• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

Ⅱ型鼠李半乳糖醛酸聚糖的制备方法和结构表征的研究进展

刘育朋, 施松善, 步盈萱, 龚欢, 王辉俊, 王顺春

刘育朋,施松善,步盈萱,等. Ⅱ型鼠李半乳糖醛酸聚糖的制备方法和结构表征的研究进展[J]. 中国药科大学学报,2024,55(4):432 − 442. DOI: 10.11665/j.issn.1000-5048.2024040202
引用本文: 刘育朋,施松善,步盈萱,等. Ⅱ型鼠李半乳糖醛酸聚糖的制备方法和结构表征的研究进展[J]. 中国药科大学学报,2024,55(4):432 − 442. DOI: 10.11665/j.issn.1000-5048.2024040202
LIU Yupeng, SHI Songshan, BU Yingxuan, et al. Advances in the preparation and structural characterization of rhamnogalacturonan II[J]. J China Pharm Univ, 2024, 55(4): 432 − 442. DOI: 10.11665/j.issn.1000-5048.2024040202
Citation: LIU Yupeng, SHI Songshan, BU Yingxuan, et al. Advances in the preparation and structural characterization of rhamnogalacturonan II[J]. J China Pharm Univ, 2024, 55(4): 432 − 442. DOI: 10.11665/j.issn.1000-5048.2024040202

Ⅱ型鼠李半乳糖醛酸聚糖的制备方法和结构表征的研究进展

基金项目: 上海市自然科学基金项目(No.21ZR1462900),国家自然科学基金项目(No.82274078,No.U23A20512),上海市东方英才计划青年项目
详细信息
    通讯作者:

    王辉俊: Tel:021-51322496 E-mail:wanghj@shutcm.edu.cn

    王顺春: Tel:021-51322512 E-mail:shunchunwang@126.com

    ##LIU Yupeng and SHI Songshan contributed equally to this work

  • 中图分类号: R932

Advances in the preparation and structural characterization of rhamnogalacturonan II

Funds: This study was supported by the Natural Science Foundation of Shanghai(No.21ZR1462900),the National Natural Science Foundation of China(No.82274078,No.U23A20512), and Shanghai Oriental Talent Program for Youth
  • 摘要:

    Ⅱ型鼠李半乳糖醛酸聚糖(RG-Ⅱ)是果胶结构域中的一种,其结构在不同物种之间具有高度的保守性。RG-Ⅱ的主链由约9个半乳糖醛酸经α-1,4糖苷键连接而成,并被6个(A–F)明确定义的侧链取代。其中二糖侧链C、D和单糖侧链E、F的结构在不同来源的RG-Ⅱ中基本保持相同。寡糖侧链A和B则存在轻微的变异性。通过相对分子质量、单糖组成和质谱分析等手段可实现RG-Ⅱ的结构表征。中药中含有RG-Ⅱ结构域的多糖具有很高的药用价值,使用内切多聚半乳糖醛酸酶(Endo-PG)和草酸青霉可将RG-Ⅱ从中药中分离并对其在多糖中的含量进行测定。从葡萄酒中可快速制备大量RG-Ⅱ标准品用于新定量方法的开发,实现对中药活性多糖的质量控制,推动中药多糖的研究进程。

    Abstract:

    Rhamnogalacturonan II (RG-II) is one of the structural domains of pectin whose structure is highly conserved among species. The main chain of RG-II consists of approximately nine galacturonic acids linked by α-1,4 glycosidic bonds, with six well-defined side chains replacing them (A−F). The structures of the disaccharide side chains C and D and the monosaccharide side chains E and F in RG-II from different sources remain essentially the same. In contrast, the oligosaccharide side chains A and B showed slight variability. Structural characterization of RG-II can be achieved by molecular weight, monosaccharide composition, and mass spectrometry. The polysaccharides containing RG-II structural domains in traditional Chinese medicines (TCMs) have high medicinal value. Isolation of RG-II can be achieved using endo-polygalacturonase (Endo-PG) and Penicillium oxalicum. A substantial number of RG-II standards can be rapidly prepared from red wine for the development of new quantitative methods to realize the quality control of active polysaccharides from traditional Chinese medicines and to promote the research process of polysaccharides from traditional Chinese medicines.

  • 药用辅料是药物制剂的重要物质基础。1984年,我国首部《药品管理法》中即对辅料进行了定义,第五十七条规定,“辅料:指生产药品和调配处方时所用的赋形剂和附加剂”。至今,《药品管理法》历经数次修订和修正,辅料的定义一直没有变化。

    与之不同的是,直至2010年,药用辅料才首次以通则的形式收载于《中华人民共和国药典》(以下简称《中国药典》,China Pharmacopeia或ChP),其中对于辅料的定义在《药品管理法》中辅料定义的基础上进行了扩充。随后,在历版药典修订时,药用辅料的定义均有小幅调整,也使之不断完善,更加严谨(表1)。

