• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

通络生骨胶囊原粉化学成分鉴定及牡荆苷含量测定

吴革林, 范瑞鑫, 梁楚玲, 邢冷, 谢永建, 龚平, 周鹏, 李博

吴革林,范瑞鑫,梁楚玲,等. 通络生骨胶囊原粉化学成分鉴定及牡荆苷含量测定[J]. 中国药科大学学报,2025,56(2):166 − 175. DOI: 10.11665/j.issn.1000-5048.2024090301
引用本文: 吴革林,范瑞鑫,梁楚玲,等. 通络生骨胶囊原粉化学成分鉴定及牡荆苷含量测定[J]. 中国药科大学学报,2025,56(2):166 − 175. DOI: 10.11665/j.issn.1000-5048.2024090301
WU Gelin, FAN Ruixin, LIANG Chuling, et al. Identification of chemical components and determination of vitexin in the raw powder of Tongluo Shenggu capsule[J]. J China Pharm Univ, 2025, 56(2): 166 − 175. DOI: 10.11665/j.issn.1000-5048.2024090301
Citation: WU Gelin, FAN Ruixin, LIANG Chuling, et al. Identification of chemical components and determination of vitexin in the raw powder of Tongluo Shenggu capsule[J]. J China Pharm Univ, 2025, 56(2): 166 − 175. DOI: 10.11665/j.issn.1000-5048.2024090301

通络生骨胶囊原粉化学成分鉴定及牡荆苷含量测定

详细信息
    通讯作者:

    李博: Tel:13913993019 E-mail:libo@cpu.edu.cn

  • 中图分类号: R917

Identification of chemical components and determination of vitexin in the raw powder of Tongluo Shenggu capsule

  • 摘要:

    采用UPLC-MS/MS对通络生骨胶囊原粉中的化合物进行分析鉴定,并建立牡荆苷HPLC含量测定方法。通过采用Acquity UPLC® BEH C18(2.1 mm×100 mm,1.7 μm)色谱柱,以0.2%甲酸-甲醇为流动相进行梯度洗脱,柱温30 ℃,流速0.3 mL/min,进样量1 μL;通过ESI质谱源,在正、负离子模式下分别采集数据,成功鉴定出通络生骨胶囊原粉中的12个黄酮类和3个芪类化合物。同时,采用XBridge C18(4.6 mm×250 mm,5 µm)色谱柱,以0.05%冰醋酸-甲醇为流动相进行梯度洗脱,柱温30 ℃,流速1.0 mL/min,进样量20 µL,建立了牡荆苷的HPLC含量测定方法。该方法在10~40 µg/mL范围内线性关系良好(R=1.000),平均回收率为96.7%。这些方法的建立为通络生骨胶囊原粉的质量控制和开发利用提供了科学依据。

    Abstract:

    The present study employed UPLC-MS/MS to analyze and identify compounds in the raw powder of Tongluo Shenggu capsules. An HPLC method for the determination of vitexin content was established. The analysis of this drug was performed on a 30 ℃ thermostatic Acquity UPLC® BEH C18 (2.1 mm×100 mm,1.7 μm) column, with the mobile phase comprising 0.2% formic acid-methanol flowing at 0.3 mL /min in a gradient elution manner. Mass spectrometry was detected by ESI sources in both positive and negative ion modes for qualitative identification of chemical constituents. 12 flavonoid and 3 stilbenes compounds in the raw powder of Tongluo Shenggu capsules were successfully identified. Additionally, an HPLC method for the determination of vitexin content was established using a XBridge C18 column (4.6 mm × 250 mm, 5 µm) with a mobile phase of 0.05% glacial acetic acid in methanol for gradient elution, at a column temperature of 30 °C, a flow rate of 1.0 mL/min, and an injection volume of 20 μL. The method demonstrated good linearity in the concentration range of 10 µg/mL to 40 µg/mL (R=1.000) with an average recovery rate of 96.7%. The establishment of these methods provides a scientific basis for the quality control and development of the raw powder of Tongluo Shenggu capsules.

