高级检索

基于人工智能驱动分子工厂技术的Menin抑制剂优化

曾浩, 吴国振, 邹武新, 王哲, 宋剑飞, 施慧, 汪小涧, 侯廷军, 邓亚峰

曾浩,吴国振,邹武新,等. 基于人工智能驱动分子工厂技术的Menin抑制剂优化[J]. 中国药科大学学报,2024,55(3):326 − 334. DOI: 10.11665/j.issn.1000-5048.2024040904
引用本文: 曾浩,吴国振,邹武新,等. 基于人工智能驱动分子工厂技术的Menin抑制剂优化[J]. 中国药科大学学报,2024,55(3):326 − 334. DOI: 10.11665/j.issn.1000-5048.2024040904
ZENG Hao, WU Guozhen, ZOU Wuxin, et al. Optimization of Menin inhibitors based on artificial intelligence-driven molecular factory technology[J]. J China Pharm Univ, 2024, 55(3): 326 − 334. DOI: 10.11665/j.issn.1000-5048.2024040904
Citation: ZENG Hao, WU Guozhen, ZOU Wuxin, et al. Optimization of Menin inhibitors based on artificial intelligence-driven molecular factory technology[J]. J China Pharm Univ, 2024, 55(3): 326 − 334. DOI: 10.11665/j.issn.1000-5048.2024040904

基于人工智能驱动分子工厂技术的Menin抑制剂优化

详细信息
    作者简介:

    侯廷军,浙江大学药学院,求是特聘教授,博导。长期围绕计算机辅助药物设计中的核心问题展开前沿交叉科学研究。在Nature Machine IntelligenceNature Computational ScienceNature ProtocolsNature CommunicationsChemical ReviewsScience AdvancesPNASACS Central ScienceNucleic Acids ResearchJournal of Medicinal Chemistry等期刊发表SCI论文500余篇,引用29000余次(Google),H因子85;获授权专利和软件著作权80余项。任中国化学会计算(机)化学专业委员会副主任委员、中国计算机学会数字医学分会副主任委员,Briefings in BioinformaticsJournal of Cheminformatics等14种SCI期刊编委或顾问编委。入选科睿唯安全球高被引科学家、爱思唯尔中国高被引学者、获中国化学会计算(机)化学专委会青年计算化学家奖、药明康德生命化学研究奖、高等学校科学研究优秀成果二等奖2次、第四届寻找青年科学之星等学术奖项和荣誉

    邓亚峰,毕业于清华大学,二十年人工智能算法及产品研发经验,现任碳硅智慧创始人兼CEO。曾任360集团副总裁、人工智能研究院院长兼搜索事业部总经理,科创板第一家人工智能上市公司格灵深瞳CTO,中国图形图像学学会常务理事,北京人工智能产业联盟副理事长等职务,获得2021年中国人工智能年度十大风云人物称号。带领团队在AIDD、计算机视觉、多模态大模型、机器人、智能搜索等领域做出过创新成果或先进产品,累计申请发明专利140余项(已授权98项),发表论文50篇左右

    通讯作者:

    侯廷军: Tel:0571-88208412 E-mail:tingjunhou@zju.edu.cn

    邓亚峰: Tel:010-82872050 E-mail:dengyafeng@carbonsilicon.ai

  • 中图分类号: TP181;R914

Optimization of Menin inhibitors based on artificial intelligence-driven molecular factory technology

  • 摘要:

    以深度学习为代表的新一代人工智能技术已经成为推动新药研发的重要驱动力。本文创造性地提出了一种基于人工智能技术的创新药物分子设计和优化工作流程“分子工厂”,该流程融合了自主研发的智能分子生成模型、高性能分子对接算法以及高精度亲和力预测方法,已作为核心模块被整合进一站式药物设计软件平台DrugFlow,为先导化合物发现和优化提供了一整套成熟的解决方案。利用“分子工厂”模块,针对Menin蛋白开展了抗耐药第2代抑制剂的研发。通过计算和实验的结合,快速获得多个潜力化合物,其中化合物RG-10对Menin野生型、M327I突变体和T349M突变体的IC50分别为9.681 nmol/L、233.2 nmol/L和40.09 nmol/L;与已进入Ⅱ期临床的阳性参照分子SNDX-5613相比,其对M327I和T349M突变体的抑制活性显著提升。上述研究充分展现了“分子工厂”技术在新药研发项目中的独特优势,能快速高效地针对特定蛋白结构产生高质量的活性分子,对推动新药研发具有重大价值和深远意义。