    表  1  历版《中国药典》中药用辅料通则收载情况及其定义
    版 本 编 号 定 义
    2010 二部 附录Ⅱ 药用辅料系指生产药品和调配处方使用的赋形剂和附加剂;是除活性成分以外,在安全性方面已进行了合理的评估,包含在药物制剂中的物质。
    2015 四部 0251 药用辅料系指生产药品和调配处方使用的赋形剂和附加剂;是除活性成分或前体以外,在安全性方面已进行了合理的评估,并且包含在药物制剂中的物质。
    2020 四部 0251 药用辅料系指生产药品和调配处方使用的赋形剂和附加剂;是除活性成分或前体以外,在安全性方面已进行了合理的评估,一般包含在药物制剂中的物质。
    下载: 导出CSV 
    | 显示表格

    此外,《中国药典》药用辅料通则中还对辅料的功能作用进行了描述,例如,2015年和2020年版《中国药典》中规定,“在作为非活性物质时,药用辅料除了赋形、充当载体、提高稳定性外,还具有增溶、助溶、调节释放等重要功能,是可能会影响到制剂的质量、安全性和有效性的重要成分” 。2024年4月,国家药典委员会对于新修订的药用辅料标准草案进行公示,其中药用辅料的定义与2020年版《中国药典》保持一致,在功能描述中删除了“在作为非活性物质时”,笔者认为,修订后的表述更加客观而全面,虽然药用辅料在药物制剂中并非直接发挥预防、诊断、治疗疾病的“活性”,但其并非“惰性”物质,这也是辅料定义中明确规定需要进行安全性评估的重要基础。

    在药物制剂开发过程中,处方筛选是重要的研究内容之一,而处方筛选的本质是确定辅料种类、型号及其用量的合理性。无论从原辅料相容性、辅料对主药和/或杂质检测可能存在的干扰、工艺可行性、成本控制等任一方面考虑,在保证制剂安全性、有效性、成型性等需求的前提下,处方中辅料的种类和用量均应坚持“越少越好”的原则,这也意味着处方中的每一种辅料均“必不可少”且发挥特定的功能。需要指出的是,辅料的功能性具有“同一辅料,多种功能”和“同一功能,多种辅料”的特点,例如,淀粉在固体制剂中可作为填充剂、黏合剂、崩解剂等使用,崩解剂可以选择羧甲基淀粉钠、交联羧甲基纤维素钠、交联聚维酮等。为了更好的评判辅料的功能性和处方中辅料的适用性,药用辅料“功能性相关指标(functionality-related characteristics, FRCs)”这一概念应运而生。本期专题以药用辅料为切入点,重点关注辅料FRCs及其评价技术的最新研究进展。

    早在20世纪90年代,《欧洲药典》率先引入FRCs的概念;随后,《美国药典-国家处方集》(United States Pharmacopeia-National Formulary, USP-NF)采纳该理念并作为独立章节进行收载,即<1059> Excipient Performance。在我国,国家药典委员会于2011年立项开展相关课题研究,并在2014年发布的2010年版《中国药典》第三增补本中作为附录收载“药用辅料功能性指标研究指导原则”;随后,2015年版《中国药典》新增第四部,并收载该指导原则,编号<9601>。相较于同期颁布的USP38-NF33,ChP 2015 <9601>在体例上和功能类别的数量上均存在一定差异(表2)。2018年,国家药典委员会立项对ChP 2015 <9601>进行修订,从体例、内容上均进行了大幅调整,并在2020年版《中国药典》中进行呈现(表2)。与此同时,截至2024年,历版《美国药典》未对<1059>进行大幅调整。

    表  2  历版《中国药典》(ChP ) <9601>和《美国药典》(USP) 2024 <1059>比较
    药 典 USP 2024 <1059> ChP 2015 <9601> ChP 2020 <9601>
    指导原则名称 Excipient Performance 药用辅料功能性指标研究指导原则 药用辅料功能性相关指标指导原则
    分类方式 区分剂型的功能分类 不区分剂型的功能分类 不区分剂型的功能分类
    收载数量 9类制剂,37个功能类别 11个功能类别 19个功能类别
    功能类别体例 概述→功能机制→物理性质→化学性质→功能性相关指标及对应通则→其他信息 概述→功能性指标及对应通则 概述→化学性质→物理性质→功能机制→功能性相关指标及对应通则
    下载: 导出CSV 
    | 显示表格

    表2还可以看出,2020年版《中国药典》对<9601>的名称进行了调整,使之更符合国际惯例,表述更加准确。笔者认为,我国药典的分类方式和体例具有更好的适用性和逻辑性。首先,不区分剂型的功能分类可以避免不同剂型含有相同功能类别辅料而难以处理的情形,例如,《美国药典》<1059>中将pH调节剂列为口服液体制剂用辅料的功能类别,但其在无菌制剂、半固体制剂、眼用制剂、透皮制剂等剂型中也均可使用;其次,剂型的种类繁多,难以在药典中一一呈现,例如,《美国药典》<1059>中列出的片剂和胶囊剂所涉及辅料功能类别,部分亦适用于颗粒剂、微丸等剂型,而后两者并未体现;再者,我国药典“化学性质→物理性质→功能机制”的顺序更符合认知规律,笔者认为,物质的化学结构和组分是化学性质的基础,在此基础上结合生产工艺使辅料具备不同的物理性质,继而在药物制剂中以特定的功能机制发挥作用。本期专题中由沈阳药科大学付强教授课题组撰写的《药用辅料对无定形固体分散体中药物过饱和的影响》一文综述了聚合物、小分子辅料以及多孔材料对无定形固体分散体溶解后所形成药物过饱和溶液的影响,重点介绍了各类药用辅料对药物过饱和溶液的作用机制,为无定形固体分散体处方中药用辅料的合理选择提供了理论指导;由中国药科大学魏元锋副教授课题组撰写的《药用辅料在中药制剂中的应用研究进展》一文从预混与共处理辅料、改性辅料、“药辅合一”辅料等三个方面综述了中药制剂用辅料的最新研究成果,全面分析了各类辅料的功能特点和应用场景,提出了新型中药制剂用辅料的开发方向。

