高级检索

药物递送系统介导的脑胶质瘤放疗增敏

刘明萱, 郭赟, 孙涛

刘明萱,郭赟,孙涛. 药物递送系统介导的脑胶质瘤放疗增敏[J]. 中国药科大学学报,2024,55(5):624 − 633. DOI: 10.11665/j.issn.1000-5048.2024050401
引用本文: 刘明萱,郭赟,孙涛. 药物递送系统介导的脑胶质瘤放疗增敏[J]. 中国药科大学学报,2024,55(5):624 − 633. DOI: 10.11665/j.issn.1000-5048.2024050401
LIU Mingxuan, GUO Yun, SUN Tao. Drug delivery systems for sensitization of glioblastoma radiotherapy[J]. J China Pharm Univ, 2024, 55(5): 624 − 633. DOI: 10.11665/j.issn.1000-5048.2024050401
Citation: LIU Mingxuan, GUO Yun, SUN Tao. Drug delivery systems for sensitization of glioblastoma radiotherapy[J]. J China Pharm Univ, 2024, 55(5): 624 − 633. DOI: 10.11665/j.issn.1000-5048.2024050401

药物递送系统介导的脑胶质瘤放疗增敏

基金项目: 上海市科技创新计划自然科学基金项目(22ZR1414100);平原实验室开放基金项目(2023PY-OP-0106)
详细信息
    作者简介:

    孙涛,复旦大学副教授,博士生导师,药剂学系副主任。主要研究领域为基于分子设计的跨屏障药物递释系统的设计、构建、评价与机制研究。以第一或通信作者身份在国内外学术期刊发表论文 40余篇,包括Adv MaterACS NanoAdv SciNano LettBiomaterialsJ Control ReleaseAPSB等。主持包括国家自然科学基金重点培育/面上/青年、科技部重大专项等基金,获教育部青年长江学者、上海青年东方学者、上海扬帆、上海人才发展等人才项目。曾获全国高校青年教师能力大赛国家级特等奖、微课大赛国家级一等奖、上海药学科技奖一等奖和优秀成果奖等奖项。任上海药学会药剂青年学组委员以及多本专业杂志编委

    通讯作者:

    孙涛: Tel:021-51980187 E-mail:sunt@fudan.edu.cn

    ##刘明萱与郭赟为共同第一作者

  • 中图分类号: R944

Drug delivery systems for sensitization of glioblastoma radiotherapy

Funds: This study was supported by the Natural Science Foundation of Shanghai Science and Technology Innovation Plan (22ZR1414100); and the Open Grant from the Pingyuan Laboratory (2023PY-OP-0106)
  • 摘要:

    脑胶质瘤是中枢神经系统常见恶性肿瘤,经常出现放疗耐受性。药物递送系统有助于放疗增敏剂的血脑屏障跨越和脑胶质瘤的靶向递送,进而增敏放疗疗效,受到越来越多的关注。本文重点总结了放疗耐受与自身DNA损伤修复机制、具有DNA和膜攻击性的活性氧自由基清除和脑胶质瘤干细胞的快速增殖的相关性,从探讨了无机纳米材料、有机复合材料和仿生递药系统等药物递送系统在解决跨屏障递送难题上的表现,总结了放疗增敏剂的跨血脑屏障和肿瘤靶向递送的递药系统设计方法,并为解决纳米递送系统临床转化问题提供了可能的方向。

    Abstract:

    Glioblastoma is a common malignant tumor in the central nervous system, often exhibiting radiation resistance. Drug delivery systems can help to overcome the blood-brain barrier and targeted delivery of radiation sensitizers to glioblastoma, thereby enhancing the efficacy of radiation therapy, which has received increasing attention. This review focuses on the relationship between radiation resistance and the intrinsic DNA damage repair mechanism, the clearance of reactive oxygen species with DNA and membrane attack, and the rapid proliferation of glioblastoma stem cells. It also discusses the performance of inorganic nanomaterials, organic composite materials, and bionic drug delivery systems in solving the problem of trans-barrier delivery, and summarizes the design method of drug delivery systems for crossing the blood-brain barrier and targeted delivery of radiation sensitizers to glioblastoma, to provide some possible direction for solving the clinical translation problems of nano delivery systems.