  • 癌症作为一种严重危害人类健康的疾病,是世界各国都面临的公共卫生问题[1]。根据国际癌症研究中心的数据显示,全球新发癌症病例和癌症死亡病例逐年增加[2]。药物研发起源于先导物的发现和优化[3],基于药物设计原理,利用现有药物的结构或药效团,从而构建结构新颖的化合物,并利用活性筛选发现先导化合物是目前新药研发最经济有效的策略[45]

    1,2-苯并噻嗪是多个药物的优势骨架,如非甾体抗炎药吡罗昔康等,具有多种生物活性。薁是由一个环庚三烯和一个环戊二烯稠合而成,是萘的同分异构体。由于其特殊的电子结构和物理化学性质,使其广泛应用于医药、农药和光学材料等领域[611],因而受到研究者的广泛关注。为了进一步研究杂环修饰的1,2-苯并噻嗪类化合物的合成及其生物活性,寻找具有生物活性的新化合物,本研究以吡罗昔康合成中间体1(2-甲基-4-羟基-2H-1,2-苯并噻嗪-3-甲酸甲酯-1,1-二氧化物,CAS:35511-15-0)为原料,首次将类薁基引入1,2-苯并噻嗪结构中,制备一系列结构新颖的1,2-苯并噻嗪类化合物6a~6j,合成路线见路线1。

      1.  Synthetic route of the target compounds

    熔点用毛细管法测定,温度未校正; AM2400型核磁共振仪(德国Bruker公司);HP1100型质谱仪(美国Agilent公司);PE2400-Ⅱ元素分析仪(美国PE公司);化合物1为吡罗昔康合成中间体(CAS:35511-15-0)来自商业品,化合物2(2-甲基-4-羟基-2H-1,2-苯并噻嗪-3-甲酰肼-1,1-二氧化物)按文献[12]的方法制备,试剂均为市售分析纯,未经处理,直接使用。

    取氢氧化钾(4.7 g, 0.084 mol),无水乙醇120 mL,依次加入250 mL三口瓶中,完全溶解后,加入化合物2(15 g, 0.056 mol),冰浴降温至0℃左右,控制温度(0~5 ℃),恒压滴液漏斗滴加二硫化碳(5 mL, 0.083 mol),滴加结束后,自然升至室温,搅拌反应4 h后,加热至回流并反应9 h,利用TLC检测(乙酸乙酯-石油醚, 2∶1),反应结束后,自然冷却至室温,调节pH2~3,过滤,用乙醇重结晶,60 ℃鼓风干燥,得黄色化合物12.5 g,收率72%,mp:251~252 ℃。

    取化合物3(10 g, 0.032 mol),80%水合肼(100 mL, 1.651 mol)依次加入250 mL三口瓶中,加热回流(约100 ℃)8 h,TLC检测(乙酸乙酯-石油醚, 3∶1),反应完成后,将反应液浓缩至黏稠状,加水80 mL,调节pH至中性,静置,析出沉淀后,过滤,用乙醇重结晶,60 ℃干燥得到黄色化合物4.8 g,收率46%,mp:208~209 ℃。

    取化合物4(3.5 g, 0.011 mol),无水乙醇20 mL,依次加入250 mL三口瓶中,搅拌均匀,加入1 mol/L氢氧化钠溶液,调节pH至9~10,待完全溶解后,加入3-氯苯乙酮(2.2 g, 0.013 mol),常温下搅拌反应6 h(过程中注意监测溶液的pH,控制pH 9~10),待反应结束后,静置,过滤,用乙醇重结晶,干燥黄色化合物2.2 g,mp:192~193 ℃,收率45%。

    按化合物5a相似的方法分别制备目标物5b~5j

    向100 mL单口瓶中,加入化合物5a(1.1 g, 0.002 mol),无水乙醇10 mL,滴加5~6 滴浓硫酸,加热至回流,反应5 h,TLC检测(乙酸乙酯-石油醚, 1∶1),反应结束后,自然冷却至室温,过滤,得黄色化合物0.7 g。收率64%,mp:229~231 ℃。