    在2025年版《中国药典》修订周期中,国家药典委员会委托中国药科大学牵头,联合中国食品药品检定研究院、沈阳药科大学、中国科学院上海药物研究所等多家单位对<9601>进行进一步修订,并于2024年8月公示新版标准草案。本次修订除将功能类别扩充至25个以外,对体例和内容也进行了一定的调整,例如,将化学性质和物理性质合并为理化性质,突出二者的关联性,也更易于读者理解。为进一步提高该指导原则的可操作性,国家药典委员会已立项开展多个FRCs的通用检查法项目研究,包括临界胶束浓度测定法、成膜材料性能测定法、表面张力测定法、崩解剂性能测定法、磷脂类辅料相变温度通用测定方法、粉体流动性测定指导原则等,部分已完成公示并计划收载于2025年版《中国药典》。同时,<9601>公示稿中也指出,对于本指导原则中未包含的功能类别和功能性相关指标,研究时可自行设立;此外,同一功能性相关指标可采用不同检查法进行研究,不局限于本版药典中收载的方法,研究时亦可另行建立检查法。本期专题中由中国食品药品检定研究院撰写的《超高效合相色谱串联四级杆飞行时间质谱在司盘组成分析方法中的应用研究》一文通过建立新方法,实现了对司盘各组分进行定性分析以及对不同牌号司盘间组成差异的区分,对司盘质量控制、工艺评价、制剂应用选择等具有重要指导意义。

    为推动产业发展,早在2016年,工信部等六部委在联合印发的《医药工业发展规划指南》中就提出,开发用于高端制剂、可提供特定功能的辅料和功能性材料。国家药监局药品审评中心在多个药学研究技术指导原则和个药指南中对辅料FRCs或关键物料属性(critical material attributes, CMAs)研究提出要求,例如,《纳米药物质量控制研究技术指导原则(试行)》中指出,在纳米药物的开发过程中,辅料选择和使用应综合考虑其功能性和安全性;《化学仿制药透皮贴剂药学研究技术指导原则(试行)》中要求,研究者应根据辅料与材料的特性以及在制剂中的用途,对辅料与材料(特别是可能影响透皮贴剂黏附性能、透皮性能及生物利用度的辅料与材料)的功能性相关指标进行研究,关注其功能性是否可满足制剂需求;《皮肤外用化学仿制药研究技术指导原则(试行)》中规定,对某些大分子聚合物等关键性辅料,应结合其修饰基团种类、数量、聚合度、相对分子质量分布等特性指标加以控制;《盐酸多柔比星脂质体注射液仿制药研究技术指导原则(试行)》中指出,仿制药应与参比制剂选择相同来源(天然的或合成的)的脂质辅料,制定严格的内控标准,并提供研究资料证明仿制药所采用的脂质辅料与参比制剂中的脂质辅料相似(如各组分比例);而《脂质体药物质量控制研究技术指导原则》则对脂质体结构或功能性成分(尤其是磷脂)提出了全面而明确的质控要求。值得注意的是,虽然FRCs和CMAs均可作为辅料区分规格/型号的重要参考,但前者多为辅料应用的关注点,用于判定辅料对制剂性能的影响(即辅料适用性),后者多为辅料质控的关注点,用于判定辅料自身质量的差异或优劣。本期专题中由湖南省药品检验检测研究院撰写的《不同来源药用辅料二氧化钛12种元素杂质筛查及其与白度相关性分析》一文采用优化后的酸提取前处理法,建立了筛查二氧化钛中12种元素杂质的电感耦合等离子体质谱方法,对比分析了国内外10家生产企业29批二氧化钛样品的元素杂质和白度值控制水平的差异,并采用Pearson相关系数法对元素杂质残留量与白度进行相关性分析,为进一步合理设置二氧化钛质控指标提出了合理建议。

    近年来,随着我国药品医疗器械审评审批制度改革以及仿制药质量和疗效一致性评价工作的深入开展,“药用辅料是保障药品质量的基础和影响制剂性能的关键因素”这一观点已在业界形成广泛共识,而辅料功能与制剂性能直接相关,因此对辅料功能性相关指标的研究尤为重要。本期专题中由中国药科大学涂家生教授课题组撰写的《2910型羟丙甲纤维素关键物料属性与薄膜包衣性能相关性研究》一文对不同来源和不同型号的羟丙甲纤维素辅料自身理化性质及其成膜特性进行了全面评价,进一步采用主成分分析和正交偏最小二乘判别分析建立二者相关性,明确了不同FRCs对羟丙甲纤维素薄膜包衣性能的影响程度,可作为辅料生产和制剂研发中选择辅料质控项目的重要参考。

