)Ratio
    hIFNAR1-ECD8.261.0
    hIFNAR1(D1+D2)NANA
    hIFNAR1(D3+D4)4.290.5
    hIFNAR1(D1+D2+D3)8.531.0
    NA: No binding
    下载: 导出CSV
  • [1]

    Ramaswamy M, Tummala R, Streicher K, et al. The pathogenesis, molecular mechanisms, and therapeutic potential of the interferon pathway in systemic lupus erythematosus and other autoimmune diseases[J]. Int J Mol Sci, 2021, 22(20): 11286. doi: 10.3390/ijms222011286

    [2]

    Moll HP, Maier T, Zommer A, et al. The differential activity of interferon-α subtypes is consistent among distinct target genes and cell types[J]. Cytokine, 2011, 53(1): 52-59. doi: 10.1016/j.cyto.2010.09.006

    [3]

    Peng L, Oganesyan V, Wu H, et al. Molecular basis for antagonistic activity of anifrolumab, an anti-interferon-α receptor 1 antibody[J]. MAbs, 2015, 7(2): 428-439. doi: 10.1080/19420862.2015.1007810

    [4]

    González-Navajas JM, Lee J, David M, et al. Immunomodulatory functions of type I interferons[J]. Nat Rev Immunol, 2012, 12(2): 125-135. doi: 10.1038/nri3133

    [5]

    Jiang J, Zhao M, Chang C, et al. Type I interferons in the pathogenesis and treatment of autoimmune diseases[J]. Clin Rev Allergy Immunol, 2020, 59(2): 248-272. doi: 10.1007/s12016-020-08798-2

    [6]

    Rönnblom L, Leonard D. Interferon pathway in SLE: one key to unlocking the mystery of the disease[J]. Lupus Sci Med, 2019, 6(1): e000270. doi: 10.1136/lupus-2018-000270

    [7]

    Crow MK, Olferiev M, Kirou KA. Type I interferons in autoimmune disease[J]. Annu Rev Pathol, 2019, 14: 369-393. doi: 10.1146/annurev-pathol-020117-043952

    [8]

    Kalunian KC, Merrill JT, Maciuca R, et al. A Phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE)[J]. Ann Rheum Dis, 2016, 75(1): 196-202. doi: 10.1136/annrheumdis-2014-206090

    [9]

    Anderson E, Furie R. Anifrolumab in systemic lupus erythematosus: current knowledge and future considerations[J]. Immunotherapy, 2020, 12(5): 275-286. doi: 10.2217/imt-2020-0017

    [10]

    Khamashta M, Merrill JT, Werth VP, et al. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study[J]. Ann Rheum Dis, 2016, 75(11): 1909-1916. doi: 10.1136/annrheumdis-2015-208562

    [11]

    Kaplon H, Chenoweth A, Crescioli S, et al. Antibodies to watch in 2022[J]. MAbs, 2022, 14(1): 2014296. doi: 10.1080/19420862.2021.2014296

    [12]

    Deeks ED. Anifrolumab: first approval[J]. Drugs, 2021, 81(15): 1795-1802. doi: 10.1007/s40265-021-01604-z

    [13]

    Piehler J, Thomas C, Garcia KC, et al. Structural and dynamic determinants of type I interferon receptor assembly and their functional interpretation[J]. Immunol Rev, 2012, 250(1): 317-334. doi: 10.1111/imr.12001

    [14]

    Weber J, Peng HY, Rader C. From rabbit antibody repertoires to rabbit monoclonal antibodies[J]. Exp Mol Med, 2017, 49(3): e305. doi: 10.1038/emm.2017.23

    [15]

    Markham A. Brolucizumab: first approval[J]. Drugs, 2019, 79(18): 1997-2000. doi: 10.1007/s40265-019-01231-9

    [16]

    Dhillon S. Eptinezumab: first approval[J]. Drugs, 2020, 80(7): 733-739. doi: 10.1007/s40265-020-01300-4

  • 期刊类型引用(0)

    其他类型引用(1)

图(7)  /  表(7)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-03-13
  • 网络出版日期:  2024-06-24
  • 刊出日期:  2024-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