• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

药用辅料在中药制剂中的应用研究进展

缪妍, 胡丽琴, 张珂, 钱帅, 高缘, 张建军, 魏元锋

缪妍,胡丽琴,张珂,等. 药用辅料在中药制剂中的应用研究进展[J]. 中国药科大学学报,2024,55(6):734 − 741. DOI: 10.11665/j.issn.1000-5048.2024082902
引用本文: 缪妍,胡丽琴,张珂,等. 药用辅料在中药制剂中的应用研究进展[J]. 中国药科大学学报,2024,55(6):734 − 741. DOI: 10.11665/j.issn.1000-5048.2024082902
MIAO Yan, HU Liqin, ZHANG Ke, et al. Advances in research on the application of pharmaceutical excipients in traditional Chinese medicine preparations[J]. J China Pharm Univ, 2024, 55(6): 734 − 741. DOI: 10.11665/j.issn.1000-5048.2024082902
Citation: MIAO Yan, HU Liqin, ZHANG Ke, et al. Advances in research on the application of pharmaceutical excipients in traditional Chinese medicine preparations[J]. J China Pharm Univ, 2024, 55(6): 734 − 741. DOI: 10.11665/j.issn.1000-5048.2024082902

药用辅料在中药制剂中的应用研究进展

基金项目: 国家自然科学基金项目 (No.82274217, No.82373824, No.82474088)
详细信息
    通讯作者:

    魏元锋: Tel:15251756256 E-mail:weiyuanfengyuer@yeah.net

  • 中图分类号: R944

Advances in research on the application of pharmaceutical excipients in traditional Chinese medicine preparations

Funds: This study was supported by the National Natural Science Foundation of China (No.82274217, No.82373824, No.82474088)
  • 摘要:

    药用辅料作为制剂不可或缺的关键部分,扮演着充当药物载体、改善药物释放、保障药品稳定性及提高患者顺应性的重要角色。中医药在我国有着悠久的历史,随着科学技术的现代化发展,药学、化学与材料学深度交叉融合,为中药制剂的创新研发提供了更为广阔的空间,而与此同时制药行业对优质辅料的需求也日益凸显。本文旨在综述中药制剂辅料的研究进展,具体涵盖预混与共处理辅料、物理及化学改性辅料、“药辅合一”辅料包括矫味剂、填充剂、促透剂及在递送系统中的应用等,通过对现有研究的梳理与分析,探讨各类辅料在中药制剂中的具体应用现状,以期为中药制剂辅料的选择提供思路,并促进中药制剂辅料领域的创新活力,呼吁开发适合中药制剂的个性化辅料。

    Abstract:

    Pharmaceutical excipients, as an indispensable part of drug preparation, play crucial roles as drug carriers, improving drug release, ensuring drug stability, and enhancing patient compliance. Traditional Chinese Medicine (TCM) boasts a rich developmental history. With the modernization of technology, the deep integration of pharmacy, chemistry, and materials science has provided broader opportunities for innovative research in TCM. Simultaneously, the demand for high-quality excipients has become increasingly critical.This paper aims to review current research and applications of excipients in TCM preparations, including pre-mixed and co-processed excipients, modified excipients, and the unification of drugs and excipients, such as flavoring agents, fillers, penetration enhancers, and delivery systems. A meticulous synthesis and analysis of existing research aims to provide a reference for selecting excipients in TCM preparations, stimulate innovation in excipient development for TCM, and advocate for the development of personalized excipients.

  • 图  1   甘露醇-氯化钙共晶中形成的钙离子八配位结构(每个钙离子与相邻的3个甘露醇分子和2个水分子通过配位键相连)

