Separation and identification of folic acid and its related substances by liquid chromatography-mass spectrometry
-
摘要:
用ODS色谱柱和10 mmol/L乙酸铵缓冲溶液-甲醇流动相(pH 6.3)将叶酸有关物质进行线性梯度洗脱分离,电喷雾正离子化-四极杆-飞行时间质谱(ESI-Q-TOF/MS)高分辨测定各有关物质母离子及其子离子的准确质荷比和元素组成,通过质谱解析、有机反应机制分析、或对照品对照鉴定它们的结构。在所建立的LC-ESI-Q-TOF/MS条件下,叶酸及其有关物质分离良好,检测并鉴定叶酸及其强制降解试验样品中23个主要有关物质,其中2个为《欧洲药典》规定的已知杂质,4个与文献报道已知杂质一致,其余17个为新鉴定的未知杂质。鉴定结果可为叶酸质量控制提供参考依据。
Abstract:The related substances in folic acid were separated on an ODS column by linear gradient elution using the mixture of 10 mmol/L ammonium acetate buffer solution and methanol (pH 6.3) as the mobile phase, and their accurate mass-charge ratio and elemental composition of parent and product ions were detected by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF/MS). The structures of the related substances were then determined by MS spectra elucidation, organic reaction mechanism analysis, or reference substances confirmation. Under the established LC-ESI-Q-TOF/MS conditions, folic acid and its related substances were adequately separated. Among the 23 main related substances found, 2 were known impurities listed in European Pharmacopoeia, 4 were consistent with the literature reports, and the remaining 17 were newly identified unknown related substances in this study. The results of separation and identification can provide some useful reference for the quality control of folic acid.
-
Keywords:
- folic acid /
- related substances /
- degradation products /
- structural identification /
- LC-MS
-
叶酸(N-{4-[(2-氨基-4-氧代-1,4-二氢-6-蝶啶)甲氨基]苯甲酰基}-L-谷氨酸)具有促进胎儿细胞分裂与氨基酸合成的作用,被广泛运用于预防孕妇贫血[1−2]、减少新生儿先天缺陷(如神经管畸形[3]与先天性心脏病[4]),并有心血管保护[5−6]和协同抗肿瘤治疗[7−8]作用。
叶酸(图1)及其制剂已被多国药典[9−11]收载,《欧洲药典》(EP)列出了叶酸的多种已知有关物质结构(图2):6-羧基蝶呤(6-carboxy Pterin,CPT)、6-甲酰基蝶呤(6-formyl pterin,FPT)、6-羟甲基蝶呤(6-hydroxymethyl pterin,HPT)和谷氨酸(glutamic acid,Glu)。但是,叶酸有关物质的系统研究尚不完善,已有药品标准的有关物质均采用非挥发性流动相HPLC法检查,无法直接进行液-质联用杂质结构解析研究。
因此,本研究建立了适用于叶酸有关物质分析鉴定的挥发性流动相LC-MS分析条件,通过高分辨Q-TOF/MS测定了叶酸及其强制降解试验样品中各有关物质母离子及其子离子的准确相对分子质量及其元素组成,并综合解析鉴定了各有关物质的结构。研究结果对叶酸的质量控制具有参考意义。