    综上,通过近二十年的实践探索,我国对药用辅料及其功能性的认识不断全面、理解不断深入,相关法规内容和技术要求持续完善,但仍要清醒地认识到,我国药用辅料产业仍处于起步阶段,部分高端制剂所用关键辅料仍主要依赖进口,辅料行业整体产值在医药总产值中的占比仍远低于国际先进水平。笔者认为,加强对药用辅料CMAs/FRCs的研究并建立辅料功能性和制剂性能的相关性,是从根本上了解国内外同类辅料“差异”,制定国产辅料质量一致性标准及质量提升策略的重要举措。相信在国家持续重视辅料产业发展,辅料研究专业化程度和投入不断提升,以及产业链上下游合作不断紧密的历史背景下,国产药用辅料的品类必将持续丰富、质量必将稳步提升,进而有力支撑我国生物医药产业的高质量发展!

    最后,笔者对在本文撰写过程中给予悉心指导的中国药科大学涂家生教授、中国食品药品检定研究院化学药品检定首席专家孙会敏研究员、国家药典委员会陈蕾主任药师、国家药监局药品审评中心章俊麟副主任药师等专家致以由衷的谢意!

  • 图  1   果胶结构模型和RG-Ⅱ结构域的结构信息A:果胶的“平滑区和毛发区”模型;B:RG-Ⅱ的保守结构;C:RG-Ⅱ侧链B的变异结构;D:RG-Ⅱ的侧链A和侧链B(其中---代表可变部位,↔代表可以互变)

    表  1   同一物种和不同物种中的RG-Ⅱ的单糖组成比例

    单糖拟南芥1a拟南芥2b拟南芥3b豌豆b梧桐a甜根菜c苹果d胡萝卜e番茄e物质的量分数/%
    Gal9.09.07.08.09.011.86.47.88.16.4~11.8
    Ara17.013.013.010.010.012.816.814.012.410.0~17.0
    Rha10.014.014.011.012.014.217.414.311.610.0~17.4
    Glc2.0NDNDND2.0NDNDNDND0.0~2.0
    GalA44.040.042.051.031.037.433.028.335.528.3~51.0
    GlcA2.04.06.03.03.05.52.82.74.42.0~6.0
    Xyl3.0NDNDND2.0NDNDNDND0.0~3.0
    Fuc3.03.04.02.04.02.25.54.74.02.0~5.5
    2Me-Fuc1.03.02.03.04.03.94.85.04.41.0~5.0
    2Me-Xyl2.03.04.03.05.03.42.94.03.32.0~5.0
    Api3.0NDNDND6.08.55.49.17.00.0~9.1
    AceA1.02.01.01.03.0ND1.53.52.30.0~3.5
    Kdo3.02.02.03.04.0ND1.12.34.00.0~4.0
    DhaND2.02.02.04.0ND2.54.63.00.0~4.6
    ND:未检测到
    a:[36]; b:[37]; c:[38]; d:[39]
    下载: 导出CSV

    表  2   使用Endo-PG法制备的RG-Ⅱ的单糖组成比例

    单糖忍冬山豆根三七蚊母草人参菘蓝物质的量分数/%
    多糖1多糖1多糖2多糖1多糖2多糖3多糖1多糖2多糖1大青叶板蓝根
    Man0.91.82.42.7ND1.80.81.00.62.91.50.0~2.9
    Gal4.613.413.634.311.511.111.920.511.414.58.74.6~34.3
    Ara10.79.79.816.711.011.516.723.620.39.911.99.7~23.6
    Rha9.428.418.912.910.510.419.816.013.428.910.29.4~28.9
    Glc2.21.12.73.6ND2.81.93.44.03.60.90.0~4.0
    GalA70.838.543.222.260.857.439.127.447.936.156.622.2~70.8
    GlcA1.43.46.05.13.92.84.06.32.42.12.21.4~6.3
    XylND1.81.4NDNDND5.81.8ND1.24.70.0~5.8
    FucNDNDND2.52.32.2NDNDNDNDND0.0~2.5
    得率/%20.89.62.10.40.90.34.91.00.22.11.40.2~20.8
    相对分子质量(kD)14.16.4/10.46.6/12.76.05.85.65.4/9.76.4/10.43.716.013.6m:3.7~16.0
    d:9.7~12.7
    ND:未检测到
    下载: 导出CSV

    表  3   均一多糖中HG、RG-Ⅰ和RG-Ⅱ的质量占比

    中药 RG-Ⅱ名称 m(HG)∶m(RG-Ⅰ)∶m(RG-Ⅱ)
    忍冬 忍冬RG-Ⅱ 43.0∶7.6∶20.8
    山豆根 山豆根RG-Ⅱ-a 24.0∶49.0∶27.0
    山豆根RG-Ⅱ-b 38.0∶46.0∶16.0
    三七 三七RG-Ⅱ-a 67.2∶6.8∶26.7
    三七RG-Ⅱ-b 63.7∶10.8∶25.5
    三七RG-Ⅱ-c 70.7∶17.3∶11.9
    蚊母草 蚊母草RG-Ⅱ-a 36.4∶46.2∶17.2
    蚊母草RG-Ⅱ-b 41.8∶50.2∶10.8
    大青叶 大青叶RG-Ⅱ 9.7∶27.4∶41.8
    板蓝根 板蓝根RG-Ⅱ 42.5∶24.6∶8.3
    下载: 导出CSV

