• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

基于铁死亡致病机制的抗阿尔茨海默病纳米药物递送系统研究进展

苏海莹, 王钰琨, 李维松, 周建平, 程皓

苏海莹,王钰琨,李维松,等. 基于铁死亡致病机制的抗阿尔茨海默病纳米药物递送系统研究进展[J]. 中国药科大学学报,2024,55(5):613 − 623. DOI: 10.11665/j.issn.1000-5048.2024040702
引用本文: 苏海莹,王钰琨,李维松,等. 基于铁死亡致病机制的抗阿尔茨海默病纳米药物递送系统研究进展[J]. 中国药科大学学报,2024,55(5):613 − 623. DOI: 10.11665/j.issn.1000-5048.2024040702
SU Haiying, WANG Yukun, LI Weisong, et al. Advances in anti-Alzheimer’s disease nano drug delivery system based on pathogenic mechanism of ferroptosis[J]. J China Pharm Univ, 2024, 55(5): 613 − 623. DOI: 10.11665/j.issn.1000-5048.2024040702
Citation: SU Haiying, WANG Yukun, LI Weisong, et al. Advances in anti-Alzheimer’s disease nano drug delivery system based on pathogenic mechanism of ferroptosis[J]. J China Pharm Univ, 2024, 55(5): 613 − 623. DOI: 10.11665/j.issn.1000-5048.2024040702

基于铁死亡致病机制的抗阿尔茨海默病纳米药物递送系统研究进展

基金项目: 国家自然科学基金项目(No. 82404565);中国博士后科学基金项目(2023M733892)
详细信息
    作者简介:

    周建平,教授、博导,江苏省教学名师,享受国务院政府特殊津贴专家。现任国家药典委执行委员(制剂专委会主委)、江苏省药学会药剂专业主任委员,科技部、国家基金委和国际合作项目、NMPA和江苏省药品和保健食品审评专家等。研究围绕药物新制剂和新技术;缓控释和速释给药系统;脂质体、高聚物胶束、脂蛋白等微粒给药系统技术开发与临床转化。主持国家重大新药创制和国家重点科技攻关、国家自然科学基金、国家药品标准提高等项目30余项与横向转化项目20余项,获新药证书5本。授权发明专利40余项,并在PNASAdv MaterACS NanoAdv SciNano Lett等期刊发表SCI论文200余篇(4篇ESI高被引,30余篇IF>10),连续9年入选SCOPUS中国高被引学者榜单(H-index 49),先后获得江苏省科学技术奖、国家教学成果奖等省部级教学科研荣誉20余项

    程皓,中国药科大学助理研究员,2022年6月获中国药科大学博士学位。主持国家自然青年科学基金项目、江苏省自然科学基金青年项目、中国博士后科学基金面上项目、江苏省卓越博士后计划项目、中国药科大学基本科研业务费项目,并参与多项国家自然科学基金面上项目、国家重点研发计划子课题等项目。研究方向为核酸药物转染与递送,重点关注生物医药功能材料的开发及其智能纳米递药系统的设计与构建,解决核酸药物体内稳定、定向转染、亚细胞定位递释、基因治疗脱靶等关键科学问题。以第一/通信作者在Adv SciChem Eng JNano-Micro LettJ Control Release等权威期刊发表SCI论文12篇,授权发明专利1项

    通讯作者:

    周建平: Tel:025-83271102 E-mail:zhoujianp60@163.com

    程皓: Tel:15298357876  E-mail:chenghaocloud@163.com

  • 中图分类号: R943

Advances in anti-Alzheimer’s disease nano drug delivery system based on pathogenic mechanism of ferroptosis

Funds: This study was supported by the National Natural Science Foundation of China (No. 82404565); and China Postdoctoral Science Foundation (2023M733892)
  • 摘要:

    铁死亡是一种铁依赖性脂质过氧化和活性氧过度积累诱发的程序性细胞死亡方式,被证明是阿尔茨海默病(Alzheimer’s disease,AD)进展过程中神经元死亡的关键病理机制,形成AD致病“铁死亡假说”。近年,基于铁死亡致病机制的AD治疗研究主要为脑内铁代谢和微环境氧化还原失衡调控,但血脑屏障及脑内复杂病理环境限制了药物脑内转运、分布及治疗效果,对药物递送技术提出了新要求。本综述在阐述细胞铁死亡过程及其调控机制的基础上,探讨了铁过载和氧化还原失衡与神经元丢失及AD进展的相关性,并基于铁过载和氧化还原失衡综述了抗AD纳米药物递送系统研究进展,为AD治疗和新药研发提供新思路。

    Abstract:

    Ferroptosis, a programmed cell death induced by iron-dependent lipid peroxidation and excessive accumulation of reactive oxygen species, is a key pathological mechanism of neuronal death during the progression of Alzheimer’s disease (AD), contributing to the formation of “Ferroptosis Hypothesis” for AD pathogenesis. In recent years, there has been extensive research on therapeutic strategies for AD based on the pathogenic mechanism of ferroptosis, focusing primarily on the dysregulation of brain iron metabolism and redox regulation in microenvironment. However, presence of blood-brain barrier and intricate pathological environment within brain impose limitations on intracranial drug transportation, distribution and therapeutic efficacy, thereby necessitating advancements in drug delivery technology. Based on description of ferroptosis process and its regulatory mechanisms, this review explores the association between iron overload and redox imbalance with neuronal loss and AD development, and additionally, summarizes the advancements in nano drug delivery systems targeting iron overload and redox imbalance for potential anti-AD treatments, so as to offer some novel perspectives for AD treatment and drug development.

  • Figure  1.   Anti-ferroptosis strategies by alleviating iron overload

    A: Synthesis of PLGA nanoparticle-chelator conjugate (Nano-N2PY)[5]; B: Schematic diagram of Lactoferrin-galantamine (Lf-Gal) nanoparticle fabrication, and corresponding Gal release upon iron absorption[8]; C: Structure illustration of IgG capped gold nanocage (AuNC-IgG) and photothermal-responsive H2O2-fueled release of guest molecules clioquinol (CQ) from AuNC-IgG[9]; D: Schematic illustration of curcumin-lactoferrin nanoparticles (CUR-LF NPs) preparation, and neuroprotection mechanism of CUR-LF NPs via intranasal administration[10]; E: Fabrication of transferrin-functionalization of nanoparticle[14]; F: Resveratrol (RSV) loaded mesoporous silica nanoparticle with Ac-[cMPRLRGC]c-NH2 peptide modification on surface[15]

    Figure  2.   Multiple pathways inhibit ferroptosis by resisting oxidative distress and inhibiting lipid peroxidation, including System Xc-/GSH/GPX4 pathway, FSP1/CoQ10 pathway, GCH/DHFR/BH4 pathway, DHODH/CoQ pathway, and p62/Keap1/Nrf2 pathway (Created with BioRender.com)

    Figure  3.   Anti-ferroptosis strategies by regulating lipid peroxidation in neuron

    A: Intranasal administration of quercetin, vitamin E, and basil oil for anti-oxidation[17]; B: Preparation of baicalein (Ba) loaded nanoliposome (NLP-Ba) and antioxidation of NLP-Ba neuroprotection[20]; C: Fabrication and intranasal administration of N-acetylcysteine (NAC) and rivastigmine (RIV) co-loaded niosomes[24]; D: Synthesis route of multifunctional double selenium nanosphere (CLNDSe)[29]; E: Formulation and characterization of CoQ10-loaded nano-micelle (Ubisol-Q10)[35]; F: Schematic illustration of micelles co-modified with neural cell adhesion molecule (NCAM) mimetic peptide C3 and triphenylphosphonium (TPP) for targeting the mitochondria of the central neurons, reversing mitochondrial dysfunction[37]

  • [1]

    Wang YQ, Jia RX, Liang JH, et al. Dementia in China (2015-2050) estimated using the 1% population sampling survey in 2015[J]. Geriatr Gerontol Int, 2019, 19(11): 1096-1100. doi: 10.1111/ggi.13778

    [2]

    Ayton S, Portbury S, Kalinowski P, et al. Regional brain iron associated with deterioration in Alzheimer’s disease: a large cohort study and theoretical significance[J]. Alzheimers Dement, 2021, 17(7): 1244-1256. doi: 10.1002/alz.12282

    [3]

    Yan N, Zhang JJ. Iron metabolism, ferroptosis, and the links with Alzheimer’s disease[J]. Front Neurosci, 2020, 13: 1443. doi: 10.3389/fnins.2019.01443

    [4]

    Greenough MA, Lane DJR, Balez R, et al. Selective ferroptosis vulnerability due to familial Alzheimer’s disease presenilin mutations[J]. Cell Death Differ, 2022, 29(11): 2123-2136. doi: 10.1038/s41418-022-01003-1

    [5]

    Liu G, Men P, Kudo W, et al. Nanoparticle-chelator conjugates as inhibitors of amyloid-beta aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer disease[J]. Neurosci Lett, 2009, 455(3): 187-190. doi: 10.1016/j.neulet.2009.03.064

    [6]

    Naidu SAG, Wallace TC, Davies KJA, et al. Lactoferrin for mental health: neuro-redox regulation and neuroprotective effects across the blood-brain barrier with special reference to neuro-COVID-19[J]. J Diet Suppl, 2023, 20(2): 218-253. doi: 10.1080/19390211.2021.1922567

