Journal of China Pharmaceutical University 2017,48(2):178 – 183

蜂胶化学成分的 LC-IT-TOF-MS 鉴别

姚 静',孙建国²,吴 亮²,汪 豪^{1*},王广基²,叶文才³

(¹中国药科大学天然药物化学教研室,南京 210009;²中国药科大学药物科学研究院,南京 210009; ³暨南大学药学院中药及天然药物研究所,广州 510632)

摘 要 建立液相色谱串联离子阱飞行时间质谱法(LC-IT-TOF-MS)鉴定中国蜂胶的化学成分。采用 Shim-pack VP-ODS 色谱柱(2.0 mm×150 mm,5 μm),流动相为乙腈-0.2% 甲酸水溶液,梯度洗脱,流速 0.3 mL/min,采用 ESI-IT-TOF 检测,负 离子模式扫描。根据色谱峰精确相对分子质量、碎片离子信息、及液相色谱保留时间比较鉴别化合物。采用 LC-IT-TOF-MS 法鉴定了中国蜂胶(山东泰安)中 31 个成分,包括 25 个黄酮类化合物和 6 个酚酸类化合物。结果表明,采用 LC-IT-TOF-MS 方法可以快速、准确地对蜂胶中各成分进行有效的定性分析。

关键词 峰胶;LC-IT-TOF-MS;定性分析

中图分类号 R917 文献标志码 A 文章编号 1000-5048(2017)02-0178-06 doi:10.11665/j.issn.1000-5048.20170208

引用本文 姚静,孙建国,吴亮,等. 蜂胶化学成分的 LC-IT-TOF-MS 鉴别[J]. 中国药科大学学报,2017,48(2):178-183. Cite this article as: YAO Jing, SUN Jianguo, WU Liang, *et al.* Identification of major constituents from propolis by LC-IT-TOF-MS[J]. *J China Pharm Univ*, 2017, 48(2):178-183.

Identification of major constituents from propolis by LC-IT-TOF-MS

YAO Jing¹, SUN Jianguo², WU Liang², WANG Hao^{1*}, WANG Guangji², YE Wencai³

¹Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009; ² Drug Research Institute, China Pharmaceutical University, Nanjing 210009; ³ Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China

Abstract A qualitative analytical method of liquid chromatography coupled with ion trap time-of-flight mass spectrometry (LC-IT-TOF/MS) was developed for identification of major constituents in propolis from China (Shandong). The LC-IT-TOF-MS was performed on a Shim-pack VP-ODS column (2.0 mm × 150 mm, 5 μ m) with the mobile phase consisting of acetonitrile and water containing 0.2% formic acid in gradient mode, and the flow rate was set at 0.3 mL/min. Negative ion mode was used for IT-TOF-MS. According to the accurate molecular weight, MS fragment pathway, comparison with the retention time of reference compounds, total 31 compounds, including twenty-five phenolic acids and six flavonoids were identified. The LC-IT-TOF-MS qualitative analysis method can be used for analyzing major components of propolis quickly and accurately.

Key words propolis; LC-IT-TOF-MS; qualitative analysis

This study was supported by the National Natural Science Foundation of China (No. 81573309)

蜂胶(propolis)是蜜蜂从植物幼芽与树干裂缝 处采集的树胶与其上颚腺分泌物(如β-糖苷酶)和 蜂蜡等混合加工而成的一种具有芳香气味的胶状 固体物。蜂胶含有不同种类的化学成分,包括酚酸 及其 酯类、黄 酮类、萜烯类、类 固 醇 及 氨 基 酸 等^[1-2]。蜂胶具有多种生物学活性, 如抗氧化、抗 炎、抑菌、免疫调节、护肝、调节血脂血糖等, 现已广 泛应用于食品药品保健品及化妆品等行业, 是近十 多年来蜂产品乃至天然产物研究开发的热点^[3]。

IT-TOF-MS" 将离子阱的多级碎裂功能与飞行时间质谱高分辨率、精确相对分子质量测定的优势相结合,能极大地提高质谱的灵敏度和分辨率^[4-6],液相色谱-离子阱飞行时间质谱(LC-IT-TOF-MS)能有效地对天然产物混合成分进行分析^[7]。

本研究采用 LC-IT-TOF-MS 法鉴定了中国蜂 胶(山东泰安)中31 个成分,包括25 个黄酮类化 合物和6 个酚酸类化合物,可为进一步研究蜂胶活 性成分和生物学功能提供依据,为我国蜂胶及蜂胶 产品更好地开发利用提供一定借鉴意义。

1 材料

1.1 试 剂

乙腈、甲醇(色谱纯,美国默克公司);甲酸(色

谱纯),水为娃哈哈纯净水,其余试剂均为市售分析纯。蜂胶:蜂胶原胶采自山东省泰安市。化学对照品短叶枳素(Pinocembrin),Quercetin,Caffeic acid phenylethyl ester(CAPE),Chrysin,p-Coumaric 为本实验室从蜂胶中分离得到,经UV、IR、NMR、MS等波谱技术对其进行结构鉴定,纯度经HPLC检测,面积归一化法均大于95%,结构式见图1。

LC 液相色谱仪(LC-20AD 二元泵, SIL-20AC 自动进样器, CTO-20AC 柱温箱, SPD-M20A 型检测器, 日本岛津公司); Shimadzu IT-TOF 质谱仪, Version3.6工作站定量分析软件, Formula Predictor 1.2相对分子质量计算软件, AUW120D 型电子天平(0.01 mg, 日本岛津公司); KQ-5200B 型医用数 控超声波清洗器(昆山超声仪器有限公司)。