    表  4   使用草酸青霉法制备的RG-Ⅱ的相对分子质量和得率

    中药 RG-Ⅱ相对分子质量/kD 得率(占酸性果胶)/%
    党参 党参RG-Ⅱ-1:5.1 党参RG-Ⅱ-1:3.3
    党参RG-Ⅱ-2:6.2 党参RG-Ⅱ-2:0.8
    罗布麻 罗布麻RG-Ⅱ-1:4.1 罗布麻RG-Ⅱ-1:2.4
    罗布麻RG-Ⅱ-2:5.6 罗布麻RG-Ⅱ-2:4.4
    罗布麻RG-Ⅱ-3:7.6/11.5 罗布麻RG-Ⅱ-3:0.4
    高丽参 高丽参RG-Ⅱ-1:5.6 高丽参RG-Ⅱ-1:3.4
    高丽参RG-Ⅱ-2:6.2/9.3 高丽参RG-Ⅱ-2:1.4
    玄参 玄参RG-Ⅱ-1:6.2 玄参RG-Ⅱ-1:3.7
    玄参RG-Ⅱ-2:5.1/9.3 玄参RG-Ⅱ-2:1.6
    槲寄生 槲寄生RG-Ⅱ-1:3.7 槲寄生RG-Ⅱ-1:0.4
    槲寄生RG-Ⅱ-2:4.6 槲寄生RG-Ⅱ-2:4.0
    槲寄生RG-Ⅱ-3:5.6/9.3 槲寄生RG-Ⅱ-3:4.0
    向日葵 向日葵RG-Ⅱ-1:5.1 向日葵RG-Ⅱ-1:4.8
    向日葵RG-Ⅱ-2:6.2/10.3 向日葵RG-Ⅱ-2:0.6
    藜芦 藜芦RG-Ⅱ-1:4.6 藜芦RG-Ⅱ-1:3.0
    藜芦RG-Ⅱ-2:5.1 藜芦RG-Ⅱ-2:1.6
    范围 单体RG-Ⅱ:3.7~7.6
    二聚体RG-Ⅱ:9.3~11.5
    0.4~4.8
    下载: 导出CSV
  • [1]

    Yuan D, Li C, Huang Q, et al. Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides[J]. Crit Rev Food Sci Nutr, 2023, 63(22): 5890-5910. doi: 10.1080/10408398.2022.2025535

    [2]

    Zeng FS, Yao YF, Wang LF, et al. Polysaccharides as antioxidants and prooxidants in managing the double-edged sword of reactive oxygen species[J]. Biomedecine Pharmacother, 2023, 159: 114221. doi: 10.1016/j.biopha.2023.114221

    [3]

    Khan S, Hussain A, Attar F, et al. A review of the berberine natural polysaccharide nanostructures as potential anticancer and antibacterial agents[J]. Biomedecine Pharmacother, 2022, 146: 112531. doi: 10.1016/j.biopha.2021.112531

    [4]

    Liu XF, Luo DH, Guan JJ, et al. Mushroom polysaccharides with potential in anti-diabetes: biological mechanisms, extraction, and future perspectives: a review[J]. Front Nutr, 2022, 9: 1087826. doi: 10.3389/fnut.2022.1087826

    [5]

    Zhao DP, Chen XH, Wang LY, et al. Bidirectional and persistent immunomodulation of Astragalus polysaccharide as an adjuvant of influenza and recombinant SARS-CoV-2 vaccine[J]. Int J Biol Macromol, 2023, 234: 123635. doi: 10.1016/j.ijbiomac.2023.123635

    [6]

    Li X, Wei ZL, Wang XY, et al. Premna microphylla Turcz leaf pectin exhibited antioxidant and anti-inflammatory activities in LPS-stimulated RAW 264.7 macrophages[J]. Food Chem, 2021, 349: 129164.

    [7]

    Pak U, Cheng H, Liu XB, et al. Structural characterization and anti-oxidation activity of pectic polysaccharides from Swertia mileensis[J]. Int J Biol Macromol, 2023, 248: 125896. doi: 10.1016/j.ijbiomac.2023.125896

    [8]

    Darvill AG, McNeil M, Albersheim P. Structure of plant cell walls: VIII. A new pectic polysaccharide[J]. Plant Physiol, 1978, 62(3): 418-422. doi: 10.1104/pp.62.3.418

    [9]

    O’Neill MA, Ishii T, Albersheim P, et al. Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide[J]. Annu Rev Plant Biol, 2004, 55: 109-139. doi: 10.1146/annurev.arplant.55.031903.141750

    [10]

    Pérez S, Rodríguez-Carvajal MA, Doco T. A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function[J]. Biochimie, 2003, 85(1/2): 109-121.