  • 图  1   介导脑胶质瘤(GBM)放射增敏的方法机制以及针对放疗增敏剂的递送系统

  • [1]

    Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. doi: 10.1093/neuonc/noab106

    [2]

    Mudassar F, Shen H, O’Neill G, et al. Targeting tumor hypoxia and mitochondrial metabolism with anti-parasitic drugs to improve radiation response in high-grade gliomas[J]. J Exp Clin Cancer Res, 2020, 39(1): 208. doi: 10.1186/s13046-020-01724-6

    [3]

    Grochans S, Cybulska AM, Simińska D, et al. Epidemiology of glioblastoma multiforme-literature review[J]. Cancers, 2022, 14(10): 2412. doi: 10.3390/cancers14102412

    [4]

    Kitange GJ, Carlson BL, Schroeder MA, et al. Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts[J]. Neuro Oncol, 2009, 11(3): 281-291. doi: 10.1215/15228517-2008-090

    [5]

    Sharma P, Jha AB, Dubey RS, et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions[J]. J Bot, 2012, 2012(1): 217037.

    [6]

    Li RQ, Wang HH, Liang Q, et al. Radiotherapy for glioblastoma: clinical issues and nanotechnology strategies[J]. Biomater Sci, 2022, 10(4): 892-908. doi: 10.1039/D1BM01401C

    [7]

    Weller M, van den Bent M, Preusser M, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood[J]. Nat Rev Clin Oncol, 2021, 18(3): 170-186. doi: 10.1038/s41571-020-00447-z

    [8]

    Mohan R, Liu AY, Brown PD, et al. Proton therapy reduces the likelihood of high-grade radiation-induced lymphopenia in glioblastoma patients: phase II randomized study of protons vs photons[J]. Neuro Oncol, 2021, 23(2): 284-294. doi: 10.1093/neuonc/noaa182

    [9]

    Walker MD, Green SB, Byar DP, et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery[J]. N Engl J Med, 1980, 303(23): 1323-1329. doi: 10.1056/NEJM198012043032303

    [10]

    Agosti E, Panciani PP, Zeppieri M, et al. Tumor microenvironment and glioblastoma cell interplay as promoters of therapeutic resistance[J]. Biology, 2023, 12(5): 736. doi: 10.3390/biology12050736

    [11]

    Jackson SP, Bartek J. The DNA-damage response in human biology and disease[J]. Nature, 2009, 461(7267): 1071-1078. doi: 10.1038/nature08467

    [12]

    Ahmed SU, Carruthers R, Gilmour L, et al. Selective inhibition of parallel DNA damage response pathways optimizes radiosensitization of glioblastoma stem-like cells[J]. Cancer Res, 2015, 75(20): 4416-4428. doi: 10.1158/0008-5472.CAN-14-3790

    [13]

    Pajonk F, Vlashi E, McBride WH. Radiation resistance of cancer stem cells: the 4 R’s of radiobiology revisited[J]. Stem Cells, 2010, 28(4): 639-648. doi: 10.1002/stem.318

    [14]

    Mao P, Joshi K, Li JF, et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3[J]. Proc Natl Acad Sci U S A, 2013, 110(21): 8644-8649. doi: 10.1073/pnas.1221478110

    [15]

    Ali MY, Oliva CR, Noman ASM, et al. Radioresistance in glioblastoma and the development of radiosensitizers[J]. Cancers, 2020, 12(9): 2511. doi: 10.3390/cancers12092511

    [16]

    Wei JL, Zhu KK, Yang Z, et al. Hypoxia-induced autophagy is involved in radioresistance via HIF1A-associated beclin-1 in glioblastoma multiforme[J]. Heliyon, 2023, 9(1): e12820. doi: 10.1016/j.heliyon.2023.e12820

    [17]

    Bravatà V, Tinganelli W, Cammarata FP, et al. Hypoxia transcriptomic modifications induced by proton irradiation in U87 glioblastoma multiforme cell line[J]. J Pers Med, 2021, 11(4): 308. doi: 10.3390/jpm11040308

    [18]

    Chen Z, Han FF, Du Y, et al. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions[J]. Signal Transduct Target Ther, 2023, 8(1): 70. doi: 10.1038/s41392-023-01332-8

    [19]

