Research progress of blood-brain barrier crossing strategies and brain-targeted drug delivery mediated by nano-delivery system
-
摘要:
血脑屏障(blood-brain barrier,BBB)是存在于脑组织与血浆之间的半通透性生物屏障,然而其物理特性、酶特性、免疫特性及独特的转运机制严重限制了治疗药物和诊断试剂入脑,为脑部疾病防治带来了巨大挑战。基于此,本文首先总结并分析了BBB复杂的结构组分和多样的转运机制,探讨了跨越BBB药物递送的难点及可行途径;进而,介绍并讨论了各类纳米递送系统在跨越BBB实现脑内药物递送的最新研究进展及未来发展趋势,为进一步完善其设计和推动其转化提供了参考;最后,就常见脑部疾病中BBB的病理变化探讨了如何针对病理BBB设计相应的药物递送策略。本文强调了基于纳米递送系统的跨越BBB药物递送策略的设计与优化,并为目前脑内药物递送所面临的机遇和挑战提供了解决思路。
Abstract:The blood-brain barrier (BBB) is a semi-permeable biological barrier between brain tissue and plasma, however, its physical, enzymatic and immune properties, as well as its unique transport mechanism severely limit the entry of therapeutic drugs and diagnostic agents into the brain, which poses great challenges for the prevention and treatment of brain diseases. Hence, this review summarizes and discusses the complex structural components and various transport mechanisms of BBB, and interprets the difficulties and feasible ways of drug delivery across BBB. Furthermore, the latest research progress and future development trends of various delivery systems for brain drug delivery are introduced and discussed to provide references for further perfecting their design and driving their transformation. Finally, this review discusses the pathological changes of BBB in brain diseases and the design of drug delivery strategies for pathological BBB. Collectively, this review highlights the design and optimization of drug delivery strategies across the BBB based on nano-delivery system and provides accessible guide for current opportunities and challenges of intracerebral drug delivery.
-
-
表 1 基于纳米递送系统的代表性跨BBB药物递送策略
纳米递送系统类型 递送策略设计 相关应用 参考文献 脂质纳米制剂 由淀粉样前体蛋白部分片段修饰的脂质体 一种多巴胺脑靶向治疗帕金森病(PD)的新策略 [19] 含SynO4单抗的转铁蛋白偶联脂质体 减少α-突触核蛋白聚集并改善PD行为症状 [20] 掺杂色胺衍生类脂质的脂质纳米颗粒(NT1-LNPs) 可通过静脉注射将小分子药物和生物大分子药物送入小鼠脑内的一种脂质纳米制剂修饰手段 [21] 热响应性脂质纳米颗粒(TLN) 一种安全有效的热反应性药物递送系统,具有更高的跨BBB以及靶向胶质母细胞瘤细胞的潜力 [22] 聚合物纳米颗粒 装载姜黄素(Cur)并用糖肽修饰的PLGA纳米颗粒(g7-NPs-Cur) 用于治疗阿尔茨海默病(AD)的Cur脑靶向递送系统 [23] 外部修饰甘露糖并负载芬戈莫德 (FTY)PLGA-PEGn纳米骨架(FTY@Man NP) 一种用于治疗AD的智能口服脑靶向纳米颗粒 [24] 分别在PCL-PEG末端修饰D-T7和MG1 (Asp@TMNPs) 用于治疗孤独症谱系障碍的阿司匹林胶囊级联给药系统 [25] PMPC双功能靶向性纳米载体(PAMAM-PMPC) 一种针对胶质母细胞瘤(GBM)的靶向治疗的创新化药物纳米递送策略 [26] 负载DOX的PLGA-lysoGM1胶束(PLGA-lysoGM1/DOX) 在GBM大鼠模型中有良好的抗肿瘤作用 [27] 以RGD和NIR830修饰并包被PEG-b-AGE聚合物作为递送SN38的超细磁性纳米颗粒 (NIR830-RGD-uIONP/SN38) 在GBM小鼠模型中具有良好的肿瘤靶向递送和治疗效果 [28] 磁性纳米颗粒 DPA-PEG功能化超顺磁性超小氧化铁纳米颗粒(DPA-PEGylated USPIONs) 通过捕获β-淀粉样蛋白(Aβ)有效改善血脑屏障通透性以实现AD治疗 [29] 利用OPD构建表面具有含氮多芳官能团的碳量子点(OPCDs) 作为一种多功能β-sheet结构破坏剂通过靶向Aβ治疗AD [30] 羰基纳米颗粒 多壁碳纳米管(MWCNTs) 通过刺激中枢神经系统释放一氧化氮来调节血压 [31] 无机金属纳米颗粒 靶向紧密连接的金纳米颗粒(Au NPs) 一种提高无机金属纳米颗粒跨BBB转运能力的策略 [32] 利用Opca蛋白表面修饰并包载MTX的MnO2 NPs(MTX@MnO2-Opca) 一种能有效克服BBB并治疗GBM的仿生纳米递送系统 [33] -
[1] Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders[J]. Nat Rev Neurol, 2018, 14(3): 133-150.
