高级检索

基于人工智能的小分子生成模型在药物发现中的研究进展

Research progress of artificial intelligence-based small molecule generation models in drug discovery

  • 摘要: 随着人工智能技术的快速发展,小分子生成模型已成为药物发现领域的重要研究方向。该类模型,包括生成对抗网络(GANs)、变分自编码器(VAEs)和扩散模型等,已被证明在优化药物属性和生成复杂分子结构方面具有显著能力。本文综合分析了上述先进技术在药物发现过程中的应用,展示了其如何补充和改进传统药物设计方法。同时,提出了当前方法在数据质量、模型复杂性、计算成本及泛化能力等方面的挑战,并对未来的研究方向进行了展望。

     

    Abstract: With the rapid development of artificial intelligence technology, small molecule generation models have emerged as a significant research direction in the field of drug discovery. These models, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and diffusion models, have proven to possess remarkable capabilities in optimizing drug properties and generating complex molecular structures. This article comprehensively analyzes the application of the aforementioned advanced technologies in the drug discovery process, demonstrating how they supplement and enhance traditional drug design methods. At the same time, it addresses the challenges facing current methods in terms of data quality, model complexity, computational cost, and generalization ability, with a prospect of future research directions.

     

/

返回文章
返回