Research progress on the mechanism of traditional Chinese medicine polysaccharides in preventing and treating kidney injury
-
摘要:
中药多糖是从中草药中提取的一类活性多糖,其中许多具有特殊的生物活性。现代研究发现,从植物、动物、藻类等中提取的多糖成分有改善肾脏损伤的重要作用。目前肾损伤的治疗以药物治疗为主,对于中药多糖治疗肾损伤的研究报道较少。本文从肾损伤的类型出发,阐述了中药多糖对糖尿病肾病、肾炎、肾结石、高血压诱导的肾损伤、化学毒物诱导的肾损伤和药物诱导的肾损伤的改善作用及机制,展望了中药多糖在肾损伤领域的发展前景,以期为中药多糖的进一步研究提供参考。
Abstract:Traditional Chinese medicine (TCM) polysaccharides are active polysaccharides extracted from Chinese herbal medicines, many of which exhibit specific biological activities. Modern research has revealed that polysaccharide components extracted from plants, animals, and algae have a significant role in improving kidney injury. Currently, drug therapy is the primary treatment for kidney injury, with few reports on the use of TCM polysaccharides. This review explores the therapeutic effects and mechanisms of TCM polysaccharides on diabetic nephropathy, nephritis, kidney stones, hypertension-induced kidney injury, chemical toxin-induced kidney injury, and drug-induced kidney injury. Additionally, it discusses the prospects for the development of TCM polysaccharides in this field to provide a reference for further research.
-
当前,肾损伤的防治形势十分严峻,包括糖尿病肾病、肾炎等肾脏疾病已成为全球范围内的健康问题。2009-2010年的一项调查显示,中国的慢性肾脏病(chronic kidney disease,CKD)的患病率为10.8%,CKD住院患者从2010年的3.58%增加到2017年的4.95%[1]。据2018–2019年的一项研究统计,中国成年人CKD的患病率为8.2%,虽然在过去的10年里,患病率似乎有所下降,但对慢性肾脏病及其合并症的知晓率和控制率仍不理想[2]。此外,据估计2013年中国约有140万符合KDIGO标准的急性肾损伤(acute kidney injury,AKI)患者在医院接受治疗,并且AKI患者最后往往会进展到CKD[3−4]。长此以往,肾损伤的程度会越来越严重,最终可导致肾脏组织的纤维化,进而演变成肾衰竭,最终发展成尿毒症。目前用于临床治疗的顺铂(cisplatin,CP)、布洛芬(ibuprofen,IBU)、庆大霉素等药物对肾脏都有较大的毒性及副作用[5]。因此,副作用较小的中药多糖近年来在治疗肾脏病领域得到了广泛的关注。
多糖通常由超过10个单糖分子缩合、失水而成,是自然界中丰富的一类天然大分子物质,广泛来源于动物、植物、藻类和微生物[6]。中药多糖因其广泛的来源、低毒性和多样的生物活性而在全世界范围内被研究,如抗氧化[7]、免疫调节[8]、抗肿瘤[9]、抗病毒[10]、调血脂[11]和降血糖[12]等。
近年来,大量研究表明多糖能有效改善肾损伤,并对其机制进行了深入研究。本文依据肾损伤产生的原因不同,分类阐述了中药多糖对肾损伤的改善作用及机制的研究进展,以期为中药多糖今后在肾损伤方向的研究领域及应用前景提供一定的研究参考。
1. 糖尿病肾病
糖尿病肾病(diabetic kidney disease,DKD)是糖尿病所致的肾损伤疾病,是长期高血糖环境诱发的微血管并发症,其患病率和对肾脏的影响使其成为终末期肾病的主要原因,据估计,到2030年全球将有6.43亿人患有糖尿病,将会严重影响身体健康[13]。研究表明,约40%的2型糖尿病(diabetic nephropathy,T2DM)患者会发生糖尿病相关肾病[14]。中药多糖可改善DKD引起的高血糖、炎症和肠道菌群紊乱等不良反应。Guo等[15]指出黄芪多糖不仅可以降低糖尿病肾病大鼠的空腹血糖水平,还可以保护肾功能,通过降低DKD发展过程中炎症因子如IL-1β、白细胞介素-6(interleukin-6,IL-6)和单核趋化蛋白-1(monocyte chemoattractant protein-1,MCP-1)的表达,增强肾脏抗炎能力,减轻糖尿病肾病。Chen等[16]研究表明,灵芝多糖可以降低DKD小鼠的血糖,降低尿白蛋白排泄(urine albumin excretion,UAE)、血清肌酐(serum creatinine,Scr)和血尿素氮(blood urea nitrogen,BUN)的水平,提示灵芝多糖有改善肾损伤的作用。Wan[17]等发现枸杞多糖能显著降低糖尿病小鼠的血糖水平,改善胰岛素抵抗。枸杞多糖还可降低DKD小鼠Scr、BUN和尿微量白蛋白(microscale albuminuria,MAU)水平来改善肾功能。灰树花多糖可有效改善链脲佐菌素(streptozotocin,STZ)诱导的糖尿病小鼠的血糖水平和胰岛素敏感性,抑制炎症反应,从而减轻肾功能损害[18]。