1. 材 料
1.1 试 剂
叶酸原料药(帝斯曼公司);叶酸有关物质对照品:EP-A(Sigma-Aldrich公司)、EP-D(欧洲药品质量管理局)、CPT(加拿大Toronto Research Chemicals公司)、FPT[标准药物(中国)有限公司]、Glu(中国食品药品检定研究院)、HPT(博洛德公司);乙酸铵、冰醋酸(AR级,南京化学试剂有限公司);甲醇(HPLC级,德国默克公司);去离子水(杭州娃哈哈集团有限公司)。
1.2 仪 器
LCMS-9030四极杆飞行时间质谱仪、Lab-Solutions数据处理系统(日本岛津公司)、XPR10分析天平(瑞士Mettler-Toledo公司)。
2. 方 法
2.1 色谱方法
Shim-pack Scepter C18-120(4.6 mm×250 mm,5 μm)色谱柱;以10 mmol/L乙酸铵缓冲溶液(pH 6.3,乙酸调节)-甲醇(95∶5)为流动相A,10 mmol/L乙酸铵缓冲溶液(pH6.3,乙酸调节)-甲醇(85∶15)为流动相B,进行线性梯度洗脱(A∶B):0 min(100∶0)→1 min(100∶0)→4.5 min(70∶30)→20 min(0∶100)→21 min(100∶0)→25 min(100∶0),检测波长280 nm,流速1.0 mL/min,柱温25℃,进样量10 µL。
2.2 质谱条件
电喷雾正离子化高分辨Q-TOF/MS测定。喷雾电压4.0 kV,雾化气流量3.0 L/min,干燥气流量10.0 L/min,接口温度300 ℃,氩气CID碰撞能量5~30 eV,扫描范围m/z 50~
1000 。2.3 溶液配制
研究建立了适用于叶酸有关物质检查的挥发性流动相HPLC条件,其同时适用于有关物质的LC-MS联用鉴定。采用0.1%自身对照法计算有关物质的含量,并对含量大于0.1%的有关物质按保留时间由小到大顺序对主要有关物质进行识别和编号。
供试品溶液(1 mg/mL):取叶酸原料药约10 mg,精密称定,置10 mL量瓶中,用0.3%氨溶液溶解并稀释至刻度,摇匀。
对照品溶液(各1 μg/mL):取叶酸有关物质对照品各约1 mg,分别精密称定,置同一100 mL量瓶中,用0.3%氨溶液溶解并稀释至刻度,摇匀;精密量取此溶液1 mL,置10 mL量瓶中,用0.3%氨溶液稀释至刻度,摇匀。
强制降解试验溶液:取叶酸原料药各约10 mg,加1.0 mol/L氢氧化钠溶液1 mL,于60 ℃水浴2 h;或加1 mL 3%氨试液溶解后加30%过氧化氢溶液0.5 mL,于60 ℃水浴放置1 h;或于105 ℃烘箱中放置14 d;或加0.3%氨试液5 mL,于105 ℃烘箱中放置4 d;或于光照(
4500 ± 500) lx条件下放置14 d;或加0.3%氨试液5 mL,于光照(4500 ± 500) lx放置3 h。分别处理(碱处理溶液先中和)后,各加0.3%氨试液稀释至约10 mL(叶酸质量浓度约为1 mg/mL,氧化破坏以超纯水稀释),作为强制降解试验的各样品溶液。由于叶酸在酸性条件下溶解性较差,故未对其进行酸性条件下的降解试验。3. 结 果
3.1 有关物质检查
研究建立了适用于叶酸有关物质检查的挥发性流动相HPLC条件,其同时适用于有关物质的LC-MS联用鉴定。采用0.1%自身对照法计算有关物质的含量,并对含量大于0.1%的有关物质按保留时间由小到大顺序对主要有关物质进行识别和编号。
结果(表1和图3)表明,测得各降解试验样品有关物质的总量均质量平衡,所以该条件也适用于叶酸有关物质的定量检查。叶酸原料药供试品中可检出6种有关物质(2、4、5、21、22和23,图3-b)。叶酸强制降解试验表明,其对碱、氧化、光照条件均不稳定;光照干法降解形成6个主要降解产物(有关物质2、4、5、21~23,图3-c);碱性降解形成9个主要降解产物(有关物质2、3、4、5、16、19、20、22和23,图3-d);氧化降解形成15个主要降解产物(有关物质1~5、7~9、11、12、14、15、21、22和23,图3-e);光照湿法降解形成11个主要降解产物(有关物质1、2、4、5、13、15、18、19、21~23,图3-f);高温湿法降解形成6个主要降解产物(有关物质2、4、5、21~23,图3-h);高温干法降解形成10个主要降解产物(有关物质2、4、5、6、10、13、17、21~23,图3-f)。