    [7]

    Kamalinia G, Khodagholi F, Atyabi F, et al. Enhanced brain delivery of deferasirox-lactoferrin conjugates for iron chelation therapy in neurodegenerative disorders: in vitro and in vivo studies[J]. Mol Pharm, 2013, 10(12): 4418-4431. doi: 10.1021/mp4002014

    [8]

    Akilo OD, Kumar P, Choonara YE, et al. Hypothesis: apo-lactoferrin-Galantamine Proteo-alkaloid Conjugate for Alzheimer’s disease Intervention[J]. J Cell Mol Med, 2018, 22(3): 1957-1963. doi: 10.1111/jcmm.13484

    [9]

    Shi P, Li M, Ren JS, et al. Gold nanocage-based dual responsive “caged metal Chelator” release system: noninvasive remote control with near infrared for potential treatment of Alzheimer’s disease[J]. Adv Funct Mater, 2013, 23(43): 5412-5419. doi: 10.1002/adfm.201301015

    [10]

    Li LH, Tan LW, Zhang Q, et al. Nose-to-brain delivery of self-assembled curcumin-lactoferrin nanoparticles: characterization, neuroprotective effect and in vivo pharmacokinetic study[J]. Front Bioeng Biotechnol, 2023, 11: 1168408. doi: 10.3389/fbioe.2023.1168408

    [11]

    Du F, Qian ZM, Luo QQ, et al. Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-overloaded rats[J]. Mol Neurobiol, 2015, 52(1): 101-114. doi: 10.1007/s12035-014-8847-x

    [12]

    Xu Y, Zhang YT, Zhang JH, et al. Astrocyte hepcidin ameliorates neuronal loss through attenuating brain iron deposition and oxidative stress in APP/PS1 mice[J]. Free Radic Biol Med, 2020, 158: 84-95. doi: 10.1016/j.freeradbiomed.2020.07.012

    [13]

    Bayele HK, Balesaria S, Srai SK. Phytoestrogens modulate hepcidin expression by Nrf2: implications for dietary control of iron absorption[J]. Free Radic Biol Med, 2015, 89: 1192-1202. doi: 10.1016/j.freeradbiomed.2015.11.001

    [14]

    Pinheiro RGR, Granja A, Loureiro JA, et al. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease[J]. Eur J Pharm Sci, 2020, 148: 105314. doi: 10.1016/j.ejps.2020.105314

    [15]

    Shen Y, Cao B, Snyder NR, et al. ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood-brain barrier[J]. J Nanobiotechnology, 2018, 16(1): 13. doi: 10.1186/s12951-018-0340-7

    [16]

    Sun YY, Xia XH, Basnet D, et al. Mechanisms of ferroptosis and emerging links to the pathology of neurodegenerative diseases[J]. Front Aging Neurosci, 2022, 14: 904152. doi: 10.3389/fnagi.2022.904152

    [17]

    Karthika C, Appu AP, Akter R, et al. Potential innovation against Alzheimer’s disorder: a tricomponent combination of natural antioxidants (vitamin E, quercetin, and basil oil) and the development of its intranasal delivery[J]. Environ Sci Pollut Res Int, 2022, 29(8): 10950-10965. doi: 10.1007/s11356-021-17830-7

    [18]

    Singh A, Rakshit D, Kumar A, et al. Vitamin E modified polyamidoamine dendrimer for piperine delivery to alleviate Aβ1-42 induced neurotoxicity in BALB/c mice model[J]. J Biomater Sci Polym Ed, 2023, 34(16): 2232-2254. doi: 10.1080/09205063.2023.2230857

    [19]

    Kaboli Z, Hosseini MJ, Sadighian S, et al. Valine conjugated polymeric nanocarriers for targeted co-delivery of rivastigmine and quercetin in rat model of Alzheimer disease[J]. Int J Pharm, 2023, 645: 123418. doi: 10.1016/j.ijpharm.2023.123418

    [20]

    Aliakbari F, Shabani AA, Bardania H, et al. Formulation and anti-neurotoxic activity of baicalein-incorporating neutral nanoliposome[J]. Colloids Surf B Biointerfaces, 2018, 161: 578-587. doi: 10.1016/j.colsurfb.2017.11.023

    [21]

    Haddad M, Hervé V, Ben Khedher MR, et al. Glutathione: an old and small molecule with great functions and new applications in the brain and in Alzheimer’s disease[J]. Antioxid Redox Signal, 2021, 35(4): 270-292. doi: 10.1089/ars.2020.8129

    [22]

    Paka GD, Ramassamy C. Optimization of curcumin-loaded PEG-PLGA nanoparticles by GSH functionalization: investigation of the internalization pathway in neuronal cells[J]. Mol Pharm, 2017, 14(1): 93-106. doi: 10.1021/acs.molpharmaceut.6b00738