高迁移率族蛋白1(high mobility group box 1,HMGB1)是一种高度保守的非组蛋白核蛋白,其与Toll样受体4(Toll-like receptor 4,TLR4)结合,激活下游信号通路,引起局部炎症,导致肾脏损伤[19]。Toll样受体4作为Toll样受体家族的一份子,在先天免疫系统中起着至关重要的作用,特别是在DKD的发展过程中,高糖会显著促进TLR4的表达和激活[20]。柴胡多糖通过抑制HMGB1-TLR4信号通路的活性,下调其下游信号通路核因子-κB(nuclear factor-κB,NF-κB),显著降低促炎性细胞因子IL-6、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)的水平,从而抑制炎症反应,防止糖尿病小鼠肾脏损伤的发生[21]。越来越多的研究表明,TLR4/NF-κB作为最重要的促炎通路之一,已被证实参与减轻DKD的肾脏炎症[22]。NF-κB作为TLR4的下游效应物,是介导各种炎症过程并促进细胞炎症基因表达的关键核转录因子[23]。高糖可促进TLR4的活化,进而刺激NF-κB通路产生TNF-α、生长转化因子β1(transforming growth factor-β1,TGF-β1)等炎性细胞因子,加重炎症反应。有研究表明,黄芪多糖通过抑制肾小球和近端小管中的TLR4/NF-κB通路来抑制高糖诱导的糖尿病肾病[15]。罗汉果多糖能够下调DKD小鼠TLR4蛋白的表达,并抑制TLR4/NF-κB途径,从而达到调节氧化应激和抑制炎症反应的作用,改善DKD样症状[24]。
近年来,科学家发现多糖可以通过增强人体肠道微生物多样性,调节肠道菌群的组成,促进有益菌的生长和增殖来改善疾病并维持生理活性[25]。多糖被认为是肠道微生物群代谢成短链脂肪酸(short chain fatty acid,SCFA)的底物,或者被认为具有益生元样作用以改善肠道微生物群的组成,从而促进SCFA的产生[26]。牡丹皮多糖能降低血清促炎介质,并升高短链脂肪酸含量,还可通过动态调节肠道微生物群对DKD大鼠产生积极影响,从而重建肠道菌群,改善肠屏障功能[27]。车前子多糖可以调节肾脏组织和结肠组织中促炎因子的表达以及短链脂肪酸含量,从而减少炎症因子的释放,改善失调的肠道菌群[28]。瓜蒌籽多糖可以增加乳杆菌属(Lactobacillus)、罗氏菌属(Roseburia)、颤螺菌属(Oscillospira)、和瘤胃球菌属(Ruminococcus )等有益菌的丰度,调节肠道菌群组成和相对丰度,改善糖尿病小鼠的肾损伤 [29]。
2. 高血压诱导的肾损伤
高血压可上调肾脏生长转化因子β(transforming growth factor-β,TGF-β)的表达和胶原合成,促进肾小球和肾小管基底膜增厚、细胞外基质沉积和肾间质纤维化[30]。肾纤维化是高血压的常见事件,其病理特征是细胞外基质(extracellular matrix,ECM)成分在肾小球和肾小管间质的过度积聚[31]。TGF-β是导致肾脏纤维化的关键因子,可激活蛋白激酶等多种细胞内信号通路,刺激ECM的产生并抑制降解,从而介导肾纤维化的进展[32]。中药多糖可以通过抑制纤维化、炎症反应等来改善高血压诱导的肾损伤。Huang等[33]研究表明三七多糖能调节人肾小管上皮细胞的上皮间质转化(extracellular matrix,EMT)进程及纤维化相关蛋白的表达。Zheng等[34]发现黄芪多糖可有效减轻肾脏炎症,抑制高血压所引起的纤维化,从而改善肾功能。孔石莼多糖对肾纤维化具有调节作用,该多糖可以通过抑制足细胞脱离、肾小球基底膜增厚和肾纤维化标志物胶原Ⅰ和Ⅳ的表达来减少尿蛋白[35]。TGF-β作为纤维化的主要调节剂,是肾脏疾病中的关键促纤维化介质[36]。Smad分子是参与TGF-β1信号传导的族蛋白,Smad2、Smad3被认为是在肾病的发展中起主要作用的蛋白[37]。黄芪多糖对高血压小鼠肾脏具有保护作用,其机制主要是抑制TGF-β1的下游因子Smad2和Smad3的表达,并且该多糖可通过抑制TGF-β信号通路的表达,降低整合素连接激酶(integrin-linked kinase,ILK)的活性,减少p65蛋白的磷酸化,下调纤维化标志物胶原Ⅰ和胶原Ⅲ的表达水平,降低胶原的沉积,改善肾功能[34]。TGF-β1还可调节下游因子Smad3、Smad4的表达,使其在足细胞EMT中被活化[38]。海带多糖可通过调节TGF-β1介导的Smad3信号通路,抑制足细胞EMT,改善肾功能障碍[39]。
此外,中药多糖可改善肾纤维化所引起的氧化应激反应。氧化应激是指在各种有害刺激下体内活性氧(reactive oxygen species,ROS)的过度产生,导致氧化和抗氧化系统之间的失衡,最终导致组织损伤[40]。抗氧化酶主要有超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)等,丙二醛(malondialdehyde,MDA)是主要的氧化作用产物,这些抗氧化酶和氧化作用产物已被认为是评价机体抗氧化能力的主要指标。在单侧输尿管梗阻术(unilateral ureteral obstruction,UUO)建立的肾纤维化模型中,肾组织SOD、谷胱甘肽(glutathione,GSH)、GSH-PX和CAT含量显著降低,MDA和ROS水平显著升高,导致小鼠肾组织氧化系统和抗氧化系统失衡[41]。在铁皮石斛多糖干预后,MDA和ROS的水平降低,芳香烃受体(aryl hydrocarbon receptor,AhR)和NADPH氧化酶4(NADPH oxidase 4,NOX4)蛋白的表达被抑制,而SOD、GSH、GSH-PX和CAT的含量显著增加,从而减轻了氧化应激损伤。
3. 化学毒物诱导的肾损伤