Table 1. Mass balance of Folic Acid and its stressed test solutionsSample c/(mg/mL) AreaImp AreaTotal AreaTotal/c Calibration Test sample 1.003 888198 35558327 35451971 1.00 Dry photolysis 1.032 1036933 34141675 33083018 0.98 Alkaline 1.030 4612861 36378124 35318567 1.00 Oxidation 1.022 4700314 35609756 34843205 0.98 Wet photolysis 1.020 2252711 35383000 34689216 0.93 Dry heat 1.024 3906760 34478456 33670367 0.99 Wet heat 1.012 2997786 35357191 34937936 0.95 3.2 有关物质的结构鉴定
根据LC-ESI-Q-TOF/MS高分辨质谱测得各有关物质的母离子及其子离子的准确质量和元素组成、反相HPLC保留与化合物极性的相关性、DAD最大吸收波长与分子中共轭结构的关联性,并通过叶酸有关物质对照品的结构特征对比分析(图4和表2),可鉴定各主要有关物质的结构(图5)。
Table 2. Related substances identified in folic acid by LC-Q-TOF/MSNo. [M+H]+(m/z) Ion formula Diff.(×10-6) Product ions(m/z) UV λmax/nm Origins API 442.1480 [C19H20N7O6]+ −2.25 313.1045 ,295.0941 281, 346 / 1(Glu) 148.0603 [C5H10NO4]+ 0.91 130.0497 ,102.0547 ,84.0447 281, 347 Dr 2(EP-A) 267.1000 [C12H15N2O5]+ −9.21 130.0508 ,120.0452 273 Dr/Pr 3 324.1223 [C14H18N3O6]+ −9.18 195.0781 ,177.0671 287 Dr 4 193.0848 [C7H9N6O]+ −8.15 176.0580 ,108.0562 267, 349 Dr 5(CPT) 208.0483 [C7H6N5O3]+ −8.62 190.0372 ,180.0530 ,164.0524 ,162.0424 286, 345 Dr 6 343.1294 [C18H19N2O5]+ −1.61 299.1390 ,281.1277 ,253.1336 ,214.0865 ,169.0887 265 Dr 7 295.0934 [C13H15N2O6]+ −3.19 295.0934 ,176.0609 ,148.0391 ,130.0497 ,84.0449 266 Dr 8 313.1036 [C13H17N2O7]+ −1.83 166.0498 ,148.0391 279 Dr 9 265.0675 [C9H9N6O4]+ 1.81 221.0780 ,193.0828 ,178.0721 ,164.0560 275, 346 Dr 10 196.0469 [C6H6N5O3]+ −1.97 168.0519 ,140.0568 ,98.0346 279 Dr 11 279.0918 [C10H11N6O4]+ −6.12 261.0753 ,235.0968 ,193.0848 ,176.0580 274, 345 Dr 12 152.0579 [C5H6N5O]+ −8.04 135.0311 ,107.0364 ,110.0355 ,82.0402 245, 273 Dr 13 152.0580 [C5H6N5O]+ −8.70 135.0311 ,107.0364 ,110.0353 ,82.0402 284 Dr 14 313.0663 [C12H13N2O8]+ 1.12 295.0559 ,267.0611 ,249.0503 ,166.0130 ,84.0438 246, 278 Dr 15 297.0744 [C12H13N2O7]+ −9.03 279.0640 ,251.0683 ,150.0196 ,84.0446 246, 274 Dr 16(HPT) 194.0689 [C7H8N5O2]+ −8.54 176.0580 ,134.0358 ,106.0400 ,81.0480 274, 346 Dr 17 137.0709 [C7H9N2O]+ 