    按化合物6a相似的方法分别制备目标物6b6j。理化性质和光谱数据见表1表2

    Table  1.  Physical properties of compounds 5a 5j and 6a6j
    Compd. Formula Yield/% mp/℃ Elemental analysis(%,Calcd.)
    C H N
    5a C20H19N5O4S2 45 192–193 55.52(55.50) 4.21(4.19) 15.27(15.31)
    5b C20H18FN5O4S2 47 196–198 50.48(50.52) 3.78(3.82) 14.81(14.73)
    5c C20H17BrFN5O4S2 45 203–205 43.35(43.33) 3.05(3.09) 12.65(12.63)
    5d C20H19N5O5S2 42 202–204 50.75(50.73) 4.02(4.04) 14.75(14.79)
    5e C21H21N5O4S2 48 198–200 53.53(53.49) 4.55(4.49) 14.81(14.85)
    5f C20H17Cl2N5O4S2 49 210–212 45.65(45.63) 3.32(3.26) 13.34(13.30)
    5g C18H17N5O4S3 52 221–223 46.58(46.64) 3.68(3.70) 15.13(15.11)
    5h C18H22N6O4S2 50 233–235 47.91(47.99) 4.88(4.92) 18.69(18.65)
    5i C23H23N5O4S2 42 228–230 55.48(55.52) 4.68(4.66) 14.03(14.07)
    5j C23H24N6O4S2 41 225–227 53.93(53.89) 4.74(4.72) 16.36(16.40)
    6a C20H17N5O3S2 64 229–231 54.60(54.66) 3.94(3.90) 15.97(15.93)
    6b C20H16FN5O3S2 65 222–224 52.57(52.51) 3.51(3.53) 15.35(15.31)
    6c C20H15BrFN5O3S2 60 224–226 44.86(44.78) 2.86(2.82) 13.12(13.06)
    6d C20H17N5O4S2 61 223–226 52.68(52.74) 3.72(3.76) 15.36(15.38)
    6e C21H19N5O3S2 67 225–227 55.63(55.61) 4.26(4.22) 15.38(15.44)
    6f C20H15Cl2N5O3S2 66 240–242 47.19(47.25) 2.99(2.97) 13.80(13.78)
    6g C18H15N5O3S3 73 249–251 48.57(48.53) 3.35(3.39) 15.70(15.72)
    6h C18H20N6O3S2 71 261–263 49.95(49.99) 4.72(4.66) 19.45(19.43)
    6i C23H21N5O3S2 59 258–260 57.64(57.60) 4.39(4.41) 14.62(14.60)
    6j C23H22N6O3S2 59 252–254 55.82(55.86) 4.54(4.48) 16.95(16.99)
    下载: 导出CSV 
    | 显示表格
    Table  2.  Spectral data of compounds 36i
    Compd.1H NMR (400 MHz, DMSO-d6) δ13C NMR (100 MHz , DMSO-d6) δMS m/z [M+H]+
    312.96(1H,s,-OH),7.73-7.95(4H,m,Ph-H),3.00(3H,s,-NCH3)160,156,134,132,129,127,124,110,37312
    412.84(1H,s,-OH),7.69-7.91(4H,m,Ph-H),5.27(2H,s,-NH2),3.11(3H,s,-NCH3)167,156,144,134,132,129,127,124,111,38326
    5a12.88(1H,s,-OH),7.65-7.89(9H,m,Ph-H),5.43(2H,s,-NH2),3.31(2H,t,-SCH2),3.13(3H,s,-NCH3),3.05(2H,t,-CH2-C=O)200,159,156,144,137,134,133,132,129,127,124,111,42,38,27458
    5b12.82(1H,s,-OH),7.45-7.86(8H,m,Ph-H),5.46(2H,s,-NH2),3.35(2H,t,-SCH2),3.12(3H,s,-NCH3),3.02(2H,t,-CH2-C=O)200,162,158,156,143,135,134,133,132,128,127,124,111,41,38,28476
    5c12.78(1H,s,-OH),7.36-8.06(7H,m,Ph-H),5.54(2H,s,-NH2),3.29(2H,t,-SCH2),3.07(3H,s,-NCH3),2.97(2H,t,-CH2-C=O)200,161,159,156,144,138,134,133,132,128,127,124,118,110,41,38,28554
    5d12.77(1H,s,-OH),10.68(1H,s,Ph-OH),7.18-7.86(8H,m,Ph-H),5.48(2H,s,-NH2),3.17(2H,t,-SCH2),3.09(3H,s,-NCH3),2.93(2H,t,-CH2-C=O)200,163,159,156,144,135,133,132,129,127,124,122,118,110,41,38,28474
    5e12.83(1H,s,-OH),7.21-7.87(8H,m,Ph-H),5.64(2H,s,-NH2),3.22(2H,t,-SCH2),3.11(3H,s,-NCH3),2.95(2H,t,-CH2-C=O),1.51(3H,s,Ph-CH3)200,160,156,144,143,135,134,133,132,129,127,124,118,110,42,38,28,21472