化学毒物可诱导肾损伤的产生,这些化学毒物包括乙醇、CCl4、H2O2、甘油等。化学毒物产生的代谢产物会在肾细胞和肾间质中蓄积,逐渐发展为慢性肾功能衰竭。研究表明中药多糖对化学毒物诱导的肾损伤具有改善作用,可通过调节氧化应激、抑制炎症反应,有效保护化学毒物诱导的肾损伤。Song等[42]研究了大红袍多糖对酒精性肾损伤的保护作用,结果表明大红袍多糖能有效降低急性酒精性肾损伤小鼠肾脏的过氧化过程,提高抗氧化能力,对酒精所致的器官损伤具有一定的保护作用。除酒精引起的肾损伤外,CCl4、H2O2、甘油等也可引起肾损伤。相关研究表明,青钱柳多糖能减轻H2O2对细胞的氧化应激损伤,对CCl4所致小鼠肾损害也具有一定的预防作用[43]。铅、镉等重金属也属于化学毒物。摄入后,它们首先进入血液,在循环过程中被分配到软组织中,其中铅、镉等化学毒物在肾的蓄积水平最高,最终造成肾脏损伤[44]。慈姑多糖可以通过缓解氧化损伤所致细胞凋亡来改善铅、镉等重金属导致的肾损伤[45]。中药多糖还可改善化学毒物所引起的肾细胞凋亡。Xie等[46]发现枸杞多糖可以抑制TLR4受体的激活,进而调节磷脂酰肌醇3-激酶(phosphatidylinositol-3-kinase,PI3K)/蛋白激酶B(protein kinase B,Akt)/哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路,促进肾组织细胞的自噬,减少肾组织细胞的凋亡,从而延缓铅诱导的肾损伤。此外,Akt/糖原合成酶激酶3β(glycogen synthase kinase 3β,GSK3β)/核因子E2相关因子2(nuclear factor erythroid 2-related factor 2,Nrf2)/血红素加氧酶-1(HO-1)通路可调节谷氨酸兴奋性毒性模型中的氧化应激、炎症和细胞凋亡[47]。Liu等[48]发现金针菇多糖可通过激活Akt/GSK3β/Nrf2/HO-1信号通路,调节氧化应激,抑制炎症和细胞凋亡,改善铅中毒小鼠的肾损伤。
4. 药物诱导的肾损伤
在肾脏代谢过程中,一些药物如布洛芬、环磷酰胺等,可以对机体组织的抗氧化防御系统产生影响,引起肾脏的氧化应激和炎症反应,从而导致药物诱导的肾损害。中药多糖可以通过调节氧化应激,抑制炎症反应,减轻药物诱导的肾损伤。Xu等[49]探究了黄精多糖对布洛芬引起肾损伤的治疗效果,短时间内摄入大剂量布洛芬会产生急性肾毒性,黄精多糖作为药物载体,起到调节氧化应激的作用,并可减轻肾脏炎症,从而预防布洛芬引起的肾损伤。白术多糖可以通过缓解小鼠肾脏氧化应激,从而降低环磷酰胺诱导的小鼠肾损伤[50]。Wang等[51]指出丹参多糖对氟苯尼考诱导的肾损伤有干预作用,氟苯尼考严重影响了雏鸡的肾脏发育和肾功能发挥,丹参多糖通过消耗积累的过氧化物,提高了肾脏的抗氧化能力,从而改善了肾脏的氧化应激状态。黄芪多糖可以通过减少小鼠肾组织中ROS的产生,恢复肾组织总超氧化物歧化酶和谷胱甘肽过氧化物酶的活性,减轻顺铂所致的氧化损伤[52]。
5. 肾 炎
肾小球肾炎是以系膜细胞增殖和细胞外基质沉积为特征的慢性肾损伤疾病的主要诱因[53]。中药多糖具有抗炎作用,可以调节炎症细胞因子的释放,减轻肾小球、肾小管等组织的炎症反应。炎症反应是一个复杂的生物学过程,包括合成和释放促炎细胞因子,如TNF-α,IL-6和IL-1β[54]。由巨噬细胞和白细胞产生的炎症细胞因子和介质的增加,会增加血管的通透性,使血管扩张,引起微循环障碍,导致组织损伤[55]。当它们首先被炎性细胞释放时,诱导血管内皮细胞表达黏附分子,导致中性粒细胞、单核细胞和淋巴细胞的聚集,然后从血管中移动到受损组织,进一步导致组织坏死[56]。Zhao等[57]研究表明,车前子多糖可以显著降低肾小球肾炎大鼠血清里尿酸(uric acid,UA)、BUN等生化指标,减少肾脏的充血和水肿及炎性因子在肾小管中的分泌,抑制肾间质炎症浸润,改善肾炎。Huang等[58]发现枸杞多糖可以改善脂多糖(lipopolysaccharide,LPS)诱导的肾组织内的大量炎症细胞聚集、细胞肿胀和浸润,IL-1β、IL-6、IL-8、TNF-α和NF-κB的表达水平降低且呈浓度依赖性,抑制肾组织炎症反应。鼓槌石斛多糖可下调LPS诱导的急性肾损伤小鼠Scr和BUN水平,降低炎症指标TNF-α、IL-6、MCP-1、环氧化酶-2(cyclooxygenase-2,COX-2)的表达,从而达到抗炎的作用[59]。该多糖可改善LPS诱导的急性肾损伤小鼠的肾小管损伤,具有良好的肾保护作用,有望使其成为治疗肾脏疾病(如肾炎)的理想天然药物。治疗肾炎的新方法可能与阻断p38丝裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)/激活转录因子2(activated transcription factor 2,ATF2)信号通路有关,当中性粒细胞、巨噬细胞和T淋巴细胞受到有害物质的刺激时,G蛋白偶联受体和非G蛋白偶联受体会被激活,p38蛋白的磷酸化降低,p38蛋白随后进入细胞核并激活核转录因子ATF2,引起促炎因子的分泌和产生[60]。同时,促炎因子可以激活p38 MAPK/ATF2通路,加速炎症因子的释放,增强炎症反应。Han等[61]研究发现黄精多糖通过抑制p38 MAPK/ATF2信号通路,使p38蛋白的磷酸化增加,阻止p38蛋白激活核转录因子ATF2,减少炎症因子的产生,抑制炎症反应,减轻肾炎。
6. 肾结石
肾结石也能产生肾损伤,肾结石的形成与肾小管上皮细胞(tubular epithelial cells,TECs)损伤及晶体黏附密切相关。草酸钙(CaOx)晶体在肾小管上皮细胞上的黏附是肾结石形成的关键[62]。研究表明,HK-2表面存在许多促进晶体黏附的分子和黏附蛋白如膜联蛋白A1(annexin A1,ANXA1)、热休克蛋白90(heat shock protein 90,HSP90)和骨桥蛋白(osteopontin,OPN)[63]。OPN等水平升高会增加CaOx晶体与HK-2的黏附,从而增加了结石形成的风险[64]。多糖降低纳米草酸钙(nano-CaOx monohydrate,nano-COM)黏附可能与下调HK-2表达的黏附分子和黏附蛋白有关。Chen等[65]探讨了硫酸裙带菜多糖的抗氧化活性、硫酸裙带菜多糖改善nano-COM对HK-2细胞的氧化损伤。一方面,随着硫酸裙带菜多糖中-OSO3−含量的增加,调节CaOx晶体生长的能力逐渐增加,ROS水平降低,抗氧化活性增强;另一方面,nano-COM晶体增强了细胞活力,使良好的细胞形态得以维持,并降低了磷脂酰丝氨酸(phosphatidylserine,PS)的外翻及线粒体膜电位。同时,黏附蛋白如OPN、HSP90和ANXA1的表达也降低,nano-COM与HK-2细胞的黏附在硫酸裙带菜多糖的作用下受到抑制,肾结石的形成也受到抑制。自噬已被证明对氧化应激诱导的肾小管损伤的调节至关重要[66]。Nano-COM引起细胞自噬的增强,进一步加剧了细胞损伤,晶体和细胞之间的相互作用促进了晶体在肾脏中的滞留,最终对细胞造成氧化应激损伤,增加了结石形成的风险[67]。Zhang等[68]研究表明,玉米须多糖可提高SOD酶活性,降低MDA水平,降低细胞内钙离子的水平、细胞自噬的水平以及细胞凋亡和坏死的速率,还能减少nano-COM在细胞内的蓄积,抑制HK-2细胞对nano-COM的内吞,提示对预防结石的形成具有潜在作用。