    [11]

    Atmodjo MA, Hao ZY, Mohnen D. Evolving views of pectin biosynthesis[J]. Annu Rev Plant Biol, 2013, 64: 747-779. doi: 10.1146/annurev-arplant-042811-105534

    [12]

    Begum RA, Fry SC. Boron bridging of rhamnogalacturonan-II in Rosa and Arabidopsis cell cultures occurs mainly in the endo-membrane system and continues at a reduced rate after secretion[J]. Ann Bot, 2022, 130(5): 703-715. doi: 10.1093/aob/mcac119

    [13]

    Su J, Liu XY, Li HQ, et al. Hypoglycaemic effect and mechanism of an RG-Ⅱ type polysaccharide purified from Aconitum coreanum in diet-induced obese mice[J]. Int J Biol Macromol, 2020, 149: 359-370. doi: 10.1016/j.ijbiomac.2020.01.209

    [14]

    Park HR, Hwang D, Suh HJ, et al. Antitumor and antimetastatic activities of rhamnogalacturonan-II-type polysaccharide isolated from mature leaves of green tea via activation of macrophages and natural killer cells[J]. Int J Biol Macromol, 2017, 99: 179-186. doi: 10.1016/j.ijbiomac.2017.02.043

    [15]

    Park HR, Park SB, Hong HD, et al. Structural elucidation of anti-metastatic rhamnogalacturonan II from the pectinase digest of Citrus peels (Citrus unshiu)[J]. Int J Biol Macromol, 2017, 94 (Pt A): 161-169.

    [16]

    Zhao XH, Ebert B, Zhang BC, et al. UDP-Api/UDP-Xyl synthases affect plant development by controlling the content of UDP-Api to regulate the RG-II-borate complex[J]. Plant J, 2020, 104(1): 252-267. doi: 10.1111/tpj.14921

    [17]

    Begum RA, Fry SC. Arabinogalactan-proteins as boron-acting enzymes, cross-linking the rhamnogalacturonan-II domains of pectin[J]. Plants, 2023, 12(23): 3921. doi: 10.3390/plants12233921

    [18]

    Matsunaga T, Ishii T, Matsumoto S, et al. Occurrence of the primary cell wall polysaccharide rhamnogalacturonan II in pteridophytes, lycophytes, and bryophytes. Implications for the evolution of vascular plants[J]. Plant Physiol, 2004, 134(1): 339-351. doi: 10.1104/pp.103.030072

    [19]

    Ndeh D, Rogowski A, Cartmell A, et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions[J]. Nature, 2017, 544(7648): 65-70. doi: 10.1038/nature21725

    [20]

    Pabst M, Fischl RM, Brecker L, et al. RhamnogalacturonanII structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species[J]. Plant J, 2013, 76(1): 61-72. doi: 10.1111/tpj.12271

    [21]

    O’Neill MA, Eberhard S, Albersheim P, et al. Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth[J]. Science, 2001, 294(5543): 846-849. doi: 10.1126/science.1062319

    [22]

    Ishii T, Matsunaga T, Pellerin P, et al. The plant cell wall polysaccharide rhamnogalacturonan II self-assembles into a covalently cross-linked dimer[J]. J Biol Chem, 1999, 274(19): 13098-13104. doi: 10.1074/jbc.274.19.13098

    [23]

    Barnes WJ, Koj S, Black IM, et al. Protocols for isolating and characterizing polysaccharides from plant cell walls: a case study using rhamnogalacturonan-II[J]. Biotechnol Biofuels, 2021, 14(1): 142. doi: 10.1186/s13068-021-01992-0

    [24]

    Buffetto F, Ropartz D, Zhang XJ, et al. Recovery and fine structure variability of RGII sub-domains in wine (Vitis vinifera Merlot)[J]. Ann Bot, 2014, 114(6): 1327-1337. doi: 10.1093/aob/mcu097

    [25]

    O’Neill MA, Black I, Urbanowicz B, et al. Locating methyl-etherified and methyl-esterified uronic acids in the plant cell wall pectic polysaccharide rhamnogalacturonan II[J]. SLAS Technol, 2020, 25(4): 329-344. doi: 10.1177/2472630320923321

    [26]

    Gao HS, Ding LL, Liu R, et al. Characterization of Anoectochilus roxburghii polysaccharide and its therapeutic effect on type 2 diabetic mice[J]. Int J Biol Macromol, 2021, 179: 259-269. doi: 10.1016/j.ijbiomac.2021.02.217

    [27]

    Li X, Wei J, Lin LZ, et al. Structural characterization, antioxidant and antimicrobial activities of polysaccharide from Akebia trifoliata (Thunb. ) Koidz stem[J]. Colloids Surf B Biointerfaces, 2023, 231: 113573. doi: 10.1016/j.colsurfb.2023.113573

    [28]

    Xu YB, Wang Q, Chen J, et al. An Arabinogalactan isolated from Pollen Typhae induces the apoptosis of RKO cells by promoting macrophage polarization[J]. Carbohydr Polym, 2023, 299: 120216. doi: 10.1016/j.carbpol.2022.120216

    [29]

    Zhang WX, Hu YH, He JQ, et al. Structural characterization and immunomodulatory activity of a novel polysaccharide from lycopi herba[J]. Front Pharmacol, 2021, 12: 691995. doi: 10.3389/fphar.2021.691995

    [30]

    Wu JJ, Xu YB, Liu XY, et al. Isolation and structural characterization of a non-competitive α-glucosidase inhibitory polysaccharide from the seeds of Litchi chinensis Sonn[J]. Int J Biol Macromol, 2020, 154: 1105-1115. doi: 10.1016/j.ijbiomac.2019.11.170