    5f12.84(1H,s,-OH),7.66-8.26(7H,m,Ph-H),5.52(2H,s,-NH2),3.27(2H,t,-SCH2),3.07(3H,s,-NCH3),2.98(2H,t,-CH2-C=O)200,159,156,144,138,136,134,133,132,130,128,127,110,41,38,28526
    5g12.80(1H,s,-OH),7.32-7.86(4H,m,Ph-H),7.16-7.66(3H,d,thiophene-H),5.44(2H,s,-NH2),3.27(2H,t,-SCH2),3.11(3H,s,-NCH3),2.98(2H,t,-CH2-C=O)192,159,156,144,134,133,132,129,127,124,110,40,37,27464
    5h12.78(1H,s,-OH),7.34-7.88(4H,m,Ph-H),5.50(2H,s,-NH2),3.23(2H,t,-SCH2),3.10(3H,s,-NCH3),2.95(2H,t,-CH2-C=O),2.69(4H,t,-CH2-N-CH2),1.33(4H,t,pyrrolidine-CH2-CH2)175,159,156,144,142,135,134,132,129,127,124,110,49,38,32,29,25451
    5i12.82(1H,s,-OH),7.34-7.85(7H,m,Ph-H),5.58(2H,s,-NH2),3.19(2H,t,-SCH2),3.11(3H,s,-NCH3),2.89(2H,t,-CH2-C=O),1.35-1.95(6H,m,-CH2-CH2-CH2)200,159,156,148,144,142,135,134,132,129,127,126,124,110,40,38,33,28,25498
    5j12.86(1H,s,-OH),7.26-7.82(8H,m,Ph-H),5.62(2H,s,-NH2),3.32-4.42(6H,m,piperidine-H),3.29(2H,t,-SCH2),3.03(3H,s,-NCH3),2.77(2H,t,-CH2-C=O),172,159,156,144,135,134,132,129,127,126,124,111,49,48,38,32,29513
    6a12.78(1H,s,-OH),7.65-7.94(9H,m,Ph-H),3.23(2H,t,-SCH2),3.07(3H,s,-NCH3),2.75(2H,t,-CH2-C=N)165,159,156,144,135,132,129,128,127,124,111,37,33,31440
    6b12.68(1H,s,-OH),7.46-7.84(8H,m,Ph-H),3.31(2H,t,-SCH2),3.12(3H,s,-NCH3),2.79(2H,t,-CH2-C=N)165,160,159,156,144,135,133,132,131,129,127,124,116,111,37,33,31458
    6c12.74(1H,s,-OH),7.30-7.96(7H,m,Ph-H),3.29(2H,t,-SCH2),3.03(3H,s,-NCH3),2.69(2H,t,-CH2-C=N)165,159,156,144,138,136,135,132,128,124,120,118,110,37,33,31536
    6d12.78(1H,s,-OH),10.66(1H,s,Ph-OH),7.12-7.76(8H,m,Ph-H),3.19(2H,t,-SCH2),3.11(3H,s,-NCH3),2.73(2H,t,-CH2-C=N)165,163,159,156,144,135,132,129,127,124,121,118,110,37,33,31456
    6e12.73(1H,s,-OH),7.18-7.87(8H,m,Ph-H),3.27(2H,t,-SCH2),3.07(3H,s,-NCH3),2.75(2H,t,-CH2-C=N),1.47(3H,s,Ph-CH3)165,159,156,144,141,135,132,131,129,127,124,110,42,37,33,31,21454
    6f12.74(1H,s,-OH),7.56-8.18(7H,m,Ph-H),3.19(2H,t,-SCH2),3.01(3H,s,-NCH3),2.68(2H,t,-CH2-C=N)165,159,156,144,138,136,135,134,132,130,129,126,110,37,33,31508
    6g12.82(1H,s,-OH),7.44-7.84(4H,m,Ph-H),7.10-7.62(3H,d,thiophene-H),3.20(2H,t,-SCH2),2.993H,(s,-NCH3),2.68(2H,t,-CH2-C=N)165,159,156,144,134,132,129,127,126,124,110,37,34,31446
    6h12.74(1H,s,-OH),7.44-7.78(4H,m,Ph-H),3.23(2H,t,-SCH2),3.04(3H,s,-NCH3),2.75(2H,t,-CH2-C=N),2.58(4H,t,-CH2-N-CH2),1.66(4H,t,pyrrolidine-CH2-CH2)159,156,149,144,134,132,129,127,124,110,49,37,31,30,26433
    6i12.76(1H,s,-OH),7.44-7.84(7H,m,Ph-H),3.23(2H,t,-SCH2),3.13(3H,s,-NCH3),2.63(2H,t,-CH2-C=N),1.35-1.87(6H,m,-CH2-CH2-CH2)165,159,156,149,146,144,135,132,129,127,124,110,37,33,31,25480
    6j12.82(1H,s,-OH),7.22-7.78(8H,m,Ph-H),3.36-4.44(6H,m,piperidine-H),3.25(2H,t,-SCH2),3.07(3H,s,-NCH3),2.73(2H,t,-CH2-C=N),159,156,144,140,135,134,132,130,129,126,123,111,45,37,32,27,22495
    下载: 导出CSV 
    | 显示表格