7. 结语与展望
中药多糖在治疗肾损伤过程中展现出多方位的调控作用,可通过调节多种细胞因子,如TGF-β、TNF-α、IL-1β、IL-6、MCP-1等,作用于HMGB1/TLR4、NF-κB、TGF-β/Smad、PI3K/Akt/mTOR、p38 MAPK/ATF2等多条信号通路。在这个多层面的调控网络中,中药多糖介导了以下主要途径,以调控肾损伤的发展:(1)中药多糖具有抗氧化作用,通过平衡氧化和抗氧化系统,从而减缓肾损伤的进程;(2)中药多糖也可通过修复HK-2细胞损伤及线粒体障碍,抑制肾结石的形成,改善肾损伤;(3)通过抑制炎症反应,中药多糖可减缓或抑制肾损伤过程中的炎症细胞因子,调节血管的通透性和张力,改善微循环障碍;(4)中药多糖通过调节肠道菌群组成,促进有益菌的生长和增殖,调节肠道代谢、代谢产物等多方面因素,影响肾损伤的进程;(5)通过调节多种信号通路中关键因子的表达,直接作用于肾脏组织,修复细胞损伤。
本文对中药多糖在治疗肾损伤疾病中的主要作用机制进行了总结见图1和表1,以期为今后基于中药多糖防治肾损伤疾病新药开发提供研究参考。
表 1 中药多糖抗肾损伤的作用机制多糖来源 作用机制 参考文献 黄芪 血糖↓,IL-1β、IL-6、MCP-1↓,抑制炎症反应,减轻纤维化,调节氧化应激,调节TLR4/NF-κB、TGF-β/ILK途径 [15, 34, 52] 灵芝 血糖↓,UAE、Scr、BUN水平↓ [16] 枸杞 血糖↓,Scr、BUN、MAU水平↓,IL-1β、IL-6、IL-8、TNF-α、NF-κB↓,抑制炎症反应、肾细胞凋亡,调节PI3K/Akt/mTOR途径 [17, 46, 58] 灰树花 血糖↓,胰岛素敏感性↓,抑制炎症反应 [18] 柴胡 IL-6、TNF-α↓,抑制炎症反应,调节HMGB1-TLR4途径 [21] 罗汉果 调节氧化应激,抑制炎症反应,调节TLR4/NF-κB途径 [24] 牡丹皮 SCFAs表达↑,调节肠道菌群,抑制炎症反应 [27] 车前子 SCFAs表达↑,UA、BUN↓,调节肠道菌群,抑制炎症反应 [28, 57] 瓜蒌籽 有益菌丰度↑,调节肠道菌群 [29] 三七 调节EMT进程,减轻纤维化 [33] 孔石莼 尿蛋白↓,抑制足细胞,减少纤维化 [35] 海带 抑制足细胞EMT,调节TGF-β1/Smad途径 [39] 铁皮石斛 MDA、ROS水平↓,AhR、NOX4蛋白表达↓,SOD、GSH、GSH-PX、CAT↑,调节氧化应激 [41] 大红袍 调节氧化应激 [42] 青钱柳 调节氧化应激 [43] 慈姑 调节氧化应激 [45] 金针菇 调节氧化应激,抑制炎症反应、细胞凋亡,调节Akt/GSK3β/Nrf2/HO-1途径 [48] 黄精 调节氧化应激,抑制炎症反应,调节p38 MAPK/ATF2途径 [49, 61] 白术 调节氧化应激 [50] 丹参 调节氧化应激 [51] 鼓槌石斛 Scr、BUN↓,IL-6、MCP-1、TNF-α、COX-2↓,抑制炎症反应 [59] 裙带菜 ROS水平↓,OPN、HSP90、ANXA1表达↓,修复HK-2细胞,调节氧化应激,减缓肾结石的进程 [65] 玉米须 MDA、Ca2+水平↓,SOD活性↑,修复HK-2细胞,抑制细胞自噬及凋亡,抑制肾结石的形成 [68] “↓”:下降;“↑”:上升;IL-1β:白细胞介素-1β;IL-6:白细胞介素-6;MCP-1:单核趋化蛋白-1;TLR4:Toll样受体4;NF-κB:核因子-κB;TGF-β:生长转化因子β;ILK:整合素连接激酶;UAE:尿白蛋白排泄;Scr:血清肌酐;BUN:血尿素氮;MAU:尿微量白蛋白;IL-8:白细胞介素-8;TNF-α:肿瘤坏死因子-α;PI3K:磷脂酰肌醇3-激酶;Akt:蛋白激酶B;mTOR:哺乳动物雷帕霉素靶蛋白;HMGB1:高迁移率族蛋白1;SCFAs:短链脂肪酸;UA:尿酸;EMT:上皮间质转化;TGF-β1:生长转化因子β1;MDA:丙二醛;ROS:活性氧;AhR:芳香烃受体;NOX4:NADPH氧化酶4;SOD:超氧化物歧化酶;GSH:谷胱甘肽;GSH-Px:谷胱甘肽过氧化物酶;CAT:过氧化氢酶;GSK3β:糖原合成酶激酶3β;Nrf2:核因子E2相关因子2;HO-1:血红素加氧酶-1;p38 MAPK:p38丝裂原活化蛋白激酶;ATF2:激活转录因子2;COX-2:环氧化酶-2;OPN:骨桥蛋白;HSP90:热休克蛋白90;ANXA1:膜联蛋白A1 目前,中药多糖治疗肾损伤的研究仍主要停留在细胞和动物层面,其临床方面的应用及作用机制研究仍需深入探究。同时,随着科学技术的不断发展,还可结合现代新兴研究技术,如纳米、药物-靶点-信号通路网络等新技术来深入研究中药多糖抗肾损伤的具体作用机制。未来还需多关注中药多糖发挥抗肾损伤活性的单糖组成、分子结构及修饰方法方面的研究以及AI技术。目前靶点研究仍是关注的重点,CD19、BCMA、PD-1/PD-L1等仍是热门靶点,明确中药多糖在肾损伤中的作用靶点及构效关系等方面的问题也是非常重要的。
肾损伤的表现复杂多样,且发病机制尚未完全阐明。一旦肾损伤疾病发展为肾衰竭就会变得不可逆转。目前肾损伤疾病的治疗主要集中在原发病的积极治疗和使用免疫抑制剂、激素类药物、肾素-血管紧张素-醛固酮系统(RAAS)阻断剂、降压药和降糖药的支持治疗。然而,治疗效果并不令人满意,并且经常伴随不良反应[69]。近年来,中药多糖因其能够通过多靶点、多通路治疗肾损伤疾病而成为研究的热点。具有肾损伤改善作用的中药多糖为新药的研究与开发提供了良好的天然原料,在防治肾损伤等疾病方面具有很大优势,值得继续深入研究与探索。
-
表 1 中药多糖抗肾损伤的作用机制