    表  1   市售预混与共处理辅料的案例

    分 类 商品名 组 成 制备工艺 功能特性 制造商 应用案例
    预混
    辅料
    Opadry® 丙二醇、聚乙二醇、枸橼酸三乙酯、
    乙基纤维素等
    物理混合 薄膜包衣 Colorcon 朱日很包衣滴丸[4]
    Surelease® 乙基纤维素、癸二酸二丁酯、油酸、
    氢氧化铵等
    物理混合 缓释包衣 Colorcon 动物药材缓释颗粒[5]
    薄膜包衣剂(胃溶型) 羟丙基纤维素、丙烯酸树脂、滑石粉、
    三醋酸甘油酯等
    物理混合 胃溶包衣 北京英茂 连参通淋片[6]
    薄膜包衣剂(肠溶型) 聚丙烯酸树脂、柠檬酸三乙酯、
    聚乙二醇、羟丙基甲基纤维素等
    物理混合 肠溶包衣 江苏昕宇 大黄结肠靶向微丸[7]
    共处理
    辅料
    Prosolv® 微晶纤维素、胶体二氧化硅等 喷雾干燥 可压性、流动性好、
    可协同崩解
    JRS Pharma 六味地黄分散片[8]
    Starlac® 一水乳糖、玉米淀粉等 喷雾干燥 流动性、可压性、
    崩解性能好、
    载药量高
    Meggle Pharma 银杏叶提取物粉末
    直压口崩片[9]
    Tomollose®TM 微晶纤维素、羧甲基纤维素钠等 喷雾干燥 助悬剂、润滑口感好 珠海东辰 /
    乳糖粉状纤维素共处理物 一水乳糖、纤维素粉末等 喷雾干燥 流动性、直压性好 江苏道宁 /
    下载: 导出CSV

    表  2   “药辅合一”在中药制剂递药系统中的应用案例

    成分
    分类
    辅 料剂型/
    载体类型
    药理作用辅料功能参考
    文献
    挥发油薄荷醇微乳抗菌抗炎油相、
    促透剂
    [38]
    辛夷油亚微乳抗炎抗过敏油相、
    促透剂
    [56]
    薄荷油自微乳消肿镇痛油相、
    促透剂
    [57]
    天然
    多糖
    白及多糖凝胶收敛止血基质材料[41]
    生姜多糖
    凝胶抗炎抑菌基质材料[42]
    甘草多糖凝胶抗炎抗氧化基质材料[43]
    香菇多糖纳米粒免疫调节载体材料[48]
    黄芪多糖纳米粒免疫调节载体材料[49]
    脂肪油薏苡仁油微乳抗肿瘤油相[39]
    鸦胆子油纳米脂肪乳抗肿瘤油相[58]
    其他人参皂苷脂质体抗肿瘤载体材料[5152]
    丹酚酸B凝胶抗炎、
    血管促成
    基质材料[44]
    葛根素凝胶抗菌抗炎基质材料[45]
    马铃薯
    生物碱
    纳米粒抗肿瘤载体材料[47]
    甘草酸脂质体免疫调节载体材料[50]
    小檗碱纳米粒抗菌载体材料[59]
    下载: 导出CSV
  • [1]

    Kozarewicz P, Loftsson T. Novel excipients – regulatory challenges and perspectives – the EU insight[J]. Int J Pharm, 2018, 546(1): 176-179.

    [2] Wang M, Chen Y, Wu WC, et al. Development and quality management of pre-mixed excipient and co-processed excipient[J]. Chin J Pharm(中国医药工业杂志), 2022, 53(4): 578-583.
    [3] He ZG. Considerations for development and application of new excipients[J]. Chin Food Drug Administ Magazine(中国食品药品监管), 2018 (9): 67-70.
    [4] Wang YW, Yang M, Xing YS, et al. Coating process optimization and stability of Zhurihen drop pills[J]. Cent South Pharm(中南药学), 2018, 16(9): 1228-1232.
    [5]

    Zhang GM, Li YF, Guan YX, et al. Preparation method of taste-masking sustained-release granules of animal medicinal materials: CN111568883B[P]. 2021-07-02.

    [6] Gao HQ, Lu XF, Qu YP, et al. Film coating process optimization of LianShen TongLin tablets[J]. West J Tradit Chin Med(西部中医药), 2019, 32(3): 33-35.
    [7] Zhang DS, Mei YF, Song XM, et al. Preparation and formulation optimization of rheum colon targeted pellets[J]. Chin Tradit Herb Drugs(中草药), 2016, 47(8): 1321-1326.
    [8] Wang YR, Li H, Zhang BX, et al. Application of new accessories in traditional Chinese medicine dispersible tablets[J]. Chin J Exp Tradit Med Form(中国实验方剂学杂志), 2010, 16(10): 207-209,213.
    [9] Du SN, Liu H, Lu L, et al. Micromeritic evaluation of the direct compression excipient Starlac for orally disintegrating tablets[J]. Chin J Hosp Pharm(中国医院药学杂志), 2014, 34(6): 459-464.
    [10]

    Wang ST, Li JZ, Lin X, et al. Novel coprocessed excipients composed of lactose, HPMC, and PVPP for tableting and its application[J]. Int J Pharm, 2015, 486(1/2): 370-379.