[2] Liebner S, Dijkhuizen RM, Reiss Y, et al. Functional morphology of the blood-brain barrier in health and disease[J]. Acta Neuropathol, 2018, 135(3): 311-336. doi: 10.1007/s00401-018-1815-1
[3] Terstappen GC, Meyer AH, Bell RD, et al. Strategies for delivering therapeutics across the blood-brain barrier[J]. Nat Rev Drug Discov, 2021, 20(5): 362-383. doi: 10.1038/s41573-021-00139-y
[4] Furtado D, Björnmalm M, Ayton S, et al. Overcoming the blood-brain barrier: the role of nanomaterials in treating neurological diseases[J]. Adv Mater, 2018, 30(46): e1801362. doi: 10.1002/adma.201801362
[5] Ding SC, Khan AI, Cai XL, et al. Overcoming blood-brain barrier transport: advances in nanoparticle-based drug delivery strategies[J]. Mater Today, 2020, 37: 112-125. doi: 10.1016/j.mattod.2020.02.001
[6] Zhou YT, Zhu FY, Liu Y, et al. Blood-brain barrier-penetrating siRNA nanomedicine for Alzheimer’s disease therapy[J]. Sci Adv, 2020, 6(41): eabc7031. doi: 10.1126/sciadv.abc7031
[7] Jiang XY, Andjelkovic AV, Zhu L, et al. Blood-brain barrier dysfunction and recovery after ischemic stroke[J]. Prog Neurobiol, 2018, 163/164: 144-171. doi: 10.1016/j.pneurobio.2017.10.001
[8] Brown LS, Foster CG, Courtney JM, et al. Pericytes and neurovascular function in the healthy and diseased brain[J]. Front Cell Neurosci, 2019, 13: 282.
[9] Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways[J]. Nat Neurosci, 2016, 19(6): 771-783. doi: 10.1038/nn.4288
[10] Heithoff BP, George KK, Phares AN, et al. Astrocytes are necessary for blood-brain barrier maintenance in the adult mouse brain[J]. Glia, 2021, 69(2): 436-472. doi: 10.1002/glia.23908
[11] Agrawal M, Saraf S, Saraf S, et al. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting[J]. J Control Release, 2020, 321: 372-415. doi: 10.1016/j.jconrel.2020.02.020
[12] Cheng JM, Li JX, Duan XP. Applications of ferritin-based delivery system in biomedical field[J]. J China Pharm Univ (中国药科大学学报), 2024, 55(4): 530-537. doi: 10.1016/j.xphs.2017.04.036 Cheng JM, Li JX, Duan XP. Applications of ferritin-based delivery system in biomedical field[J]. J China Pharm Univ (中国药科大学学报), 2024, 55(4): 530-537. doi: 10.1016/j.xphs.2017.04.036
[13] Huang QQ, Jiang CQ, Xia X, et al. Pathological BBB crossing melanin-like nanoparticles as metal-ion chelators and neuroinflammation regulators against Alzheimer’s disease[J]. Research, 2023, 6: 0180. doi: 10.34133/research.0180
[14] Luo Q, Lin YX, Yang PP, et al. A self-destructive nanosweeper that captures and clears amyloid β-peptides[J]. Nat Commun, 2018, 9(1): 1802. doi: 10.1038/s41467-018-04255-z
[15] Song YH, De R, Lee KT. Emerging strategies to fabricate polymeric nanocarriers for enhanced drug delivery across blood-brain barrier: an overview[J]. Adv Colloid Interface Sci, 2023, 320: 103008. doi: 10.1016/j.cis.2023.103008
[16] Kisler K, Nelson AR, Montagne A, et al. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease[J]. Nat Rev Neurosci, 2017, 18(7): 419-434. doi: 10.1038/nrn.2017.48
[17] Longden TA, Dabertrand F, Koide M, et al. Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow[J]. Nat Neurosci, 2017, 20(5): 717-726. doi: 10.1038/nn.4533
[18] The intersection of bottom-up synthetic cell engineering and nanobiotechnology[J]. Nat Nanotechnol, 2024, 19(2): 131.