0.29 120.0441 ,94.0647 275 Dr 18 456.1309 [C19H17N7O7]+ −7.34 438.1198 ,327.0870 ,309.0760 ,281.0808 287, 376 Dr 19(FPT) 192.0533 [C7H6N5O]+ −8.89 175.0255 ,149.0455 ,147.0311 ,122.0345 ,94.0400 280, 346 Dr 20 440.1317 [C19H18N7O6]+ −0.89 311.0885 ,293.0782 281, 347 Dr 21 443.1324 [C19H19N6O7]+ −3.23 296.0779 280 Dr 22 442.1480 [C19H20N7O6]+ −2.36 313.1045 ,295.0941 279, 346 Pr 23(EP-D) 313.1072 [C14H13N6O3]+ −9.08 295.0965 ,269.1169 ,176.0581 ,120.0453 278, 345 Dr Pr: Process related substance;Dr: Degradation related substance 3.2.1 已知有关物质的确证
经HPLC-ESI-Q-TOF/MS分析确证,有关物质2和23分别与药典已知杂质EP-A和EP-D相应,有关物质1、5、16和19分别与文献报道谷氨酸(Glu)、6-羧基蝶呤(CPT)、6-羟甲基蝶呤(HPT)和6-甲酰基蝶呤(FPT)相应[12−16]。
叶酸及其已知有关物质的MS/MS裂解特征对其未知有关物质的鉴定具有参考作用。他们裂解特征(图6)包括:甲氨基桥易裂解为6-甲基蝶呤与苯甲酰-L-谷氨酸两部分;苯甲酰基-L-谷氨酸单元,易进一步脱水或脱羧生成质量数少18及少44的特征碎片离子,或谷氨酸单元成环裂解生成特征的氨基苯甲酰及谷氨酸内酰胺特征离子 。
3.2.2 未知有关物质的鉴定
参考叶酸及其已知有关物质色谱和质谱特征,可解析鉴定各未知有关物质的结构(图5)。部分代表性未知杂质(3、8、9、10和15)结构的解析推定过程如下(其他未知有关物质均是保留了叶酸或其已知杂质较为完整结构单元的杂质,解析省略)。
有关物质3 其为氧化及碱破坏杂质。色谱保留相对较弱与较强的极性相应,Q-TOF/MS测得其[M+H]+的准确质量为
324.1223 ,与离子式[C14H18N3O6]+相应,与已知有关物质2的元素组成相比多个C2H3NO。MS/MS主要特征碎片离子m/z195.0781 ([C9H11N2O3]+)和177.0671 ([C9H9N2O2]+),与苯甲酰基-L-谷氨酸单元母离子的中性丢失L-谷氨酸及乙酰氨基相应。又有关物质3的DAD最大吸收峰与已知有关物质2相比略有红移,与苯甲酰基结构中的氨基取代相应。故推测有关物质3是在富氨基环境下氨基取代并酰胺化的杂质4-乙酰胺基-2-氨基苯甲酰基-L-谷氨酸(图7)。有关物质8 其为叶酸的特征氧化降解产物。Q-TOF/MS测得其[M+H]+的准确质量为
313.1036 ,与离子式[C13H17N2O7]+相应,与已知有关物质2元素组成相比多CH2O2,其DAD最大吸收峰也与有关物质2相似,表明有关物质8与2具有相同的母核结构单元,而潜在氨基苯甲酰胺苯环的多羟基氧化特征。MS/MS主要特征碎片离子m/z166.0498 ([C8H8NO3]+)和148.0391 ([C8H6NO2]+)分别与中性丢失了谷氨酸和进一步脱水相应,证明氧化取代在苯环。推测有关物质8是由叶酸亚甲基桥断裂并邻位氧化而生成的4-甲氨基-3,5-二羟基苯甲酰基-L-谷氨酸(图8)。有关物质9 其为叶酸的特征氧化降解产物。Q-TOF/MS测得其[M+H]+的准确质量为
265.0675 ,与离子式[C9H9N6O4]+相应,与已知有关物质5(CPT)元素组成相比多C2H3NO,其DAD最大吸收峰也与有关物质5相似,表明有关物质9与5均保留了蝶呤的母核共轭结构。MS/MS主要特征碎片离子m/z221.0780 ([C8H9N6O2]+)、193.0828 ([C8H9N6O2]+)、178.0721 ([C7H8N5O]+)和164.0560 ([C6H6N5O]+),分别与母离子脱去羧酸、醛基、进一步脱氨基或者甲基亚胺相应。推测有关物质9为2-(N-甲酰基)-6-(N-羧甲酰基)氨甲蝶呤(图9)。有关物质10 其为叶酸高温干法破坏特征降解产物。Q-TOF/MS测得其[M+H]+的准确质量为