    对合成的目标化合物,蒽醌类抗肿瘤药物多柔比星以及母体吡罗昔康合成中间体(化合物1)进行抗肿瘤活性评价。采用MTT法测定对人胰腺癌细胞Capan-1(中国医学科学院协和细胞库)、鼠白血病细胞L1210(中国医学科学院协和细胞库)和人肝癌细胞SMMC-7721(中国医学科学院协和细胞库)的半数抑制浓度(IC50),结果见表3

    Table  3.  Anti-cell proliferative activity of the tested compounds against Capan-1, SMMC-7721 and L1210 tumor cells($\bar{x}\pm s $, n=3)
    Compd. IC50/(μmol/L)
    Capan-1 SMMC-7721 L1210
    6a 15.7±1.4 18.2±1.7 14.6±1.5
    6b 9.8±1.0 8.6±0.9 2.6±0.3
    6c 9.6±1.0* 2.1±0.2* 8.7±0.8*
    6d 10.8±1.1* 11.6±1.2 10.2±1.0*
    6e 14.6±1.5 15.3±1.5 16.2±1.6
    6f 4.8±0.5* 8.7±0.7* 9.4±0.9*
    6g 11.4±1.2 14.1±1.4 15.8±1.6
    6h 11.8±1.2 13.6±1.4* 13.8±1.4
    6i 11.7±1.2 10.7±1.2* 9.2±0.9*
    6j 12.8±1.3 11.6±1.2 13.6±1.4
    Doxorubicin 3.5±0.6 2.7±0.2 1.4±0.2
    1 >100 >100 >100
    2 80.2±8.1 78.5±7.3 77.4±7.3
    3 65.5±6.6 71.7±7.2 73.6±7.5
    4 64.6±6.5 70.3±7.0 72.5±7.2
    5a 15.2±1.4 17.2±1.7 15.6±1.6
    5b 10.2±1.0 9.2±0.9 2.4±0.3
    5c 9.8±1.0* 6.2±0.6* 6.7±0.8*
    5d 10.6±1.1* 10.8±1.2 9.8±1.0*
    5e 15.6±1.5 15.1±1.5 15.4±1.5
    5f 7.6±0.7* 8.2±0.7* 8.8±0.9*
    5g 12.2±1.2 14.3±1.4 14.2±1.4
    5h 12.6±1.2 11.2±1.1* 13.6±1.4
    5i 12.7±1.3 11.6±1.2* 8.6±0.9*
    5j 11.8±1.2 13.6±1.4 15.2±1.5
    *P<0.05 vs doxorubicin
    下载: 导出CSV 
    | 显示表格

    体外抗肿瘤实验结果显示,10个目标化合物(6a~6j)对人胰腺癌细胞Capan-1、鼠白血病细胞L1210和人肝癌细胞SMMC-7721呈现出不同程度的抑制作用(IC50均小于20 μmol/L),其中化合物6f6g6h对Capan-1、L1210和SMMC-7721的IC50与对照多柔比星的活性相当。

    初步的构效关系研究表明,薁类衍生物的引入,有利于化合物电荷的分散而更加稳定,对提高该类化合物的抗肿瘤活性有一定的作用。更有意义的是,在稠杂环结构上引入含有吸电子基团的取代基时,化合物的抗肿瘤活性进一步增强,具有进一步研究的价值,这也预示着1,2-苯并噻嗪结构的修饰在肿瘤治疗方面将会有更加广阔的研究前景。

  • Figure  1.   Typical UPLC chromatogram of the raw powder of Tongluo Shenggu capsule

    Figure  2.   Fragmentation pathway of compound 10

    Figure  3.   MS/MS spectrum and fragmentation pathway of compound 16

    Figure  4.   MS/MS spectrum and fragmentation pathway of compound 22

    Figure  5.   MS/MS spectrum and fragmentation pathway of compound 23

    Figure  6.   Typical HPLC chromatograms of Vitexin reference substance (A) and the raw powder of Tongluo Shenggu capsule (B)