    [31]

    Xu YB, Chen J, Shi SS, et al. Structure characterization of pectin from the pollen of Typha angustifolia L. and the inhibition activity of lipid accumulation in oleic acid induced L02 cells[J]. Carbohydr Polym, 2023, 303: 120452. doi: 10.1016/j.carbpol.2022.120452

    [32]

    Ni JH, Chen H, Zhang CL, et al. Characterization of Alpinia officinarum Hance polysaccharide and its immune modulatory activity in mice[J]. Food Funct, 2022, 13(4): 2228-2237. doi: 10.1039/D1FO03949K

    [33]

    Yang XH, Liu HH, Yang JT, et al. Purification, structural characterization and immunological activity of Sibiraea laexigata (L. ) Maxim polysaccharide[J]. Front Nutr, 2022, 9: 1013020. doi: 10.3389/fnut.2022.1013020

    [34]

    Hu YB, Hong HL, Liu LY, et al. Analysis of structure and antioxidant activity of polysaccharides from Aralia continentalis[J]. Pharmaceuticals, 2022, 15(12): 1545. doi: 10.3390/ph15121545

    [35] Liu JM, Chang WH, Chen ZM, et al. Research progress of pectin and its microbial degradation[J]. Acta Vet Zootechnica Sin (畜牧兽医学报), 2023, 54(7): 2723-2731.
    [36]

    Zablackis E, Huang J, Müller B, et al. Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves[J]. Plant Physiol, 1995, 107(4): 1129-1138. doi: 10.1104/pp.107.4.1129

    [37]

    O’Neill MA, Warrenfeltz D, Kates K, et al. Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester. In vitro conditions for the formation and hydrolysis of the dimer[J]. J Biol Chem, 1996, 271(37): 22923-22930. doi: 10.1074/jbc.271.37.22923

    [38]

    Strasser G. Pectic substances from red beet (Beta vulgaris L. var. conditiva). Part II. Structural characterisation of rhamnogalacturonan II[J]. Carbohydr Polym, 2002, 48(3): 263-269. doi: 10.1016/S0144-8617(01)00257-0

    [39]

    Doco T, Williams P, Vidal S, et al. Rhamnogalacturonan II, a dominant polysaccharide in juices produced by enzymic liquefaction of fruits and vegetables[J]. Carbohydr Res, 1997, 297(2): 181-186. doi: 10.1016/S0008-6215(96)00260-1

    [40]

    Paniagua C, Kirby AR, Gunning AP, et al. Unravelling the nanostructure of strawberry fruit pectins by endo-polygalacturonase digestion and atomic force microscopy[J]. Food Chem, 2017, 224: 270-279. doi: 10.1016/j.foodchem.2016.12.049

    [41]

    Sénéchal F, Wattier C, Rustérucci C, et al. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants[J]. J Exp Bot, 2014, 65(18): 5125-5160. doi: 10.1093/jxb/eru272

    [42]

    Chen E. Nature of sites hydrolyzable by endopolygalacturonase in partially-esterified homogalacturonans[J]. Carbohydr Polym, 1996, 29(2): 129-136. doi: 10.1016/0144-8617(96)00005-7

    [43]

    Ho GT, Zou YF, Wangensteen H, et al. RG-I regions from elderflower pectins substituted on GalA are strong immunomodulators[J]. Int J Biol Macromol, 2016, 92: 731-738. doi: 10.1016/j.ijbiomac.2016.07.090

    [44]

    Qi XD, Yu Y, Wang XY, et al. Structural characterization and anti-oxidation activity evaluation of pectin from Lonicera japonica Thunb[J]. Front Nutr, 2022, 9: 998462. doi: 10.3389/fnut.2022.998462

    [45]

    Chan MK, Yu Y, Wulamu S, et al. Structural analysis of water-soluble polysaccharides isolated from Panax notoginseng[J]. Int J Biol Macromol, 2020, 155: 376-385. doi: 10.1016/j.ijbiomac.2020.03.233

    [46]

    Ning X, Liu Y, Jia MD, et al. Pectic polysaccharides from Radix Sophorae Tonkinensis exhibit significant antioxidant effects[J]. Carbohydr Polym, 2021, 262: 117925. doi: 10.1016/j.carbpol.2021.117925

    [47]

    Yan S, Liu XB, Wang YW, et al. Structural characterization and antioxidant activity of pectic polysaccharides from Veronica peregrina L[J]. Front Nutr, 2023, 10: 1217862. doi: 10.3389/fnut.2023.1217862

    [48]

    Sun L, Ropartz D, Cui LN, et al. Structural characterization of rhamnogalacturonan domains from Panax ginseng C. A. Meyer[J]. Carbohydr Polym, 2019, 203: 119-127. doi: 10.1016/j.carbpol.2018.09.045

    [49]

    Pak U, Yu Y, Ning X, et al. Comparative study of water-soluble polysaccharides isolated from leaves and roots of Isatis indigotica Fort[J]. Int J Biol Macromol, 2022, 206: 642-652. doi: 10.1016/j.ijbiomac.2022.02.187

    [50]