多糖来源 作用机制 参考文献 黄芪 血糖↓,IL-1β、IL-6、MCP-1↓,抑制炎症反应,减轻纤维化,调节氧化应激,调节TLR4/NF-κB、TGF-β/ILK途径 [15, 34, 52] 灵芝 血糖↓,UAE、Scr、BUN水平↓ [16] 枸杞 血糖↓,Scr、BUN、MAU水平↓,IL-1β、IL-6、IL-8、TNF-α、NF-κB↓,抑制炎症反应、肾细胞凋亡,调节PI3K/Akt/mTOR途径 [17, 46, 58] 灰树花 血糖↓,胰岛素敏感性↓,抑制炎症反应 [18] 柴胡 IL-6、TNF-α↓,抑制炎症反应,调节HMGB1-TLR4途径 [21] 罗汉果 调节氧化应激,抑制炎症反应,调节TLR4/NF-κB途径 [24] 牡丹皮 SCFAs表达↑,调节肠道菌群,抑制炎症反应 [27] 车前子 SCFAs表达↑,UA、BUN↓,调节肠道菌群,抑制炎症反应 [28, 57] 瓜蒌籽 有益菌丰度↑,调节肠道菌群 [29] 三七 调节EMT进程,减轻纤维化 [33] 孔石莼 尿蛋白↓,抑制足细胞,减少纤维化 [35] 海带 抑制足细胞EMT,调节TGF-β1/Smad途径 [39] 铁皮石斛 MDA、ROS水平↓,AhR、NOX4蛋白表达↓,SOD、GSH、GSH-PX、CAT↑,调节氧化应激 [41] 大红袍 调节氧化应激 [42] 青钱柳 调节氧化应激 [43] 慈姑 调节氧化应激 [45] 金针菇 调节氧化应激,抑制炎症反应、细胞凋亡,调节Akt/GSK3β/Nrf2/HO-1途径 [48] 黄精 调节氧化应激,抑制炎症反应,调节p38 MAPK/ATF2途径 [49, 61] 白术 调节氧化应激 [50] 丹参 调节氧化应激 [51] 鼓槌石斛 Scr、BUN↓,IL-6、MCP-1、TNF-α、COX-2↓,抑制炎症反应 [59] 裙带菜 ROS水平↓,OPN、HSP90、ANXA1表达↓,修复HK-2细胞,调节氧化应激,减缓肾结石的进程 [65] 玉米须 MDA、Ca2+水平↓,SOD活性↑,修复HK-2细胞,抑制细胞自噬及凋亡,抑制肾结石的形成 [68] “↓”:下降;“↑”:上升;IL-1β:白细胞介素-1β;IL-6:白细胞介素-6;MCP-1:单核趋化蛋白-1;TLR4:Toll样受体4;NF-κB:核因子-κB;TGF-β:生长转化因子β;ILK:整合素连接激酶;UAE:尿白蛋白排泄;Scr:血清肌酐;BUN:血尿素氮;MAU:尿微量白蛋白;IL-8:白细胞介素-8;TNF-α:肿瘤坏死因子-α;PI3K:磷脂酰肌醇3-激酶;Akt:蛋白激酶B;mTOR:哺乳动物雷帕霉素靶蛋白;HMGB1:高迁移率族蛋白1;SCFAs:短链脂肪酸;UA:尿酸;EMT:上皮间质转化;TGF-β1:生长转化因子β1;MDA:丙二醛;ROS:活性氧;AhR:芳香烃受体;NOX4:NADPH氧化酶4;SOD:超氧化物歧化酶;GSH:谷胱甘肽;GSH-Px:谷胱甘肽过氧化物酶;CAT:过氧化氢酶;GSK3β:糖原合成酶激酶3β;Nrf2:核因子E2相关因子2;HO-1:血红素加氧酶-1;p38 MAPK:p38丝裂原活化蛋白激酶;ATF2:激活转录因子2;COX-2:环氧化酶-2;OPN:骨桥蛋白;HSP90:热休克蛋白90;ANXA1:膜联蛋白A1 -
[1] Yang C, Wang HB, Zhao XJ, et al. CKD in China: evolving spectrum and public health implications[J]. Am J Kidney Dis, 2020, 76(2): 258-264. doi: 10.1053/j.ajkd.2019.05.032
[2] Wang LM, Xu X, Zhang M, et al. Prevalence of chronic kidney disease in China: results from the sixth China chronic disease and risk factor surveillance[J]. JAMA Intern Med, 2023, 183(4): 298-310. doi: 10.1001/jamainternmed.2022.6817
[3] Yang L, Xing GL, Wang L, et al. Acute kidney injury in China: a cross-sectional survey[J]. Lancet, 2015, 386(10002): 1465-1471. doi: 10.1016/S0140-6736(15)00344-X
[4] Chawla LS, Eggers PW, Star RA, et al. Acute kidney injury and chronic kidney disease as interconnected syndromes[J]. N Engl J Med, 2014, 371(1): 58-66. doi: 10.1056/NEJMra1214243
[5] Li J, Li TL, Li ZP, et al. Potential therapeutic effects of Chinese meteria medica in mitigating drug-induced acute kidney injury[J]. Front Pharmacol, 2023, 14: 1153297. doi: 10.3389/fphar.2023.1153297
[6] Yu Y, Shen MY, Song QQ, et al. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review[J]. Carbohydr Polym, 2018, 183: 91-101. doi: 10.1016/j.carbpol.2017.12.009
[7] Huang GL, Mei XY, Hu JC. The antioxidant activities of natural polysaccharides[J]. Curr Drug Targets, 2017, 18(11): 1296-1300.