    Khakshour E, Bahreyni-Toossi MT, Anvari K, et al. Evaluation of the effects of simulated hypoxia by CoCl2 on radioresistance and change of hypoxia-inducible factors in human glioblastoma U87 tumor cell line[J]. Mutat Res, 2024, 828: 111848. doi: 10.1016/j.mrfmmm.2023.111848

    [20]

    Finn OJ. A believer’s overview of cancer immunosurveillance and immunotherapy[J]. J Immunol, 2018, 200(2): 385-391. doi: 10.4049/jimmunol.1701302

    [21]

    Hanif N, Sari S. Discovery of novel IDO1/TDO2 dual inhibitors: a consensus virtual screening approach with molecular dynamics simulations, and binding free energy analysis[J]. J Biomol Struct Dyn, 2024: 1-17.

    [22]

    Du LY, Lee JH, Jiang HF, et al. β-Catenin induces transcriptional expression of PD-L1 to promote glioblastoma immune evasion[J]. J Exp Med, 2020, 217(11): e20191115. doi: 10.1084/jem.20191115

    [23]

    Tang FS, Wang YL, Zeng YH, et al. Tumor-associated macrophage-related strategies for glioma immunotherapy[J]. NPJ Precis Oncol, 2023, 7(1): 78. doi: 10.1038/s41698-023-00431-7

    [24]

    Nance E, Pun SH, Saigal R, et al. Drug delivery to the central nervous system[J]. Nat Rev Mater, 2022, 7(4): 314-331.

    [25]

    Li JM, Wang QL, Xia GY, et al. Recent advances in targeted drug delivery strategy for enhancing oncotherapy[J]. Pharmaceutics, 2023, 15(9): 2233. doi: 10.3390/pharmaceutics15092233

    [26]

    Samanta D, Park Y, Ni XH, et al. Chemotherapy induces enrichment of CD47+/CD73+/PDL1+ immune evasive triple-negative breast cancer cells[J]. Proc Natl Acad Sci U S A, 2018, 115(6): E1239-E1248.

    [27]

    Li J, Wu Y, Wang JY, et al. Macrophage membrane-coated nano-gemcitabine promotes lymphocyte infiltration and synergizes AntiPD-L1 to restore the tumoricidal function[J]. ACS Nano, 2023, 17(1): 322-336. doi: 10.1021/acsnano.2c07861

    [28]

    Pourmadadi M, Eshaghi MM, Rahmani E, et al. Cisplatin-loaded nanoformulations for cancer therapy: a comprehensive review[J]. J Drug Deliv Sci Technol, 2022, 77: 103928. doi: 10.1016/j.jddst.2022.103928

    [29]

    Coluccia D, Figueiredo CA, Wu MY, et al. Enhancing glioblastoma treatment using cisplatin-gold-nanoparticle conjugates and targeted delivery with magnetic resonance-guided focused ultrasound[J]. Nanomed-Nanotechnol Biol Med, 2018, 14(4): 1137-1148. doi: 10.1016/j.nano.2018.01.021

    [30]

    Reilly RM, Georgiou CJ, Brown MK, et al. Radiation nanomedicines for cancer treatment: a scientific journey and view of the landscape[J]. EJNMMI Radiopharm Chem, 2024, 9(1): 37. doi: 10.1186/s41181-024-00266-y

    [31]

    Herold DM, Das IJ, Stobbe CC, et al. Gold microspheres: a selective technique for producing biologically effective dose enhancement[J]. Int J Radiat Biol, 2000, 76(10): 1357-1364. doi: 10.1080/09553000050151637

    [32]

    Goubault C, Jarry U, Bostoën M, et al. Radiosensitizing Fe-Au nanocapsules (Hybridosomes®) increase survival of GL261 brain tumor-bearing mice treated by radiotherapy[J]. Nanomed-Nanotechnol Biol Med, 2022, 40: 102499. doi: 10.1016/j.nano.2021.102499

    [33]

    Coderre JA, Turcotte JC, Riley KJ, et al. Boron neutron capture therapy: cellular targeting of high linear energy transfer radiation[J]. Technol Cancer Res Treat, 2003, 2(5): 355-375. doi: 10.1177/153303460300200502

    [34]

    Shimizu S, Nakai K, Li YN, et al. Boron neutron capture therapy for recurrent glioblastoma multiforme: imaging evaluation of a case with long-term local control and survival[J]. Cureus, 2023, 15(1): e33898.