196.0469 ,与离子式[C6H6N5O3]+相应,与已知有关物质16(HPT)相比,少1个CH2多1个O元素,其DAD最大吸收峰也与HPT相似,表明有关物质10保留了HPT的蝶呤母核共轭结构,而色谱保留较弱极性增大。MS/MS主要特征碎片离子为m/z168.0519 ([C5H6N5O2]+)、140.0568 ([C4H6N5O]+) 与98.0346 ([C3H4N3O]+)分别与[M+H]+中性丢失1个CO、2个CO、并进一步蝶呤母核氨基氰裂解相应。推测有关物质10为叶酸高温干法氧化降解生成的6,7-二羟基蝶呤(图10)。有关物质15 其为叶酸的最主要的氧化降解产物。Q-TOF/MS测得其[M+H]+的准确质量为
297.0744 ,与离子式[C12H13N2O7]+相应。与有关物质2(EP-A)相比元素组成少2个H多2个氧,其DAD最大吸收峰与EP-A相比显著蓝移共轭结构减小,表明有关物质15保留了EP-A的氨基苯甲酰基-L-谷氨酸的骨架结构,但是苯环被二氧醌化,而极性相对减小色谱保留增强。MS/MS主要特征碎片离子m/z279.0640 ([C12H11N2O6]+)、251.0685 ([C11H11N2O5]+)、150.0196 ([C7H4NO3]+)、84.0446 ([C4H6NO]+)分别与[M+H]+中性丢失H2O、羧酸、谷氨酸、或谷氨酸内酰胺离子化相应。推测有关物质15是4-氨基-3,6-二醌甲酰基-L-谷氨酸(图11)。有关物质14与有关物质15相比,[M+H]+离子式[C12H13N2O8]+的元素组成多1个O,色谱保留更弱极性更大,DAD最大吸收峰相近,推测有关物质14是有关物质15醌环结构中进一步羟基化的杂质。4. 讨 论
研究建立的叶酸有关物质挥发性流动相HPLC检查法实现了叶酸及各有关物质的良好分离,该方法既适用于叶酸有关物质的定量检查,又满足其有关物质的色谱-质谱联用鉴定。
叶酸供试品及其强制降解试验样品在此LC-ESI-Q-TOF/MS条件下,共检测到23个主要有关物质,经鉴定其中2个为EP收载的已知杂质,4个为文献报道已知杂质,其余17个均为本研究鉴定的未知有关物质。
叶酸供试品中可检出6个有关物质(已知杂质2、5和23;未知杂质4、21和22)。强制降解试验表明,叶酸的甲氨基桥易断裂形成以蝶呤或以氨基苯甲酰胺为母核单元的有关物质;其次叶酸的苯甲酰胺键易断裂形成脱谷氨酸有关物质,氧化降解可使氨基苯甲酰胺单元生成羟基化或醌化的杂质。
HPLC-UV色谱图中有关物质19(FPT[16])的峰易呈鼓包状态(图3),降低了检测灵敏度,易导致漏检;曾尝试多种流动相体系对峰形并无明显改善。升高柱温(50 ℃)其峰形有所改善。原因是FPT的结构在很宽的pH范围均具有内酰胺(酸式)与亚氨酸酯(碱式)的互变异构动态平衡[14] (图12),因此,叶酸有关物质检查时,宜采用较高的柱温和较强离子强度的流动相,以保障色谱峰形和检测灵敏度。
总之,叶酸对各种影响因素条件均不稳定,相应药品的生产须注意关键制备工艺过程的控制,并建立相应的关键质量属性控制指标。
叶酸药品标准均采用非挥发性离子对流动相HPLC法检查有关物质,通过2D-LC-ESI-Q-TOF/MS检测,与本研究得到的挥发性条件下叶酸有关物质鉴定结果进行对比分析,即可实现叶酸有关物质的全面鉴定与控制。
-
Table 1 Mass balance of Folic Acid and its stressed test solutions
Sample c/(mg/mL) AreaImp AreaTotal AreaTotal/c Calibration Test sample 1.003 888198 35558327 35451971 1.00 Dry photolysis 1.032 1036933 34141675 33083018 0.98 Alkaline 1.030 4612861 36378124 35318567 1.00 Oxidation 1.022 4700314 35609756 34843205 0.98 Wet photolysis 1.020 2252711 35383000 34689216 0.93 Dry heat 1.024 3906760 34478456 33670367 0.99 Wet heat 1.012 2997786 35357191 34937936 0.95 Table 2 Related substances identified in folic acid by LC-Q-TOF/MS