[19] Kahana M, Weizman A, Gabay M, et al. Liposome-based targeting of dopamine to the brain: a novel approach for the treatment of Parkinson’s disease[J]. Mol Psychiatry, 2021, 26(6): 2626-2632. doi: 10.1038/s41380-020-0742-4
[20] Sela M, Poley M, Mora-Raimundo P, et al. Brain-targeted liposomes loaded with monoclonal antibodies reduce alpha-synuclein aggregation and improve behavioral symptoms in Parkinson’s disease[J]. Adv Mater, 2023, 35(51): e2304654. doi: 10.1002/adma.202304654
[21] Ma FH, Yang L, Sun ZR, et al. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection[J]. Sci Adv, 2020, 6(30): eabb4429. doi: 10.1126/sciadv.abb4429
[22] Rehman M, Madni A, Shi D, et al. Enhanced blood brain barrier permeability and glioblastoma cell targeting via thermoresponsive lipid nanoparticles[J]. Nanoscale, 2017, 9(40): 15434-15440. doi: 10.1039/C7NR05216B
[23] Barbara R, Belletti D, Pederzoli F, et al. Novel curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt Aβ aggregates[J]. Int J Pharm, 2017, 526(1/2): 413-424.
[24] Dhar D, Ghosh S, Das S, et al. A review of recent advances in magnetic nanoparticle-based theranostics of glioblastoma[J]. Nanomed-Nanotechnol Biol Med, 2022, 17(2): 107-132.
[25] He XQ, Xie J, Zhang J, et al. Acid-responsive dual-targeted nanoparticles encapsulated aspirin rescue the immune activation and phenotype in autism spectrum disorder[J]. Adv Sci, 2022, 9(14): e2104286. doi: 10.1002/advs.202104286
[26] Ban JM, Li SD, Zhan Q, et al. PMPC modified PAMAM dendrimer enhances brain tumor-targeted drug delivery[J]. Macromol Biosci, 2021, 21(4): e2000392. doi: 10.1002/mabi.202000392
[27] Yin Y, Wang J, Yang M, et al. Penetration of the blood-brain barrier and the anti-tumour effect of a novel PLGA-lysoGM1/DOX micelle drug delivery system[J]. Nanoscale, 2020, 12(5): 2946-2960. doi: 10.1039/C9NR08741A
[28] Li YC, Xie MM, Jones JB, et al. Targeted delivery of DNA topoisomerase inhibitor SN38 to intracranial tumors of glioblastoma using sub-5 ultrafine iron oxide nanoparticles[J]. Adv Healthc Mater, 2022, 11(14): e2102816. doi: 10.1002/adhm.202102816
[29] Cai J, Dao P, Chen HX, et al. Ultrasmall superparamagnetic iron oxide nanoparticles-bound NIR dyes: novel theranostic agents for Alzheimer’s disease[J]. Dyes Pigm, 2020, 173: 107968. doi: 10.1016/j.dyepig.2019.107968
[30] Chung YJ, Lee BI, Park CB. Multifunctional carbon dots as a therapeutic nanoagent for modulating Cu(II)-mediated β-amyloid aggregation[J]. Nanoscale, 2019, 11(13): 6297-6306. doi: 10.1039/C9NR00473D
[31] Ahlawat J, Guillama Barroso G, Masoudi Asil S, et al. Nanocarriers as potential drug delivery candidates for overcoming the blood-brain barrier: challenges and possibilities[J]. ACS Omega, 2020, 5(22): 12583-12595. doi: 10.1021/acsomega.0c01592
[32] Li XQ, Vemireddy V, Cai Q, et al. Reversibly modulating the blood-brain barrier by laser stimulation of molecular-targeted nanoparticles[J]. Nano Lett, 2021, 21(22): 9805-9815. doi: 10.1021/acs.nanolett.1c02996
[33] Dong CY, Huang QX, Cheng H, et al. Neisseria meningitidis opca protein/MnO2 hybrid nanoparticles for overcoming the blood-brain barrier to treat glioblastoma[J]. Adv Mater, 2022, 34(12): e2109213.