    [35]

    Zhang H, Wang RZ, Yu YQ, et al. Glioblastoma treatment modalities besides surgery[J]. J Cancer, 2019, 10(20): 4793-4806. doi: 10.7150/jca.32475

    [36]

    Schaff LR, Mellinghoff IK. Glioblastoma and other primary brain malignancies in adults: a review[J]. JAMA, 2023, 329(7): 574-587. doi: 10.1001/jama.2023.0023

    [37]

    Fujikawa Y, Fukuo Y, Nishimura K, et al. Evaluation of the effectiveness of boron neutron capture therapy with iodophenyl-conjugated closo-dodecaborate on a rat brain tumor model[J]. Biology, 2023, 12(9): 1240. doi: 10.3390/biology12091240

    [38]

    Gupta T, Sahoo RK, Singh H, et al. Lipid-based nanocarriers in the treatment of glioblastoma multiforme (GBM): challenges and opportunities[J]. AAPS PharmSciTech, 2023, 24(4): 102. doi: 10.1208/s12249-023-02555-2

    [39]

    Sun MY, Xie HL, Zhang WL, et al. Bioinspired lipoproteins of furoxans-gemcitabine preferentially targets glioblastoma and overcomes radiotherapy resistance[J]. Adv Sci, 2024, 11(6): e2306190. doi: 10.1002/advs.202306190

    [40]

    Tan T, Hu HY, Wang H, et al. Bioinspired lipoproteins-mediated photothermia remodels tumor stroma to improve cancer cell accessibility of second nanoparticles[J]. Nat Commun, 2019, 10(1): 3322. doi: 10.1038/s41467-019-11235-4

    [41]

    Tian L, Xu B, Chen YQ, et al. Specific targeting of glioblastoma with an oncolytic virus expressing a cetuximab-CCL5 fusion protein via innate and adaptive immunity[J]. Nat Cancer, 2022, 3(11): 1318-1335. doi: 10.1038/s43018-022-00448-0

    [42]

    Anai S, Hide T, Takezaki T, et al. Antitumor effect of fibrin glue containing temozolomide against malignant glioma[J]. Cancer Sci, 2014, 105(5): 583-591. doi: 10.1111/cas.12397

    [43]

    Nguyen J, Chandekar A, Laurel S, et al. Fibrin glue mediated direct delivery of radiation sensitizers results in enhanced efficacy of radiation treatment[J]. Discov Oncol, 2024, 15(1): 101. doi: 10.1007/s12672-024-00953-x

    [44]

    Zhang XL, Zhang T, Ma XB, et al. The design and synthesis of dextran-doxorubicin prodrug-based pH-sensitive drug delivery system for improving chemotherapy efficacy[J]. Asian J Pharm Sci, 2020, 15(5): 605-616. doi: 10.1016/j.ajps.2019.10.001

    [45]

    Su LC, Zhu K, Ge XG, et al. X-ray activated nanoprodrug for visualization of cortical microvascular alterations and NIR-II image-guided chemo-radiotherapy of glioblastoma[J]. Nano Lett, 2024, 24(12): 3727-3736. doi: 10.1021/acs.nanolett.4c00223

    [46]

    Wang YH, Wei YZ, Wu YC, et al. Multifunctional nano-realgar hydrogel for enhanced glioblastoma synergistic chemotherapy and radiotherapy: a new paradigm of an old drug[J]. Int J Nanomedicine, 2023, 18: 743-763. doi: 10.2147/IJN.S394377

    [47]

    Chen MH, Liu TY, Chen YC, et al. Combining augmented radiotherapy and immunotherapy through a nano-gold and bacterial outer-membrane vesicle complex for the treatment of glioblastoma[J]. Nanomaterials, 2021, 11(7): 1661. doi: 10.3390/nano11071661

    [48]

    Cao HQ, Dan ZL, He XY, et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer[J]. ACS Nano, 2016, 10(8): 7738-7748. doi: 10.1021/acsnano.6b03148

    [49]

    Cao ZC, Liu X, Zhang WQ, et al. Biomimetic macrophage membrane-camouflaged nanoparticles induce ferroptosis by promoting mitochondrial damage in glioblastoma[J]. ACS Nano, 2023, 17(23): 23746-23760. doi: 10.1021/acsnano.3c07555