    [23]

    Wu LY, Xian XH, Tan ZX, et al. The role of iron metabolism, lipid metabolism, and redox homeostasis in Alzheimer’s disease: from the perspective of ferroptosis[J]. Mol Neurobiol, 2023, 60(5): 2832-2850. doi: 10.1007/s12035-023-03245-7

    [24]

    Kulkarni P, Rawtani D, Barot T. Design, development and in-vitro/in-vivo evaluation of intranasally delivered Rivastigmine and N-Acetyl Cysteine loaded bifunctional niosomes for applications in combinative treatment of Alzheimer’s disease[J]. Eur J Pharm Biopharm, 2021, 163: 1-15. doi: 10.1016/j.ejpb.2021.02.015

    [25]

    Eleftheriadou D, Kesidou D, Moura F, et al. Redox-responsive nanobiomaterials-based therapeutics for neurodegenerative diseases[J]. Small, 2020, 16(43): e1907308. doi: 10.1002/smll.201907308

    [26]

    Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018, 172(3): 409-422. e21.

    [27]

    Vivash L, Malpas CB, Meletis C, et al. A phase 1b open-label study of sodium selenate as a disease-modifying treatment for possible behavioral variant frontotemporal dementia[J]. Alzheimers Dement, 2022, 8(1): e12299.

    [28]

    Qi YJ, Yi PJ, He T, et al. Quercetin-loaded selenium nanoparticles inhibit amyloid-β aggregation and exhibit antioxidant activity[J]. Colloids Surf A Physicochem Eng Aspects, 2020, 602: 125058. doi: 10.1016/j.colsurfa.2020.125058

    [29]

    Wang JY, Wang ZK, Li YQ, et al. Blood brain barrier-targeted delivery of double selenium nanospheres ameliorates neural ferroptosis in Alzheimer’s disease[J]. Biomaterials, 2023, 302: 122359. doi: 10.1016/j.biomaterials.2023.122359

    [30]

    Alim I, Caulfield JT, Chen YX, et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke[J]. Cell, 2019, 177(5): 1262-1279. e25.

    [31]

    Chen J, Ou ZJ, Gao TT, et al. Ginkgolide B alleviates oxidative stress and ferroptosis by inhibiting GPX4 ubiquitination to improve diabetic nephropathy[J]. Biomedecine Pharmacother, 2022, 156: 113953. doi: 10.1016/j.biopha.2022.113953

    [32]

    Shao L, Dong C, Geng DQ, et al. Ginkgolide B protects against cognitive impairment in senescence-accelerated P8 mice by mitigating oxidative stress, inflammation and ferroptosis[J]. Biochem Biophys Res Commun, 2021, 572: 7-14. doi: 10.1016/j.bbrc.2021.07.081

    [33]

    Yang PF, Cai XL, Zhou K, et al. A novel oil-body nanoemulsion formulation of ginkgolide B: pharmacokinetics study and in vivo pharmacodynamics evaluations[J]. J Pharm Sci, 2014, 103(4): 1075-1084. doi: 10.1002/jps.23866

    [34]

    Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Coenzyme Q10 supplementation: efficacy, safety, and formulation challenges[J]. Compr Rev Food Sci Food Saf, 2020, 19(2): 574-594. doi: 10.1111/1541-4337.12539

    [35]

    Wear D, Vegh C, Sandhu JK, et al. Ubisol-Q10, a nanomicellar and water-dispersible formulation of coenzyme-Q10 as a potential treatment for Alzheimer’s and Parkinson’s disease[J]. Antioxidants, 2021, 10(5): 764. doi: 10.3390/antiox10050764

    [36]

    Muthukumaran K, Kanwar A, Vegh C, et al. Ubisol-Q10 (a nanomicellar water-soluble formulation of CoQ10) treatment inhibits alzheimer-type behavioral and pathological symptoms in a double transgenic mouse (TgAPEswe, PSEN1dE9) model of Alzheimer’s disease[J]. J Alzheimers Dis, 2018, 61(1): 221-236.

    [37]

    Yang P, Sheng DY, Guo Q, et al. Neuronal mitochondria-targeted micelles relieving oxidative stress for delayed progression of Alzheimer’s disease[J]. Biomaterials, 2020, 238: 119844. doi: 10.1016/j.biomaterials.2020.119844

    [38]

    Han Y, Chu XY, Cui L, et al. Neuronal mitochondria-targeted therapy for Alzheimer’s disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems[J]. Drug Deliv, 2020, 27(1): 502-518. doi: 10.1080/10717544.2020.1745328

图(3)
计量
  • 文章访问数:  988
  • HTML全文浏览量:  84
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-06
  • 刊出日期:  2024-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