    Table  1   LC-MS/MS data of the raw powder of Tongluo Shenggu capsule

    Compd. tR/min Adduct Precursor (m/z) Fragments (m/z)
    1 0.96 [M–H]- 191.21 147.60,127.19,84.78,57.18
    2 1.99 [M+H]+ 284.33 223.06,214.75,202.02,152.04,135.27,115.29
    3 2.79 [M+H]+ 434.79 403.10,388.56,201.34
    4 5.40 [M+H]+ 294.98 277.01,172.71,156.83,130.23,84.16
    5 5.68 [M+H]+ 295.06 277.08,201.01,156.83,130.23,91.28
    6 8.10 [M+H]+ 611.63 592.94,575.53,557.17,539.06,515.46, 491.11,473.13,443.34,395.07,371.09
    7 9.85 [M+H]+ 595.49 577.45,558.83,541.03,523.11,474.97,456.97,355.27
    8 9.90 [M+H]+ 595.88 577.83,530.51,458.07,427.97,394.37
    9 10.76 [M+H]+ 581.40 563.42,545.37,527.13,491.29,443.21, 425.04,395.45,340.93
    10 11.08 [M+H]+ 581.02 563.27,544.86,491.05,443.10,395.32,341.31
    11 12.26 [M+H]+ 449.28 430.78,413.18,353.04,328.94,299.03
    12 12.56 [M+H]+ 448.70 430.84,413.24,352.91,329.06,299.16
    13 12.98 [M+H]+ 565.14 547.41,529.05,510.81,499.06,325.37
    14 13.62 [M+H]+ 565.14 546.96,529.36,511.00,499.01,325.045
    15 13.94 [M+H]+ 564.82 547.09,529.17,511.32,499.46,325.05
    16 14.94 [M+H]+ 433.07 415.09,397.42,379.06,366.75,313.25, 283.21
    17 16.90 [M+H]+ 432.94 414.90,397.04,378.68,367.01,313.25, 283.09
    18 17.23 [M+H]+ 365.35 346.92,254.58,183.35,155.17,126.92
    19 19.46 [M+H]+ 534.98 499.06,396.97,379.02,295.28
    20 20.61 [M+H]+ 397.36 379.25,321.86,2269.70,209.18,114.17
    21 22.79 [M+H]+ 588.61 493.21,408.58,278.75
    22 23.90 [M+H]+ 521.20 493.46,398.70,228.50,209.24
    23 24.74 [M+H]+ 341.24 323.39,295.08,209.18,139.10,97.33
    24 25.53 [M+H]+ 301.20 283.21,269.12,219.13,163.27
    25 28.78 [M–H]- 311.25 293.06,236.85,206.04,188.24
    26 30.53 [M–H]- 253.32 235.12,221.23,186.22,97.24
    下载: 导出CSV

    Table  2   Identification results of each compound

    Compd. tR/min Compound Formula
    6 8.10 Lucenin-II C27H30O16
    7 9.85 vicenin-II C27H30O15
    9 10.76 Isocarlinoside C26H28O15
    10 11.08 Carlinoside C26H28O15
    11 12.26 Orientin C21H20O11
    12 12.56 Homoorientin C21H20O11
    13 12.98 Isoshaftoside C26H28O14
    14 13.62 Schaftoside C26H28O14
    15 13.94 Neoshaftoside C26H28O14
    16 14.94 Vitexin C21H20O10
    17 16.90 Isovitexin C21H20O10
    19 19.46 6,8-Di-C-α-L-arabinopyranosyl apigenin C25H26O13
    21 22.79 Cajanstilbenoids A C40H44O4
    22 23.90 Cajanstilbenoids B C35H36O4
    23 24.74 Amorfrutin A C21H24O4
    下载: 导出CSV
  • [1] Yuan WA, Du J, Wen H, et al. A multi- center, randomized, double- blind, double- dummy, positive- controlled clinical study on Tongluo Shenggu Capsule in treatment of osteonecrosis of femoral head (syndrome of stagnation of sinews and vessels)[J]. Shanghai J Tradit Chin Med (上海中医药杂志), 2019, 53(8): 53-59.
    [2] Cai JZ, Dai W, Zhang NL. Advance on chemical constituents and pharmacological activities of Cajanus cajan (L. ) Millsp[J]. Nat Prod Res Dev (天然产物研究与开发), 2020, 32(3): 515-524.
    [3]

    Patel NK, Bhutani KK. Pinostrobin and Cajanus lactone isolated from Cajanus cajan (L. ) leaves inhibits TNF-α and IL-1β production: in vitro and in vivo experimentation[J]. Phytomedicine, 2014, 21(7): 946-953. doi: 10.1016/j.phymed.2014.02.011

    [4]

    Ajaiyeoba EO, Ogbole OO, Abiodun OO, et al. Cajachalcone: an antimalarial compound from Cajanus cajan leaf extract[J]. J Parasitol Res, 2013, 2013: 703781.