[8] Du B, Xu BJ. Editorial: immune-boosting effects of dietary bioactive polysaccharides[J]. Front Nutr, 2022, 9: 1102641. doi: 10.3389/fnut.2022.1102641
[9] Ying Y, Hao W. Immunomodulatory function and anti-tumor mechanism of natural polysaccharides: a review[J]. Front Immunol, 2023, 14: 1147641. doi: 10.3389/fimmu.2023.1147641
[10] Chen L, Huang GL. The antiviral activity of polysaccharides and their derivatives[J]. Int J Biol Macromol, 2018, 115: 77-82. doi: 10.1016/j.ijbiomac.2018.04.056
[11] Ding M, Wang G, Yuan P, et al. Research progress in the role and mechanism of polysaccharides in regulating glucose and lipid metabolism[J]. J South Med Univ, 2021, 41(3): 471-475.
[12] Yang MJ, Lv JH, Yang JM, et al. Effects of Codonopsis pilosula crude polysaccharides by hypoglycemic and modulating gut microbiome in a high-fat diet and streptozotocin-induced mouse model of T2DM[J]. J Funct Foods, 2023, 111: 105893. doi: 10.1016/j.jff.2023.105893
[13] Shen SY, Zhong HY, Zhou XS, et al. Advances in traditional Chinese medicine research in diabetic kidney disease treatment[J]. Pharm Biol, 2024, 62(1): 222-232. doi: 10.1080/13880209.2024.2314705
[14] Stephens JW, Brown KE, Min T. Chronic kidney disease in type 2 diabetes: implications for managing glycaemic control, cardiovascular and renal risk[J]. Diabetes Obes Metab, 2020, 22(Suppl 1): 32-45.
[15] Guo MF, Gao JR, Jiang L, et al. Astragalus polysaccharide ameliorates renal inflammatory responses in a diabetic nephropathy by suppressing the TLR4/NF-κB pathway[J]. Drug Des Devel Ther, 2023, 17 : 2107-2118.
[16] Chen JJ, Wang Y, Sang TT, et al. Research progress on Ganoderma polysaccharide in prevention and treatment of diabetes and its complications[J]. Chin Tradit Herb Drugs(中草药), 2022, 53(3): 937-947. [17] Wan FQ, Ma FL, Wu JX, et al. Effect of Lycium barbarum polysaccharide on decreasing serum amyloid A3 expression through inhibiting NF-κB activation in a mouse model of diabetic nephropathy[J]. Anal Cell Pathol, 2022, 2022: 7847135.
[18] Jiang T, Shen SL, Wang L, et al. Grifola frondosa polysaccharide ameliorates early diabetic nephropathy by suppressing the TLR4/NF-κB pathway[J]. Appl Biochem Biotechnol, 2022, 194 (9): 4093-4104.
[19] Wang YN, Zhong JX, Zhang XZ, et al. The role of HMGB1 in the pathogenesis of type 2 diabetes[J]. J Diabetes Res, 2016, 2016: 2543268.
[20] Wang MH, Liu XY, Wang ZL, et al. The extract of Polygala fallax Hemsl. slows the progression of diabetic nephropathy by targeting TLR4 anti-inflammation and MMP-2/9-mediated anti-fibrosis in vitro[J]. Phytomedicine, 2022, 104: 154251. doi: 10.1016/j.phymed.2022.154251
[21] Liu ZZ, Weng HB, Zhang LJ, et al. Bupleurum polysaccharides ameliorated renal injury in diabetic mice associated with suppression of HMGB1-TLR4 signaling[J]. Chin J Nat Med, 2019, 17 (9): 641-649.
[22] Cheng Q, Pan J, Zhou ZL, et al. Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy[J]. Acta Pharmacol Sin, 2021, 42(6): 954-963. doi: 10.1038/s41401-020-00525-z
[23] Han X, Zhang JJ, Zhou L, et al. Sclareol ameliorates hyperglycemia-induced renal injury through inhibiting the MAPK/NF-κB signaling pathway[J]. Phytother Res, 2022, 36(6): 2511-2523. doi: 10.1002/ptr.7465
[24] Gong P, Cui DD, Guo YX, et al. A novel polysaccharide obtained from Siraitia grosvenorii alleviates inflammatory responses in a diabetic nephropathy mouse model via the TLR4-NF-κB pathway[J]. Food Funct, 2021, 12(19): 9054-9065. doi: 10.1039/D1FO01182K
[25] Fang QY, Hu JL, Nie QX, et al. Effects of polysaccharides on glycometabolism based on gut microbiota alteration[J]. Trends Food Sci Technol, 2019, 92: 65-70. doi: 10.1016/j.jpgs.2019.08.015
[26] Cai Y, Liu W, Lin YX, et al. Compound polysaccharides ameliorate experimental colitis by modulating gut microbiota composition and function[J]. J Gastroenterol Hepatol, 2019, 34(9): 1554-1562. doi: 10.1111/jgh.14583
[27] Zhang M, Yang LC, Zhu MM, et al. Moutan Cortex polysaccharide ameliorates diabetic kidney disease via modulating gut microbiota dynamically in rats[J]. Int J Biol Macromol, 2022, 206 : 849-860.