    [11] Li JZ, Ruan HS, Lin X. Scaled-up production and application of co-processed excipient mannitol-HPMC in traditional Chinese medicine[J]. China J Chin Mater Med(中国中药杂志), 2018, 43(10): 2067-2073.
    [12]

    Cheng H, Wei YF, Wang SR, et al. Improving tabletability of excipients by metal-organic framework-based cocrystallization: a study of mannitol and CaCl2[J]. Pharm Res, 2020, 37(7): 130. doi: 10.1007/s11095-020-02850-8

    [13]

    Sarabia-Vallejo Á, Caja MDM, Olives AI, et al. Cyclodextrin inclusion complexes for improved drug bioavailability and activity: synthetic and analytical aspects[J]. Pharmaceutics, 2023, 15(9): 2345. doi: 10.3390/pharmaceutics15092345

    [14]

    Fan GF, Yu ZG, Tang J, et al. Preparation of gallic acid-hydroxypropyl-β-cyclodextrin inclusion compound and study on its effect mechanism on Escherichia coli in vitro[J]. Materials Express, 2021, 11: 655-662. doi: 10.1166/mex.2021.1968

    [15]

    González-Ruiz V, Cores Á, Martín-Cámara O, et al. Enhanced stability and bioactivity of natural anticancer topoisomerase I inhibitors through cyclodextrin complexation[J]. Pharmaceutics, 2021, 13(10): 1609.

    [16]

    Hu XY, Wang YM, Zhang LL, et al. Construction of self-assembled polyelectrolyte complex hydrogel based on oppositely charged polysaccharides for sustained delivery of green tea polyphenols[J]. Food Chem, 2020, 306: 125632. doi: 10.1016/j.foodchem.2019.125632

    [17]

    Haroon HB, Mukherjee D, Anbu J, et al. Thiolated chitosan-centella asiatica nanocomposite: a potential brain targeting strategy through nasal route[J]. AAPS PharmSciTech, 2021, 22(8): 251. doi: 10.1208/s12249-021-02131-6

    [18]

    Pandian S, Jeevanesan V, Ponnusamy C, et al. RES-loaded pegylated CS NPs: for efficient ocular delivery[J]. IET Nanobiotechnology, 2017, 11(1): 32-39. doi: 10.1049/iet-nbt.2016.0069

    [19]

    Honda Y, Tanaka T, Tokuda T, et al. Local controlled release of polyphenol conjugated with gelatin facilitates bone formation[J]. Int J Mol Sci, 2015, 16(6): 14143-14157.

    [20] Fu HM, Qiao ZT, Zhang CG, et al. Optimization of preparation of modified gelatin soft capsule shell by response surface methodology[J]. Cent South Pharm(中南药学), 2022, 20(4): 793-799.
    [21]

    Kumari B, Sit N. Comprehensive review on single and dual modification of starch: methods, properties and applications[J]. Int J Biol Macromol, 2023, 253: 126952. doi: 10.1016/j.ijbiomac.2023.126952

    [22] Fan T. Pharmaceutical research of Tetrandrine dry power inhalation(汉防己甲素干粉吸入剂的药学研究)[D]. Suzhou: Soochow University, 2013.
    [23] Weng Y, Xi MM, Pan C, et al. Selection of excipients for forming technology of aralia taibaiensis Saponin capsules[J]. China Pharm(中国药房), 2012, 23(35): 3291-3293.
    [24] Jia JL, Huang YY, Bian J. Preparation of paeoniflorin gastric floating tablets[J]. J Pharm Pract(药学实践杂志), 2016, 34(2): 153-157.
    [25] Jia JH. Study on the preparation technology and quality standard of Periploca sepiumperiplosides tablets(杠柳多苷片的制备工艺与质量标准研究)[D]. Shanghai: Shanghai University of Traditional Chinese Medicine, 2021.
    [26] Jiang PY, Yi XX, Zhu JR, et al. Study on molding process optimization and hygroscopicity of RuHaoDaShi granules[J]. Lishizhen Med Mater Med Res(时珍国医国药), 2023, 34(6): 1363-1365.
    [27]

    Mareczek L, Riehl C, Harms M, et al. Understanding the multidimensional effects of polymorphism, particle size and processing for D-mannitol powders[J]. Pharmaceutics, 2022, 14(10): 2128. doi: 10.3390/pharmaceutics14102128

    [28]

    Orellana-Paucar AM. Steviol glycosides from Stevia rebaudiana: An updated overview of their sweetening activity, pharmacological properties, and safety aspects[J]. Molecules, 2023, 28(3): 1258. doi: 10.3390/molecules28031258

    [29]