    [5]

    Cai JZ, Tang R, Ye GF, et al. A halogen-containing stilbene derivative from the leaves of Cajanus cajan that induces osteogenic differentiation of human mesenchymal stem cells[J]. Molecules, 2015, 20(6): 10839-10847. doi: 10.3390/molecules200610839

    [6]

    Ahmad L, Mujahid M, Mishra A, et al. Protective role of hydroalcoholic extract of Cajanus cajan Linn leaves against memory impairment in sleep deprived experimental rats[J]. J Ayurveda Integr Med, 2020, 11(4): 471-477. doi: 10.1016/j.jaim.2018.08.003

    [7] Xu AL, Bi XL, Li SM, et al. Establishment of HPLC fingerprints of Cajanus cajan leaves and determination of two constituents[J]. Chin Tradit Pat Med (中成药), 2017, 39(7): 1435-1439.
    [8] Fu LN, Wang LT, Wang JD, et al. Quality evaluation of different Cajanus cajan leaves based on RP-HPLC-DAD fingerprint combined with chemometrics and determination of main components[J]. Chin Tradit Herb Drugs (中草药), 2022, 53(24): 7880-7886.
    [9] Zhang HC. On-line structure identification of chemical constituents in Cajanus cajan leaves by UPLC-QTOF-MS and separation and purification by HSCCC(木豆叶中化学成分的UPLC-QTOF-MS在线结构鉴定与HSCCC分离纯化研究)[D]. Hangzhou: Zhejiang University of Technology, 2017.
    [10] Lei XY, Zhou QR, Chen Y, et al. Chemical constituents from the twigs and leaves of Cajanus cajan[J]. J Chin Med Mater (中药材), 2021, 44(8): 1880-1883.
    [11] Zhao YX, Lei XY, Qin GF, et al. Chemical constituents from twigs and leaves of Cajanus cajan(Ⅱ)[J]. J Chin Med Mater (中药材), 2022, 45(12): 2895-2899.
    [12] Zhang NL, Cai JZ, Hu YJ, et al. Study on chemical constituents from leaves of Cajanus cajan[J]. J Chin Med Mater (中药材), 2017, 40(5): 1116-1118.
    [13]

    Gargi B, Semwal P, Jameel Pasha SB, et al. Revisiting the nutritional, chemical and biological potential of Cajanus cajan (L. ) millsp[J]. Molecules, 2022, 27(20): 6877. doi: 10.3390/molecules27206877

    [14]

    Nwaechefu OO, Olaolu TD, Akinwunmi IR, et al. Cajanus cajan ameliorated CCl4-induced oxidative stress in Wistar rats via the combined mechanisms of anti-inflammation and mitochondrial-membrane transition pore inhibition[J]. J Ethnopharmacol, 2022, 289: 114920.

    [15] Liu JF, Zeng P, Nong J, et al. Effect of Tongluo Shenggu Capsule on Toll-like receptor 4 signaling pathway in rats with steroid-induced osteonecrosis of the femoral head[J]. Chin J Tissue Eng Res (中国组织工程研究), 2021, 25(26): 4150-4155.
    [16]

    Sun L, Li JH, Li J, et al. Effects and mechanism of Pigeonpea (Cajanus cajan (L. ) Millsp. ) leaves on proliferation, migration, and tube formation of hypoxic human umbilical vein endothelial cells in vitro[J]. J Ethnopharmacol, 2021, 279: 114394. doi: 10.1016/j.jep.2021.114394

    [17]

    Wu T, Sheng YN, Tian Y, et al. Vitexin regulates heat shock protein expression by modulating ROS levels thereby protecting against heat-stress-induced apoptosis[J]. Molecules, 2023, 28(22): 7639. doi: 10.3390/molecules28227639

    [18]

    Zhang S, Zhang SX, Wang H, et al. Vitexin ameliorated diabetic nephropathy via suppressing GPX4-mediated ferroptosis[J]. Eur J Pharmacol, 2023, 951: 175787. doi: 10.1016/j.ejphar.2023.175787