    Abstract:

    The new generation of artificial intelligence technology, represented by deep learning, has emerged as a crucial driving force in the advancement of new drug research and development. This article creatively proposes a workflow named “Molecular Factory” for the design and optimization of drug molecules based on artificial intelligence technology. This workflow integrates intelligent molecular generation models, high-performance molecular docking algorithms, and accurate protein-ligand binding affinity prediction methods. It has been integrated as a core module into DrugFlow, a one-stop drug design software platform, providing a comprehensive set of mature solutions for the discovery and optimization of lead compounds. Utilizing the “Molecular Factory” module, we conducted the research of second-generation inhibitors against Menin that can combat drug resistance. Through the integration of computational and experimental approaches, we rapidly identified multiple promising compounds. Among them, compound RG-10 exhibited the IC50 values of 9.681 nmol/L, 233.2 nmol/L, and 40.09 nmol/L against the wild-type Menin, M327I mutant, and T349M mutant, respectively. Compared to the positive reference molecule SNDX-5613, which has entered Phase II clinical trials, RG-10 demonstrated significantly enhanced inhibitory activity against the M327I and T349M mutants. These findings fully demonstrate the unique advantages of the "Molecular Factory" technology in practical drug design and development scenarios. It can rapidly and efficiently generate high-quality active molecules targeting specific protein structures, holding significant value and profound implications for advancing new drug discovery.

  • Figure  1.   Chemical structure of representative Menin inhibitors

    Figure  2.   Process and time consumption of molecular factory assisted drug design

    Figure  3.   Binding mode of SNDX-5613 in Menin (PDB ID: 7JU4)

    Figure  4.   Kernel density distributions of molecular weight, TPSA, LogP and LogS in known actives

    TPSAt:Opological polar surface area;LogP:Logarithm of the n-octanol/water distribution coefficient;LogS:Logarithm of aqueous solubility value

    Figure  5.   Distributions of molecular weight, TPSA, LogP, LogS of the generated molecules

    Figure  6.   Comparison of the chemical spatial distribution using the t-distributed stochastic neighbor embedding (t-SNE) method

    Table  1   Biological activities of five candidates against Menin-WT, Menin-M327I and Menin-T349M

    Target Compound ID IC50/(nmol/L)
    Menin-WT SNDX-5613 11.86
    RG-06 32.91
    RG-10 9.681
    D5-18-11 382.7
    D5-18-9 221.7
    RG-07 364.3
    Menin-M327I SNDX-5613 1421
    RG-06 513.8
    RG-10 233.2
    D5-18-11 625.3
    D5-18-9 363.2
    RG-07 590.7
    Menin-T349M SNDX-5613 280.2
    RG-06 53.8
    RG-10 40.09
    D5-18-11 1611
    D5-18-9 326
    RG-07 384.9
    下载: 导出CSV
  • [1]

    Yokoyama A, Cleary ML. Menin critically links MLL proteins with LEDGF on cancer-associated target genes[J]. Cancer Cell, 2008, 14(1): 36-46. doi: 10.1016/j.ccr.2008.05.003

    [2]

    Issa GC, Aldoss I, DiPersio J, et al. The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia[J]. Nature, 2023, 615(7954): 920-924. doi: 10.1038/s41586-023-05812-3

    [3]

    Perner F, Stein EM, Wenge DV, et al. MEN1 mutations mediate clinical resistance to menin inhibition[J]. Nature, 2023, 615(7954): 913-919. doi: 10.1038/s41586-023-05755-9

    [4]

    Grisham J. Menin Inhibitors: Promising New Drug Treatment for Aggressive Leukemia | Memorial Sloan Kettering Cancer Center[EB/OL]. (2023-03-15)[2024-03-22]. https://www.mskcc.org/news/promising-new-type-drug-aggressive-leukemia.