[34] Gurudevan S, Kanwar RK, Veedu RN, et al. Targeted multimodal liposomes for nano-delivery and imaging: an avenger for drug resistance and cancer[J]. Curr Gene Ther, 2013, 13(5): 322-334. doi: 10.2174/156652321305131212123558
[35] Gu WC, Luozhong SJ, Cai SM, et al. Extracellular vesicles incorporating retrovirus-like capsids for the enhanced packaging and systemic delivery of mRNA into neurons[J]. Nat Biomed Eng, 2024, 8(4): 415-426. doi: 10.1038/s41551-023-01150-x
[36] Khan N, Shah FA, Rana I, et al. Nanostructured lipid carriers-mediated brain delivery of carbamazepine for improved in vivo anticonvulsant and anxiolytic activity[J]. Int J Pharm, 2020, 577: 119033. doi: 10.1016/j.ijpharm.2020.119033
[37] Mojarad-Jabali S, Farshbaf M, Walker PR, et al. An update on actively targeted liposomes in advanced drug delivery to glioma[J]. Int J Pharm, 2021, 602: 120645. doi: 10.1016/j.ijpharm.2021.120645
[38] Kong DH, Hong WY, Yu M, et al. Multifunctional targeting liposomes of epirubicin plus resveratrol improved therapeutic effect on brain gliomas[J]. Int J Nanomedicine, 2022, 17: 1087-1110. doi: 10.2147/IJN.S346948
[39] Qu MK, Lin Q, He SS, et al. A brain targeting functionalized liposomes of the dopamine derivative N-3,4-bis(pivaloyloxy)-dopamine for treatment of Parkinson’s disease[J]. J Control Release, 2018, 277: 173-182. doi: 10.1016/j.jconrel.2018.03.019
[40] Hald Albertsen C, Kulkarni JA, Witzigmann D, et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy[J]. Adv Drug Deliv Rev, 2022, 188: 114416. doi: 10.1016/j.addr.2022.114416
[41] Sun D, Lu ZR. Structure and function of cationic and ionizable lipids for nucleic acid delivery[J]. Pharm Res, 2023, 40(1): 27-46. doi: 10.1007/s11095-022-03460-2
[42] Khare P, Edgecomb SX, Hamadani CM, et al. Lipid nanoparticle-mediated drug delivery to the brain[J]. Adv Drug Deliv Rev, 2023, 197: 114861. doi: 10.1016/j.addr.2023.114861
[43] Liu SH, Liu J, Li HS, et al. An optimized ionizable cationic lipid for brain tumor-targeted siRNA delivery and glioblastoma immunotherapy[J]. Biomaterials, 2022, 287: 121645. doi: 10.1016/j.biomaterials.2022.121645
[44] Khan AR, Yang XY, Fu MF, et al. Recent progress of drug nanoformulations targeting to brain[J]. J Control Release, 2018, 291: 37-64. doi: 10.1016/j.jconrel.2018.10.004
[45] Zhou YQ, Peng ZL, Seven ES, et al. Crossing the blood-brain barrier with nanoparticles[J]. J Control Release, 2018, 270: 290-303. doi: 10.1016/j.jconrel.2017.12.015
[46] Jose S, Juna BC, Cinu TA, et al. Carboplatin loaded Surface modified PLGA nanoparticles: Optimization, characterization, and in vivo brain targeting studies[J]. Colloids Surf B Biointerfaces, 2016, 142: 307-314. doi: 10.1016/j.colsurfb.2016.02.026
[47] Koffie RM, Farrar CT, Saidi LJ, et al. Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging[J]. Proc Natl Acad Sci U S A, 2011, 108(46): 18837-18842. doi: 10.1073/pnas.1111405108
[48] Li W, Qiu JH, Li XL, et al. BBB pathophysiology-independent delivery of siRNA in traumatic brain injury[J]. Sci Adv, 2021, 7(1): eabd6889. doi: 10.1126/sciadv.abd6889
[49] Israel LL, Galstyan A, Holler E, et al. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain[J]. J Control Release, 2020, 320: 45-62. doi: 10.1016/j.jconrel.2020.01.009