    [19]

    Liu H, Huang MR, Xin DD, et al. Natural products with anti-tumorigenesis potential targeting macrophage[J]. Phytomedicine, 2024, 131: 155794. doi: 10.1016/j.phymed.2024.155794

    [20]

    Hussein SR, Abdel Latif RR, Marzouk MM, et al. Spectrometric analysis, phenolics isolation and cytotoxic activity of Stipagrostis plumosa (Family Poaceae)[J]. Chem Pap, 2018, 72(1): 29-37. doi: 10.1007/s11696-017-0254-0

    [21] He XA. Analysis of chemical constituents of Cajanus cajan leaves and study on anti-cell proliferation activity of monomersin vitro(木豆叶化学成分分析及单体体外抗细胞增殖活性研究)[D]. Hangzhou: Zhejiang University of Technology, 2019.
    [22] Lin HY, Huang JM, Duan TX, et al. Study on different substituents in A-ring effect on fragmentation pathway of flavonoids using electrospray ion trap mass spectrometry[J]. China Meas Test (中国测试), 2013, 39(5): 59-61,64.
    [23] Feng GW, Li CB, Liao SG, et al. Rapid detection and identification of two isomeric C-glycosides, orientin/isoorientin and vitexin/isovitexin[J]. Chin J Pharm Anal (药物分析杂志), 2011, 31(7): 1263-1268.
    [24] Li ZH, Feng ZY, Chen B, et al. Study on extraction methods and HPLC detection conditions of flavone, orientin and isoorientin from Tetrastigma hemsleyanum[J]. Chin Wild Plant Resour (中国野生植物资源), 2023, 42(12): 48-52.
    [25]

    Huang MQ, Zhang YP, Xu SY, et al. Identification and quantification of phenolic compounds in Vitex negundo L. var. cannabifolia (Siebold et Zucc. ) Hand. -Mazz. using liquid chromatography combined with quadrupole time-of-flight and triple quadrupole mass spectrometers[J]. J Pharm Biomed Anal, 2015, 108: 11-20.

    [26]

    Zhang NL, Shen XC, Jiang XF, et al. Two new cytotoxic stilbenoid dimers isolated from Cajanus cajan[J]. J Nat Med, 2018, 72(1): 304-309. doi: 10.1007/s11418-017-1138-x

    [27]

    Zhang NL, Zhu YH, Huang RM, et al. Two new stilbenoids from Cajanus cajan[J]. Z Für Naturforschung B, 2012, 67(12): 1314-1318.

    [28]

    Liu W, Kong Y, Zu YG, et al. Determination and quantification of active phenolic compounds in pigeon pea leaves and its medicinal product using liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A, 2010, 1217(28): 4723-4731. doi: 10.1016/j.chroma.2010.05.020

    [29] Su SL, Yan H, et al. “Sweating” of traditional Chinese medicinal materials during primary processing and its mechanisms of enzymatic reaction and chemical conversion[J]. Chin Tradit Herb Drugs (中草药), 2013, 44(10): 1219-1225.
  • 期刊类型引用(5)

    1. 刘黎瑶,张蕊,张守庆,廉文静,丛方地. 微柱离心-HPLC测定胰岛素脂质体的包封率. 中国药学杂志. 2022(03): 214-219 . 百度学术
    2. 陶晓倩,付慧敏,乔子桐,张强,包子威,程岚,张纯刚. 肠溶性软胶囊的研究进展. 中国药房. 2022(07): 891-896 . 百度学术
    3. 赖志昆,冯其茂,王骕,胡晓贞. 黄芪甲苷脂质聚合物纳米粒对缺血再灌注损伤诱导大鼠模型的影响. 中国医药导报. 2022(11): 25-29 . 百度学术
    4. 王占乐,臧林泉. 基于介孔碳纳米粒包载胰岛素实现口服递药的研究. 中国临床药理学杂志. 2021(07): 863-867 . 百度学术
    5. 王思琦,张咏馨,赵元骞,梁旭,吴正红,季鹏. 高口服生物利用度胰岛素纳米制剂的研究进展. 第二军医大学学报. 2020(09): 1027-1030 . 百度学术

    其他类型引用(3)

图(6)  /  表(2)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  13
  • PDF下载量:  20
  • 被引次数: 8
出版历程
  • 收稿日期:  2024-09-02
  • 刊出日期:  2025-04-24

目录

/

返回文章
返回
x 关闭 永久关闭