[28] Zhao H, Chen C, Zhao Y, et al. Effect of polysaccharides from Plantaginis semen on renal injury and gut microbiota in rats with membranous nephropathy[J]. Chin J Exp Tradit Med Form(中国实验方剂学杂志), 2021, 27(22): 92-99. [29] Song QY, Weng ST, Zhang KP, et al. Effect of Trichosanthes kirilowiiMaxim. seed polysaccharides on alleviating liver and kidney injury induced by type II diabetes mellitus in mice and its regulation of intestinal flora[J]. China Food Addit(中国食品添加剂), 2024, 35(1): 150-161. [30] Lu XH, Crowley SD. Inflammation in salt-sensitive hypertension and renal damage[J]. Curr Hypertens Rep, 2018, 20(12): 103. doi: 10.1007/s11906-018-0903-x
[31] Liu YH. Cellular and molecular mechanisms of renal fibrosis[J]. Nat Rev Nephrol, 2011, 7(12): 684-696. doi: 10.1038/nrneph.2011.149
[32] Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83. doi: 10.1016/j.cbi.2018.07.008
[33] Huang CF, Jing XQ, Wu QH, et al. Novel pectin-like polysaccharide from Panax notoginseng attenuates renal tubular cells fibrogenesis induced by TGF-Β[J]. Carbohydr Polym, 2022, 276: 118772. doi: 10.1016/j.carbpol.2021.118772
[34] Zheng W, Huang T, Tang QZ, et al. Astragalus polysaccharide reduces blood pressure, renal damage, and dysfunction through the TGF-β1-ILK pathway[J]. Front Pharmacol, 2021, 12 : 706617.
[35] Wan YZ, Wang SP, Chen KX, et al. High-sulfated derivative of polysaccharide from Ulva pertusa improves adriamycin-induced nephrotic syndrome by suppressing oxidative stress[J]. Food Funct, 2023, 14(20): 9167-9180. doi: 10.1039/D3FO01290E
[36] Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis[J]. Nat Rev Nephrol, 2016, 12(6): 325-338. doi: 10.1038/nrneph.2016.48
[37] Dong XJ, Gan Y, Ding LN, et al. Effect of Jiawei fengshining on synovial cell apoptosis and TGF-β1/smad signaling pathway in rats with rheumatoid arthritis[J]. Evid Based Complement Alternat Med, 2019, 2019: 8614034.
[38] Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling[J]. Nature, 2003, 425(6958): 577-584. doi: 10.1038/nature02006
[39] Li XY, Chen HR, Kuang DD, et al. Laminaria japonica polysaccharide attenuates podocyte epithelial-mesenchymal transformation via TGF-β1-mediated Smad3 and p38MAPK pathways[J]. Int J Biol Macromol, 2023, 241 : 124637.
[40] Pisoschi AM, Pop A, Iordache F, et al. Oxidative stress mitigation by antioxidants: an overview on their chemistry and influences on health status[J]. Eur J Med Chem, 2021, 209: 112891. doi: 10.1016/j.ejmech.2020.112891
[41] Shi YY, Zhou L, Zheng GZ, et al. Therapeutic mechanism exploration of polysaccharides from Dendrobium officinale on unilateral ureteral obstruction operation-induced renal fibrosis based on improving oxidative stress injury mediated by AhR/NOX4 pathway[J]. Int J Biol Macromol, 2023, 253 (Pt 3): 126920.
[42] Song QY, Kong LQ. Chemical structure and protective effect against alcoholic kidney and heart damages of a novel polysaccharide from Piperis Dahongpao[J]. Carbohydr Res, 2022, 522: 108698. doi: 10.1016/j.carres.2022.108698
[43] Wu T, Shen MY, Liu SH, et al. Ameliorative effect of Cyclocarya paliurus polysaccharides against carbon tetrachloride induced oxidative stress in liver and kidney of mice[J]. Food Chem Toxicol, 2020, 135: 111014. doi: 10.1016/j.fct.2019.111014
[44] Sauser L, Shoshan MS. Harnessing Peptides against lead pollution and poisoning: achievements and prospects[J]. J Inorg Biochem, 2020, 212: 111251. doi: 10.1016/j.jinorgbio.2020.111251
[45] Zhou MY, Zhang X, Liu HS, et al. Experimental study of Sagittaria sagittifolia polysaccharide regulating Nrf2/HO-1 to improve kidney injury in mice induced by six heavy metals[J]. China J Tradit Chin Med Pharm(中华中医药杂志), 2023, 38(8): 3810-3814. [46] Xie W, Chen HG, Chen RH, et al. Intervention effect of Lycium barbarum polysaccharide on lead-induced kidney injury mice and its mechanism: a study based on the PI3K/Akt/mTOR signaling pathway[J]. J Ethnopharmacol, 2024, 319 (Pt 2): 117197.
[47] Farhat F, Nofal S, Raafat EM, et al. Akt/GSK3β/Nrf2/HO-1 pathway activation by flurbiprofen protects the hippocampal neurons in a rat model of glutamate excitotoxicity[J]. Neuropharmacology, 2021, 196: 108654. doi: 10.1016/j.neuropharm.2021.108654
[48] Liu YY, Li HL, Ren P, et al. Polysaccharide from Flammulina velutipes residues protects mice from Pb poisoning by activating Akt/GSK3β/Nrf-2/HO-1 signaling pathway and modulating gut microbiota[J]. Int J Biol Macromol, 2023, 230: 123154. doi: 10.1016/j.ijbiomac.2023.123154
[49] Xu WH, Yang JL, Gu XY, et al. Mechanochemical prepared ibuprofen-Polygonatum sibiricum polysaccharide drug delivery system for enhanced bioactivity with reduced renal injury induced by NSAIDs[J]. Drug Deliv, 2022, 29(1): 351-363. doi: 10.1080/10717544.2022.2026533
[50] Li BX, Gong SY, Xu DN, et al. Polysaccharide of Atractylodes macrocephala Koidz alleviate kidney injury induced by cyclophosphamide in mice through arachidonic acid metabolic pathway[J]. Sci Technol Food Ind(食品工业科技), 2024, 45(10): 325-334. [51] Wang X, Liu W, Jin GZ, et al. Salvia miltiorrhiza polysaccharides alleviates florfenicol induced kidney injury in chicks via inhibiting oxidative stress and apoptosis[J]. Ecotoxicol Environ Saf, 2022, 233 : 113339.