    Chukwuma CI, Mopuri R, Nagiah S, et al. Erythritol reduces small intestinal glucose absorption, increases muscle glucose uptake, improves glucose metabolic enzymes activities and increases expression of Glut-4 and IRS-1 in type 2 diabetic rats[J]. Eur J Nutr, 2018, 57(7): 2431-2444. doi: 10.1007/s00394-017-1516-x

    [30] Yang RZ, Zhao LJ, Huang YS, et al. Exploratory study on preparation of high drug loading granules with traditional Chinese medicine raw powder as carriers[J]. China J Chin Mater Med(中国中药杂志), 2021, 46(13): 3356-3363.
    [31] Xu LZ, Meng Y, Wang XR, et al. Preparation and synergistic antimicrobial effect of submicroemulsion of Cinnamon oil-Artemisia argyi oil complexes[J]. Cent South Pharm(中南药学), 2024, 22(5): 1125-1130.
    [32] Shang MY, Wang JL, Dai GN, et al. A review on chemical constituents, pharmacological effects, and clinical applications of Tsaoko Fructus and predictive analysis of its Q-Markers[J]. Chin Tradit Herb Drugs(中草药), 2022, 53(10): 3251-3268.
    [33] Huang JE, Ma YS, Zhang GH, et al. Enhancing effect of volatile oil from Amomum tsaoko on percutaneous penetration of Rotundine Patch[J]. Chin J Exp Tradit Med Form(中国实验方剂学杂志), 2012, 18(13): 7-10.
    [34] Li Y, Chen JS, Guo X, et al. Status quo and analysis of volatile oil in Chinese medicine based on “unification of medicine and adjuvant”[J]. Mod Chin Med(中国现代中药), 2022, 24(4): 564-569.
    [35] Li SS, Li F, Li F, et al. Research progress in chemical constituents and pharmacodynamics of Eugenia caryophyllata[J]. Northwest Pharm J(西北药学杂志), 2021, 36(5): 863-868.
    [36] Li Q, Ma YS, Yang XZ, et al. Screening of penetration enhancer and analgesic effect of total alkaloids in semen strychni transdermal patch[J]. Pract Pharm Clin Rem(实用药物与临床), 2013, 16(8): 663-666.
    [37]

    Egito EST, Amaral-Machado L, Alencar EN, et al. Microemulsion systems: from the design and architecture to the building of a new delivery system for multiple-route drug delivery[J]. Drug Deliv Transl Res, 2021, 11(5): 2108-2133. doi: 10.1007/s13346-020-00872-8

    [38]

    Li MH, Yuan J, Liu ZN, et al. Multifunctional deep eutectic solvent-based microemulsion for transdermal delivery of artemisinin[J]. Langmuir, 2024, 40(10): 5098-5105. doi: 10.1021/acs.langmuir.3c02748

    [39] Chen YY, Ma R, Bu XY, et al. Preparation and determination of Paclitaxel-Coix seed oil microemulsion based on the unity of medicine and adjuvant[J]. Chin J Mod Appl Pharm(中国现代应用药学), 2023, 40(8): 1064-1069.
    [40]

    Far BF, Naimi-Jamal MR, Safaei M, et al. A review on biomedical application of polysaccharide-based hydrogels with a focus on drug delivery systems[J]. Polymers, 2022, 14(24): 5432. doi: 10.3390/polym14245432

    [41] Chen JJ, Wang LM, Wang XY, et al. Oxidation modification and hydrogel preparation of Bletilla striata polysaccharide[J]. China J Tradit Chin Med Pharm(中华中医药杂志), 2023, 38(5): 2091-2097.
    [42]

    Jing YS, Zhang YM, Cheng WJ, et al. The synthesis, characterization, and protein-release properties of hydrogels composed of chitosan-Zingiber offcinale polysaccharide[J]. Foods, 2022, 11(18): 2747.

    [43]

    Yang YJ, Yu ML, Mo YL, et al. Metal-ion-binding properties of glycyrrhiza polysaccharide extracted from Licorice: structural characterization and potential application in drug delivery[J]. Carbohydr Polym, 2024, 346: 122658. doi: 10.1016/j.carbpol.2024.122658

    [44]

    Huang XJ, Li TT, Jiang XY, et al. Co-assembled supramolecular hydrogel of salvianolic acid B and a phosphopeptide for enhanced wound healing[J]. ACS Appl Mater Interfaces, 2023, 15(39): 45606-45615. doi: 10.1021/acsami.3c09219

    [45]

    Yuan H, Zeng ZX, Li DR, et al. Multifunctional thiolated chitosan/puerarin composite hydrogels with pH/glutathione dual responsiveness for potential drug carriers[J]. Int J Biol Macromol, 2024, 265: 130841. doi: 10.1016/j.ijbiomac.2024.130841

    [46]

    Wang L, Quine S, Frickenstein AN, et al. Exploring and analyzing the systemic delivery barriers for nanoparticles[J]. Adv Funct Mater, 2024, 34(8): 2308446.