[50] Qiao RR, Jia QJ, Hüwel S, et al. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier[J]. ACS Nano, 2012, 6(4): 3304-3310. doi: 10.1021/nn300240p
[51] Liu H, Zhang J, Chen X, et al. Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside[J]. Nanoscale, 2016, 8(15): 7808-7826. doi: 10.1039/C6NR00147E
[52] Shen C, Wang XX, Zheng ZX, et al. Doxorubicin and indocyanine green loaded superparamagnetic iron oxide nanoparticles with PEGylated phospholipid coating for magnetic resonance with fluorescence imaging and chemotherapy of glioma[J]. Int J Nanomedicine, 2019, 14: 101-117.
[53] Peng YM, Zhan MS, Karpus A, et al. Brain delivery of biomimetic phosphorus dendrimer/antibody nano complexes for enhanced glioma immunotherapy via immune modulation of T cells and natural killer cells[J]. ACS Nano, 2024, 18(14): 10142-10155. doi: 10.1021/acsnano.3c13088
[54] Wakaskar RR. General overview of lipid-polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes[J]. J Drug Target, 2018, 26(4): 311-318. doi: 10.1080/1061186X.2017.1367006
[55] Teng YM, Jin HQ, Nan D, et al. In vivo evaluation of urokinase-loaded hollow nanogels for sonothrombolysis on suture embolization-induced acute ischemic stroke rat model[J]. Bioact Mater, 2017, 3(1): 102-109.
[56] Hou K, Zhao J, Wang H, et al. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease[J]. Nat Commun, 2020, 11(1): 4790. doi: 10.1038/s41467-020-18525-2
[57] Abla KK, Mehanna MM. The battle of lipid-based nanocarriers against blood-brain barrier: a critical review[J]. J Drug Target, 2023, 31(8): 832-857. doi: 10.1080/1061186X.2023.2247583
[58] Mu Y,Zhao HM,Liu HC,et al.Advances in drug development for Alzheimer’s disease [J/OL].J China Pharm Univ (中国药科大学学报). [2024-08-25].https://link.cnki.net/urlid/32.1157.R.20240528.1404.006. Mu Y, Zhao HM, Liu HC,et al.Advances in drug development for Alzheimer’s disease [J/OL].J China Pharm Univ (中国药科大学学报). [2024-08-25].https://link.cnki.net/urlid/32.1157.R.20240528.1404.006.
[59] Zha S, Liu HT, Li HD, et al. Functionalized nanomaterials capable of crossing the blood-brain barrier[J]. ACS Nano, 2024, 18(3): 1820-1845. doi: 10.1021/acsnano.3c10674
[60] Farfara D, Sooliman M, Avrahami L, et al. Physiological expression of mutated TAU impaired astrocyte activity and exacerbates β-amyloid pathology in 5xFAD mice[J]. J Neuroinflammation, 2023, 20(1): 174. doi: 10.1186/s12974-023-02823-9
[61] Martins PAT, Alsaiari S, Julfakyan K, et al. Self-assembled lipoprotein based gold nanoparticles for detection and photothermal disaggregation of β-amyloid aggregates[J]. Chem Commun, 2017, 53(13): 2102-2105. doi: 10.1039/C6CC09085K
[62] Liu YL, Ai KL, Ji XY, et al. Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke[J]. J Am Chem Soc, 2017, 139(2): 856-862. doi: 10.1021/jacs.6b11013
[63] Nitzsche F, Müller C, Lukomska B, et al. Concise review: MSC adhesion cascade-insights into homing and transendothelial migration[J]. Stem Cells, 2017, 35(6): 1446-1460. doi: 10.1002/stem.2614
[64] Jin Y, Tang ZY, Shang S, et al. A nanodisc-paved biobridge facilitates stem cell membrane fusogenicity for intracerebral shuttling and bystander effects[J]. Adv Mater, 2023, 35(40): e2302367. doi: 10.1002/adma.202302367
[65] Cheng GW, Liu YJ, Ma R, et al. Anti-parkinsonian therapy: strategies for crossing the blood-brain barrier and nano-biological effects of nanomaterials[J]. Nanomicro Lett, 2022, 14(1): 105.