    Soares MMCN, Da Silva R, Carmona EC, et al. Pectinolytic enzyme production by Bacillus species and their potential application on juice extraction[J]. World J Microbiol Biotechnol, 2001, 17(1): 79-82. doi: 10.1023/A:1016667930174

    [51] Zhang HX, Jiang XL, Mou HJ, et al. Progress in the study of microbial pectinases [J]. Biotechnology(生物技术), 2005, (5): 92-95.
    [52] Lan LJ, Zhou Q, Cai QM, et al. Screening and identification of a high-yield pectinase penicillium strain[J]. J Zhejiang Normal Univ (Nat Sci) [浙江师范大学学报(自然科学版)], 2011, 34(4): 452-456.
    [53]

    Wu D, Cui LN, Yang G, et al. Preparing rhamnogalacturonan II domains from seven plant pectins using Penicillium oxalicum degradation and their structural comparison[J]. Carbohydr Polym, 2018, 180: 209-215. doi: 10.1016/j.carbpol.2017.10.037

    [54]

    Pellerin P, Doco T, Vidal S, et al. Structural characterization of red wine rhamnogalacturonan II[J]. Carbohydr Res, 1996, 290(2): 183-197. doi: 10.1016/0008-6215(96)00139-5

    [55]

    Vidal S, Williams P, Doco T, et al. The polysaccharides of red wine: total fractionation and characterization[J]. Carbohydr Polym, 2003, 54(4): 439-447. doi: 10.1016/S0144-8617(03)00152-8

    [56]

    Lei XQ, Wang SN, Zhao PT, et al. Mannoproteins, arabinogalactan protein, rhamnogalacturonan II and their pairwise combinations regulating wine astringency induced by the interaction of proanthocyanidins and proteins[J]. Int J Biol Macromol, 2023, 224: 950-957. doi: 10.1016/j.ijbiomac.2022.10.180

    [57]

    Brandão E, Silva MS, García-Estévez I, et al. The role of wine polysaccharides on salivary protein-tannin interaction: a molecular approach[J]. Carbohydr Polym, 2017, 177: 77-85. doi: 10.1016/j.carbpol.2017.08.075

    [58]

    Chen GM, Jiang N, Zheng JP, et al. Structural characterization and anti-inflammatory activity of polysaccharides from Astragalus membranaceus[J]. Int J Biol Macromol, 2023, 241: 124386. doi: 10.1016/j.ijbiomac.2023.124386

    [59]

    Zhang X, Yu L, Bi HT, et al. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer[J]. Carbohydr Polym, 2009, 77(3): 544-552. doi: 10.1016/j.carbpol.2009.01.034

    [60]

    Zhao XL, Meng Y, Liu Y, et al. Pectic polysaccharides from Lilium brownii and Polygonatum odoratum exhibit significant antioxidant effects in vitro[J]. Int J Biol Macromol, 2024, 257(Pt 2): 128830.

    [61]

    Park HR, Shin KS. Structural elucidation of an anti-metastatic polysaccharide from the peels of Korean citrus Hallabong[J]. Carbohydr Polym, 2019, 225: 115222. doi: 10.1016/j.carbpol.2019.115222

    [62]

    York WS, Darvill AG, McNeil M, et al. 3-Deoxy-d-manno-2-octulosonic acid (KDO) is a component of rhamnogalacturonan II, a pectic polysaccharide in the primary cell walls of plants[J]. Carbohydr Res, 1985, 138(1): 109-126. doi: 10.1016/0008-6215(85)85228-9

    [63]

    Spellman MW, McNeil M, Darvill AG, et al. Characterization of a structurally complex heptasaccharide isolated from the pectic polysaccharide rhamnogalacturonan II[J]. Carbohydr Res, 1983, 122(1): 131-153. doi: 10.1016/0008-6215(83)88413-4

    [64]

    Séveno M, Voxeur A, Rihouey C, et al. Structural characterisation of the pectic polysaccharide rhamnogalacturonan II using an acidic fingerprinting methodology[J]. Planta, 2009, 230(5): 947-957. doi: 10.1007/s00425-009-0996-1

    [65]

    Thomas JR, Darvill AG, Albersheim P. Isolation and structural characterization of the pectic polysaccharide rhamnogalacturonan II from walls of suspension-cultured rice cells[J]. Carbohydr Res, 1989, 185(2): 261-277. doi: 10.1016/0008-6215(89)80041-2

    [66]

    Liu W, Xu JN, Zhu R, et al. Fingerprinting profile of polysaccharides from Lycium barbarum using multiplex approaches and chemometrics[J]. Int J Biol Macromol, 2015, 78: 230-237. doi: 10.1016/j.ijbiomac.2015.03.062

    [67]

    He L, Yan XT, Liang J, et al. Comparison of different extraction methods for polysaccharides from Dendrobium officinale stem[J]. Carbohydr Polym, 2018, 198: 101-108. doi: 10.1016/j.carbpol.2018.06.073

    [68]

    Wu DT, Cheong KL, Deng Y, et al. Characterization and comparison of polysaccharides from Lycium barbarum in China using saccharide mapping based on PACE and HPTLC[J]. Carbohydr Polym, 2015, 134: 12-19. doi: 10.1016/j.carbpol.2015.07.052

图(1)  /  表(4)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  101
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-01
  • 刊出日期:  2024-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