No. [M+H]+(m/z) Ion formula Diff.(×10-6) Product ions(m/z) UV λmax/nm Origins API 442.1480 [C19H20N7O6]+ −2.25 313.1045 ,295.0941 281, 346 / 1(Glu) 148.0603 [C5H10NO4]+ 0.91 130.0497 ,102.0547 ,84.0447 281, 347 Dr 2(EP-A) 267.1000 [C12H15N2O5]+ −9.21 130.0508 ,120.0452 273 Dr/Pr 3 324.1223 [C14H18N3O6]+ −9.18 195.0781 ,177.0671 287 Dr 4 193.0848 [C7H9N6O]+ −8.15 176.0580 ,108.0562 267, 349 Dr 5(CPT) 208.0483 [C7H6N5O3]+ −8.62 190.0372 ,180.0530 ,164.0524 ,162.0424 286, 345 Dr 6 343.1294 [C18H19N2O5]+ −1.61 299.1390 ,281.1277 ,253.1336 ,214.0865 ,169.0887 265 Dr 7 295.0934 [C13H15N2O6]+ −3.19 295.0934 ,176.0609 ,148.0391 ,130.0497 ,84.0449 266 Dr 8 313.1036 [C13H17N2O7]+ −1.83 166.0498 ,148.0391 279 Dr 9 265.0675 [C9H9N6O4]+ 1.81 221.0780 ,193.0828 ,178.0721 ,164.0560 275, 346 Dr 10 196.0469 [C6H6N5O3]+ −1.97 168.0519 ,140.0568 ,98.0346 279 Dr 11 279.0918 [C10H11N6O4]+ −6.12 261.0753 ,235.0968 ,193.0848 ,176.0580 274, 345 Dr 12 152.0579 [C5H6N5O]+ −8.04 135.0311 ,107.0364 ,110.0355 ,82.0402 245, 273 Dr 13 152.0580 [C5H6N5O]+ −8.70 135.0311 ,107.0364 ,110.0353 ,82.0402 284 Dr 14 313.0663 [C12H13N2O8]+ 1.12 295.0559 ,267.0611 ,249.0503 ,166.0130 ,84.0438 246, 278 Dr 15 297.0744 [C12H13N2O7]+ −9.03 279.0640 ,251.0683 ,150.0196 ,84.0446 246, 274 Dr 16(HPT) 194.0689 [C7H8N5O2]+ −8.54 176.0580 ,134.0358 ,106.0400 ,81.0480 274, 346 Dr 17 137.0709 [C7H9N2O]+ 0.29 120.0441 ,94.0647 275 Dr 18 456.1309 [C19H17N7O7]+ −7.34 438.1198 ,327.0870 ,309.0760 ,281.0808 287, 376 Dr 19(FPT) 192.0533 [C7H6N5O]+ −8.89 175.0255 ,149.0455 ,147.0311 ,122.0345 ,94.0400 280, 346 Dr 20 440.1317 [C19H18N7O6]+ −0.89 311.0885 ,293.0782 281, 347 Dr 21 443.1324 [C19H19N6O7]+ −3.23 296.0779 280 Dr 22 442.1480 [C19H20N7O6]+ −2.36 313.1045 ,295.0941 279, 346 Pr 23(EP-D) 313.1072 [C14H13N6O3]+ −9.08 295.0965 ,269.1169 ,176.0581 ,120.0453 278, 345 Dr Pr: Process related substance;Dr: Degradation related substance -
[1] Lassi ZS, Salam RA, Haider BA, et al. Folic acid supplementation during pregnancy for maternal health and pregnancy outcomes[J]. Cochrane Database Syst Rev, 2013, 2013(3): CD006896.