    [50]

    Jafari A, Nagheli A, Foumani AA, et al. The role of metallic nanoparticles in inhibition of Mycobacterium tuberculosis and enhances phagosome maturation into the infected macrophage[J]. Oman Med J, 2020, 35(6): e194. doi: 10.5001/omj.2020.78

    [51]

    Li YF, Liu Y, Ren YJ, et al. Coating of a novel antimicrobial nanoparticle with a macrophage membrane for the selective entry into infected macrophages and killing of intracellular staphylococci[J]. Adv Funct Mater, 2020, 30(48): 2004942. doi: 10.1002/adfm.202004942

    [52]

    Kuang J, Rao ZY, Zheng DW, et al. Nanoparticles hitchhike on monocytes for glioblastoma treatment after low-dose radiotherapy[J]. ACS Nano, 2023, 17(14): 13333-13347. doi: 10.1021/acsnano.3c01428

    [53]

    Sugawara S, Arakaki R, Rikiishi H, et al. Lipoteichoic acid acts as an antagonist and an agonist of lipopolysaccharide on human gingival fibroblasts and monocytes in a CD14-dependent manner[J]. Infect Immun, 1999, 67(4): 1623-1632. doi: 10.1128/IAI.67.4.1623-1632.1999

    [54]

    Gao XH, Qian J, Zheng SY, et al. Overcoming the blood-brain barrier for delivering drugs into the brain by using adenosine receptor nanoagonist[J]. ACS Nano, 2014, 8(4): 3678-3689. doi: 10.1021/nn5003375

    [55]

    Cerqueira MD, Nguyen P, Staehr P, et al. Effects of age, gender, obesity, and diabetes on the efficacy and safety of the selective A2A agonist regadenoson versus adenosine in myocardial perfusion imaging integrated ADVANCE-MPI trial results[J]. JACC Cardiovasc Imaging, 2008, 1(3): 307-316. doi: 10.1016/j.jcmg.2008.02.003

    [56]

    Meng LT, Wang CR, Lu YP, et al. Targeted regulation of blood-brain barrier for enhanced therapeutic efficiency of hypoxia-modifier nanoparticles and immune checkpoint blockade antibodies for glioblastoma[J]. ACS Appl Mater Interfaces, 2021, 13(10): 11657-11671. doi: 10.1021/acsami.1c00347

    [57]

    Mantovani A, Allavena P, Marchesi F, et al. Macrophages as tools and targets in cancer therapy[J]. Nat Rev Drug Discov, 2022, 21(11): 799-820. doi: 10.1038/s41573-022-00520-5

    [58]

    Chen BB, Guo KL, Zhao XY, et al. Tumor microenvironment-responsive delivery nanosystems reverse immunosuppression for enhanced CO gas/immunotherapy[J]. Exploration, 2023, 3(6): 20220140. doi: 10.1002/EXP.20220140

    [59]

    Pittet MJ, Michielin O, Migliorini D. Clinical relevance of tumour-associated macrophages[J]. Nat Rev Clin Oncol, 2022, 19(6): 402-421. doi: 10.1038/s41571-022-00620-6

    [60]

    Li H, Somiya M, Kuroda S. Enhancing antibody-dependent cellular phagocytosis by re-education of tumor-associated macrophages with resiquimod-encapsulated liposomes[J]. Biomaterials, 2021, 268: 120601. doi: 10.1016/j.biomaterials.2020.120601

    [61]

    Jiang SP, Li WP, Yang J, et al. Cathepsin B-responsive programmed brain targeted delivery system for chemo-immunotherapy combination therapy of glioblastoma[J]. ACS Nano, 2024, 18(8): 6445-6462. doi: 10.1021/acsnano.3c11958

    [62]

    Zhang L, Zhang YN, Wang X, et al. A Trojan-horse-like biomimetic nano-NK to elicit an immunostimulatory tumor microenvironment for enhanced GBM chemo-immunotherapy[J]. Small, 2023, 19(44): e2301439. doi: 10.1002/smll.202301439

    [63]

    Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761): 622-627. doi: 10.1126/science.1114397

图(1)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  34
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-03
  • 修回日期:  2024-09-12
  • 录用日期:  2024-09-13
  • 刊出日期:  2024-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