[66] de Rus Jacquet A, Alpaugh M, Denis HL, et al. The contribution of inflammatory astrocytes to BBB impairments in a brain-chip model of Parkinson’s disease[J]. Nat Commun, 2023, 14(1): 3651. doi: 10.1038/s41467-023-39038-8
[67] Paul G, Elabi OF. Microvascular changes in Parkinson’s disease- focus on the neurovascular unit[J]. Front Aging Neurosci, 2022, 14: 853372. doi: 10.3389/fnagi.2022.853372
[68] da Rocha Lindner G, Bonfanti Santos D, Colle D, et al. Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly(lactide) nanoparticles in MPTP-induced Parkinsonism[J]. Nanomed-Nanotechnol Biol Med, 2015, 10(7): 1127-1138.
[69] Kumar A, Chaudhary RK, Singh R, et al. Nanotheranostic applications for detection and targeting neurodegenerative diseases[J]. Front Neurosci, 2020, 14: 305. doi: 10.3389/fnins.2020.00305
[70] Huang FY, Chen WJ, Lee WY, et al. In vitro and in vivo evaluation of lactoferrin-conjugated liposomes as a novel carrier to improve the brain delivery[J]. Int J Mol Sci, 2013, 14(2): 2862-2874.
[71] Katila N, Duwa R, Bhurtel S, et al. Enhancement of blood-brain barrier penetration and the neuroprotective effect of resveratrol[J]. J Control Release, 2022, 346: 1-19. doi: 10.1016/j.jconrel.2022.04.003
[72] El-Agnaf O, Overk C, Rockenstein E, et al. Differential effects of immunotherapy with antibodies targeting α-synuclein oligomers and fibrils in a transgenic model of synucleinopathy[J]. Neurobiol Dis, 2017, 104: 85-96. doi: 10.1016/j.nbd.2017.05.002
[73] Yu YJ, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target[J]. Sci Transl Med, 2011, 3(84): 84ra44.
[74] Sim HW, Morgan ER, Mason WP. Contemporary management of high-grade gliomas[J]. CNS Oncol, 2018, 7(1): 51-65. doi: 10.2217/cns-2017-0026
[75] Sarkaria JN, Hu LS, Parney IF, et al. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data[J]. Neuro Oncol, 2018, 20(2): 184-191. doi: 10.1093/neuonc/nox175
[76] Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases[J]. Nat Rev Cancer, 2020, 20(1): 26-41. doi: 10.1038/s41568-019-0205-x
[77] Dubois LG, Campanati L, Righy C, et al. Gliomas and the vascular fragility of the blood brain barrier[J]. Front Cell Neurosci, 2014, 8: 418.
[78] van Tellingen O, Yetkin-Arik B, de Gooijer MC, et al. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment[J]. Drug Resist Updat, 2015, 19: 1-12. doi: 10.1016/j.drup.2015.02.002
[79] Ma XT, Aravind A, Pfister BJ, et al. Animal models of traumatic brain injury and assessment of injury severity[J]. Mol Neurobiol, 2019, 56(8): 5332-5345. doi: 10.1007/s12035-018-1454-5
[80] Wang JJ, Ni QK, Wang YF, et al. Nanoscale drug delivery systems for controllable drug behaviors by multi-stage barrier penetration[J]. J Control Release, 2021, 331: 282-295. doi: 10.1016/j.jconrel.2020.08.045
-
期刊类型引用(1)
1. 陈力菡,宋文婧,吴民民,朱路文. 基于鼻-脑轴治疗神经系统疾病的研究进展. 中国医药导报. 2025(10): 38-42+53 . 百度学术
其他类型引用(0)