[2] Wiltshire E, Peña AS, MacKenzie K, et al. High dose folic acid is a potential treatment for pulmonary hypertension, including when associated with COVID-19 pneumonia[J]. Med Hypotheses, 2020, 143: 110142. doi: 10.1016/j.mehy.2020.110142
[3] Goh YI, Koren G. Folic acid in pregnancy and fetal outcomes[J]. J Obstet Gynaecol, 2008, 28(1): 3-13. doi: 10.1080/01443610701814195
[4] Feng Y, Wang S, Chen RS, et al. Maternal folic acid supplementation and the risk of congenital heart defects in offspring: a meta-analysis of epidemiological observational studies[J]. Sci Rep, 2015, 5: 8506. doi: 10.1038/srep08506
[5] Wang WW, Wang XS, Zhang ZR, et al. A meta-analysis of folic acid in combination with anti-hypertension drugs in patients with hypertension and hyperhomocysteinemia[J]. Front Pharmacol, 2017, 8: 585. doi: 10.3389/fphar.2017.00585
[6] Ting PC, Lee WR, Huo YN, et al. Folic acid inhibits colorectal cancer cell migration[J]. J Nutr Biochem, 2019, 63: 157-164. doi: 10.1016/j.jnutbio.2018.09.020
[7] Qin XH, Cui YM, Shen L, et al. Folic acid supplementation and cancer risk: a meta-analysis of randomized controlled trials[J]. Int J Cancer, 2013, 133(5): 1033-1041. doi: 10.1002/ijc.28038
[8] Delmonte L, Jukes TH. Folic acid antagonists in cancer chemotherapy[J]. Pharmacol Rev, 1962, 14: 91-135.
[9] Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia : part 4(中华人民共和国药典: 四部)[S]. Beijing: China Medical Science Press, 2020. [10] The United States Pharmacopeial 43-The National Formulary 38 : volume Ⅱ (美国药典43-国家处方集38: 卷2)[S]. Rockville: The United States Pharmacopeial Convention, 2020: 2680-2682. [11] European Pharmacopeia 10.0 : volume Ⅱ (欧洲药典10.0: 卷2)[S]. France: European Directorate for the Quality of Medicine&Healthcare, 2020: 3116-3117. [12] Shen QR, He Q, Pan YJ, et al. Detection, isolation, and characterization of a novel impurity from several folic acid products[J]. J Zhejiang Univ Sci B, 2022, 23(7): 597-606. doi: 10.1631/jzus.B2100970
[13] Thomas AH, Lorente C, Capparelli AL, et al. Fluorescence of pterin, 6-formylpterin, 6-carboxypterin and folic acid in aqueous solution: pH effects[J]. Photochem Photobiol Sci, 2002, 1(6): 421-426. doi: 10.1039/b202114e
[14] Thomas AH, Suárez G, Cabrerizo FM, et al. Study of the photolysis of folic acid and 6-formylpterin in acid aqueous solutions[J]. J Photochem Photobiol A Chem, 2000, 135(2/3): 147-154.
[15] Cabrerizo F, Thomas A, Lorente C, et al. Generation of reactive oxygen species during the photolysis of 6-(hydroxymethyl)pterin in alkaline aqueous solutions[J]. Helv Chim Acta, 2004, 87(2): 349-365. doi: 10.1002/hlca.200490032
[16] Off MK, Steindal AE, Porojnicu AC, et al. Ultraviolet photodegradation of folic acid[J]. J Photochem Photobiol B, 2005, 80(1): 47-55. doi: 10.1016/j.jphotobiol.2005.03.001