    [47]

    Li J, Tang W, Yang Y, et al. A programmed cell-mimicking nanoparticle driven by potato alkaloid for targeted cancer chemoimmunotherapy[J]. Adv Healthc Mater, 2021, 10(13): 2100311. doi: 10.1002/adhm.202100311

    [48]

    Mao QQ, Min J, Zeng R, et al. Self-assembled traditional Chinese nanomedicine modulating tumor immunosuppressive microenvironment for colorectal cancer immunotherapy[J]. Theranostics, 2022, 12(14): 6088-6105. doi: 10.7150/thno.72509

    [49] Li N. Application of “combination of drug and excipient” nano-delivery system based on plant-derived natural polysaccharides in tumor immunity(基于植物来源的天然多糖“药辅合一”纳米递送系统在肿瘤免疫中的应用)[D]. Beijing: Peking Union Medical College, 2023.
    [50]

    Wang YX, Wang WZ, Yao HL, et al. Glycyrrhizic acid-based liposome for tumor-targeted delivery of Cantharidin[J]. ACS Applied Nano Materials, 2024, 7(1): 1030-1044. doi: 10.1021/acsanm.3c05019

    [51]

    Hong C, Wang D, Liang JM, et al. Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer[J]. Theranostics, 2019, 9(15): 4437-4449. doi: 10.7150/thno.34953

    [52]

    Guo CJ, Su YG, Wang H, et al. A novel saponin liposomes based on the couplet medicines of Platycodon grandiflorum-Glycyrrhiza uralensis for targeting lung cancer[J]. Drug Deliv, 2022, 29(1): 2743-2750. doi: 10.1080/10717544.2022.2112997

    [53] J]. Chin J New Drugs(中国新药杂志), 2022, 31(11): 1103-1111.

    Su C, Zhao YY, Feng Y, et al. Antibacterial effect and composition analysis of the leaves and spicas from Schizonepeta tenuifolia Briq

    [54]

    Smulek W, Grząbka-Zasadzińska A, Kilian A, et al. Design of vitamin-loaded emulsions in agar hydrogel matrix dispersed with plant surfactants[J]. Food Biosci, 2023, 53: 102559. doi: 10.1016/j.fbio.2023.102559

    [55]

    Timilsena YP, Phosanam A, Stockmann R. Perspectives on saponins: food functionality and applications[J]. Int J Mol Sci, 2023, 24(17): 13538. doi: 10.3390/ijms241713538

    [56] Meng Y, Xu LZ, Wang XR, et al. Preparation and evaluation of Magnolia Flos oil-loaded submicron emulsion based on the unification of drugs and excipients[J]. Cent South Pharm(中南药学), 2024, 22(5): 1213-1219.
    [57] He ZY, Zou T, Luo T, et al. Preparation of self-microemulsion gel drug delivery system of Carthamus tinctorius extract based on Mentha haplocalyx oil as oil phase[J]. Chin Tradit Herb Drugs(中草药), 2020, 51(11): 2922-2928.
    [58] Chen XR. Study on the “unification of drugs and excipients” Toad Skin and Brucea javanica oil lipid nano-drug delivery system(蟾皮-鸦胆子油“药辅合一”脂质纳米给药系统的研究)[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2022.
    [59]

    Huang XM, Wang PL, Li T, et al. Self-assemblies based on traditional medicine berberine and cinnamic acid for adhesion-induced inhibition multidrug-resistant Staphylococcus aureus[J]. ACS Appl Mater Interfaces, 2020, 12(1): 227-237.

  • 期刊类型引用(1)

    1. 周迎芳,韩琮定,任胜杰,文贵辉,文利新. 基于高脂饮食探究不同膳食油脂对小鼠附睾脂肪沉积的影响. 粮食与油脂. 2025(03): 55-59+66 . 百度学术

    其他类型引用(1)

图(1)  /  表(2)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  65
  • PDF下载量:  62
  • 被引次数: 2
出版历程
  • 收稿日期:  2024-08-28
  • 刊出日期:  2024-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