[52] Ma Q, Xu Y, Tang LM, et al. Astragalus polysaccharide attenuates cisplatin-induced acute kidney injury by suppressing oxidative damage and mitochondrial dysfunction[J]. Biomed Res Int, 2020, 2020 : 2851349.
[53] Lu T, Zhao WE, Zhang F, et al. Lycium barbarum polysaccharides attenuate rat anti-Thy-1 glomerulonephritis through mediating pyruvate dehydrogenase[J]. Biomedecine Pharmacother, 2019, 116 : 109020.
[54] Gan Y, Tao S, Cao D, et al. Protection of resveratrol on acute kidney injury in septic rats[J]. Hum Exp Toxicol, 2017, 36(10): 1015-1022. doi: 10.1177/0960327116678298
[55] Regueira T, Andresen M, Mercado M, et al. Physiopathology of acute renal failure during sepsis[J]. Med Intensiva, 2011, 35(7): 424-432. doi: 10.1016/j.medin.2011.03.011
[56] Abrams MT, Koser ML, Seitzer J, et al. Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment[J]. Mol Ther, 2010, 18(1): 171-180. doi: 10.1038/mt.2009.208
[57] Zhao H, Xu J, Wang RY, et al. Plantaginis semen polysaccharides ameliorate renal damage through regulating NLRP3 inflammasome in gouty nephropathy rats[J]. Food Funct, 2021, 12 (6): 2543-2553.
[58] Huang YY, Zhou F, Shen C, et al. LBP reduces theinflammatory injuryof kidney in septic rat and regulates the Keap1-Nrf2∕ARE signaling pathway1[J]. Acta Cir Bras, 2019, 34(1): e20190010000003.
[59] Hao YT, Lao SH, Liu HL, et al. Isolation and characterization of a nephroprotective polysaccharide from Dendrobium chrysotoxum Lindl against LPS-induced acute kidney injury mice[J]. Int J Biol Macromol, 2023, 253 (Pt 1): 126614.
[60] Ma T, Liu XW, Liu Z. Function of the p38MAPK-HSP27 pathway in rat lung injury induced by acute ischemic kidney injury[J]. Biomed Res Int, 2013, 2013: 981235.
[61] Han CY, Sun TT, Liu YW, et al. Protective effect of Polygonatum sibiricum polysaccharides on gentamicin-induced acute kidney injury in rats via inhibiting p38 MAPK/ATF2 pathway[J]. Int J Biol Macromol, 2020, 151: 595-601. doi: 10.1016/j.ijbiomac.2020.02.049
[62] Fong-Ngern K, Sueksakit K, Thongboonkerd V. Surface heat shock protein 90 serves as a potential receptor for calcium oxalate crystal on apical membrane of renal tubular epithelial cells[J]. J Biol Inorg Chem, 2016, 21(4): 463-474. doi: 10.1007/s00775-016-1355-x
[63] Sutthimethakorn S, Thongboonkerd V. Effects of high-dose uric acid on cellular proteome, intracellular ATP, tissue repairing capability and calcium oxalate crystal-binding capability of renal tubular cells: implications to hyperuricosuria-induced kidney stone disease[J]. Chem Biol Interact, 2020, 331: 109270. doi: 10.1016/j.cbi.2020.109270
[64] Hirose M, Tozawa K, Okada A, et al. Role of osteopontin in early phase of renal crystal formation: immunohistochemical and microstructural comparisons with osteopontin knock-out mice[J]. Urol Res, 2012, 40(2): 121-129. doi: 10.1007/s00240-011-0400-z
[65] Chen XW, Sun XY, Tang GH, et al. Sulfated Undaria pinnatifida polysaccharide inhibits the formation of kidney stones by inhibiting HK-2 cell damage and reducing the adhesion of nano-calcium oxalate crystals[J]. Biomater Adv, 2022, 134: 112564. doi: 10.1016/j.msec.2021.112564
[66] Duan XL, Kong ZZ, Mai X, et al. Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney[J]. Redox Biol, 2018, 16: 414-425. doi: 10.1016/j.redox.2018.03.019
[67] Sun Y, Liu YL, Guan XF, et al. Atorvastatin inhibits renal inflammatory response induced by calcium oxalate crystals via inhibiting the activation of TLR4/NF-κB and NLRP3 inflammasome[J]. IUBMB Life, 2020, 72(5): 1065-1074. doi: 10.1002/iub.2250
[68] Zhang YH, Li CY, Zou GJ, et al. Corn silk polysaccharides with different carboxyl contents reduce the oxidative damage of renal epithelial cells by inhibiting endocytosis of nano-calcium oxalate crystals[J]. ACS Omega, 2023, 8(29): 25839-25849. doi: 10.1021/acsomega.3c01306
[69] Shi Y, Shi XJ, Zhao MM, et al. Pharmacological potential of Astragali Radix for the treatment of kidney diseases[J]. Phytomedicine, 2024, 123: 155196. doi: 10.1016/j.phymed.2023.155196
-
期刊类型引用(2)
1. 朱乘春,冯大雄,杨启远,刘良进,袁浩. 老年腰椎骨折术后深部切口感染病原菌耐药性及危险因素分析. 中国病原生物学杂志. 2025(01): 90-94 . 百度学术
2. 夏征,高希言,李世永,李薇薇,赵栋梁. 针灸联合中药对急性上呼吸道病毒感染患者症状及免疫功能的调节作用. 中国病原生物学杂志. 2024(12): 1511-1515+1520 . 百度学术
其他类型引用(0)