    [5]

    Cavasotto CN, di Filippo JI. Artificial intelligence in the early stages of drug discovery[J]. Arch Biochem Biophys, 2021, 698: 108730. doi: 10.1016/j.abb.2020.108730

    [6]

    Gupta R, Srivastava D, Sahu M, et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery[J]. Mol Divers, 2021, 25(3): 1315-1360. doi: 10.1007/s11030-021-10217-3

    [7]

    Zhang O, Zhang JT, Jin JY, et al. ResGen is a pocket-aware 3D molecular generation model based on parallel multiscale modelling[J]. Nat Mach Intell, 2023, 5: 1020-1030. doi: 10.1038/s42256-023-00712-7

    [8]

    Zhang HT, Zhao HF, Zhang XJ, et al. Delete: deep lead optimization enveloped in protein pocket through unified deleting strategies and a structure-aware network[EB/OL]. arXiv, 2023: 2308.02172. http://arxiv.org/abs/2308.02172.

    [9]

    Xiong GL, Wu ZX, Yi JC, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties[J]. Nucleic Acids Res, 2021, 49(W1): W5-W14. doi: 10.1093/nar/gkab255

    [10]

    Jiang DJ, Lei TL, Wang Z, et al. ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning[J]. J Cheminform, 2020, 12(1): 16. doi: 10.1186/s13321-020-00421-y

    [11]

    Adasme MF, Linnemann KL, Bolz SN, et al. PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA[J]. Nucleic Acids Res, 2021, 49(W1): W530-W534. doi: 10.1093/nar/gkab294

    [12]

    Hain E, Camacho CJ, Koes DR. Fragment oriented molecular shapes[J]. J Mol Graph Model, 2016, 66: 143-154. doi: 10.1016/j.jmgm.2016.03.017

    [13]

    Nicholls A, McGaughey GB, Sheridan RP, et al. Molecular shape and medicinal chemistry: a perspective[J]. J Med Chem, 2010, 53(10): 3862-3886. doi: 10.1021/jm900818s

    [14]

    Koes DR, Camacho CJ. Shape-based virtual screening with volumetric aligned molecular shapes[J]. J Comput Chem, 2014, 35(25): 1824-1834. doi: 10.1002/jcc.23690

    [15]

    Muhammed MT, Aki-Yalcin E. Molecular docking: principles, advances, and its applications in drug discovery[J]. Lett Drug Design Discov, 2024, 21(3): 480-495.

    [16]

    Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J]. J Comput Chem, 2010, 31(2): 455-461. doi: 10.1002/jcc.21334

    [17]

    Eberhardt J, Santos-Martins D, Tillack AF, et al. AutoDock vina 1.2. 0: new docking methods, expanded force field, and python bindings[J]. J Chem Inf Model, 2021, 61(8): 3891-3898. doi: 10.1021/acs.jcim.1c00203

    [18]

    Zhang XJ, Zhang O, Shen C, et al. Efficient and accurate large library ligand docking with KarmaDock[J]. Nat Comput Sci, 2023, 3(9): 789-804. doi: 10.1038/s43588-023-00511-5

    [19]

    Cai H, Shen C, Jian TY, et al. CarsiDock: a deep learning paradigm for accurate protein-ligand docking and screening based on large-scale pre-training[J]. Chem Sci, 2024, 15(4): 1449-1471. doi: 10.1039/D3SC05552C

    [20]

    Shen C, Zhang XJ, Deng YF, et al. Boosting protein-ligand binding pose prediction and virtual screening based on residue-atom distance likelihood potential and graph transformer[J]. J Med Chem, 2022, 65(15): 10691-10706. doi: 10.1021/acs.jmedchem.2c00991

图(6)  /  表(1)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  54
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-08
  • 网络出版日期:  2024-06-24
  • 刊出日期:  2024-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