Figure 1 Chemical structures of reference compounds

2 方 法

2.1 样品制备

2.1.1 对照品溶液的制备 分别取各对照品适 量,精密称定,用甲醇溶解,制成一定浓度的混合标 准溶液。

2.1.2 样品溶液的制备 取中国蜂胶(山东)约 50 mg,加80% 甲醇50 mL,超声提取60 min,滤过, 取适量滤液加甲醇稀释后,过0.45 μm 滤膜,作为 样品溶液。

2.2 HPLC 条件

色谱柱:Shim-pack VP-ODS(150 mm ×2.0 mm, 5 μm)。流动相 A:0.2% 甲酸溶液,流动相 B:乙腈, 梯度洗脱:0 min,B:15%;5 min,B:30%;35 min, B:45%;45 min,B:65%;55 min,B:80%;60 min, B:95%;65 min,B:95%。柱温:30 ℃;流速:0.3 mL/min;进样量:10 μL。

2.3 MS条件

离子源为 ESI,负离子模式,氮气为雾化气,质 谱检测范围:MS:m/z 100~1 000; MS²:m/z 100~ 800, MS³:m/z 50~500, IT 真空 1.6×10⁻² Pa, TOF 真空 1.3×10⁻⁴ Pa, 仪器温度 40 °C; 雾化气 N₂ 流 速 1.5 L/min,干燥气压力 121 kPa, CDL 和加热块 温度 200 °C。

3 结 果

通过"2.2"项下色谱条件对蜂胶样品溶液进行 IT-TOF-MS分析,负离子模式下总离子流图见图2, 有标准品的化合物通过与标准品的色谱保留时间以 及质谱裂解碎片进行确认;没有标准品的未知成分, 根据色谱保留时间、质谱裂解碎片并结合文献进行 确认,共鉴定了31个化合物,详细信息见表1。

Figure 2 Negative total ion chromatogram of propolis from China (Shandong)

Table 1 Identification of chemical constituents in propolis from China (Shandong)

Peak	$t_{ m R}/{ m min}$	Compound	Molecular	[M – H] –	Calculated	Error	Product ion
			formula	(m/z)	(m/z)		
1	1.07	Caffeic acid 4-0-glucoside ^{b,c}	${\rm C}_{15}{\rm H}_{18}{\rm O}_{9}$	341.104 9	341.1031	5.28	341,179
2	3.40	Caffeic acid ^{b,c}	$\mathrm{C_9H_8O_4}$	179.034 2	179.035 0	-4.47	179,135
3	4.78	p-Coumaric ^{a,b}	$\mathrm{C_9H_8O_3}$	163.040 2	163.040 1	0.61	119
4	8.70	Quercetin ^{a,b}	${\rm C}_{15}{\rm H}_{10}{\rm O}_7$	301.029 8	301.029 5	1.00	179,151
5	9.33	Pinobanksin-5-methyl ether ^{b,c}	${\rm C}_{16}{\rm H}_{13}{\rm O}_5$	285.0717	285.071 0	2.46	267,253
6	9.59	Quercetin-3-methyl ether ^{b,c}	${\rm C_{16}H_{12}O_7}$	315.046 3	315.045 2	3.49	300,271,255
7	10.81	Chrysin-5-methyl-ether ^{b,c}	${\rm C}_{16}{\rm H}_{12}{\rm O}_4$	267.062 8	267.063 3	-1.87	252,224
8	10.94	Apigenin ^{b, c}	${\rm C}_{15}{\rm H}_{10}{\rm O}_5$	269.047 2	269.045 5	6.32	149
9	11.44	Pinobanksin ^{b,c}	${\rm C}_{15}{\rm H}_{12}{\rm O}_5$	271.057 1	271.055 3	6.64	253,225
10	12.34	Isorhamnetin ^{b, c}	${\rm C_{16}H_{12}O_7}$	315.044 7	315.045 2	- 1. 59	300
11	12.96	Luteolin-methyl-ether ^{b,c}	${\rm C}_{16}{\rm H}_{12}{\rm O}_{6}$	299.0507	299.0502	1.67	284,255
12	13.85	Quercetin-dimethyl-ether ^{b,c}	$\rm C_{17}H_{14}O_{7}$	329.060 6	329.060 8	-0.61	314,299,285,271
13	15.43	Galangin-5-methyl-ether ^{b,c}	${\rm C_{16}H_{12}O_5}$	283.0567	283.055 3	4.95	268,239
14	18.76	Quercetin-dimethyl-ether ^{b, c}	${\rm C}_{17}{\rm H}_{14}{\rm O}_7$	329.061 2	329.060 8	1.22	314,299,271
15	20.97	Chrysin ^{a, b}	${\rm C}_{15}{\rm H}_{10}{\rm O}_4$	253.047 6	253.0477	-0.40	209,143
16	21.61	Caffeic acid benzyl ester ^{a,b}	${\rm C}_{16}{\rm H}_{14}{\rm O}_4$	269.075 9	269.077 2	-4.83	178,134
17	21.90	Pinocembrin ^{a,b}	${\rm C}_{15}{\rm H}_{12}{\rm O}_4$	255.061 4	255.061 6	-0.78	213,151
18	23.09	Galangin ^{b, c}	${\rm C}_{15}{\rm H}_{10}{\rm O}_5$	269.0407	269.0397	3.72	227
19	24.10	Pinobanksin-3-O-acetate ^{b,c}	${\rm C}_{17}{\rm H}_{14}{\rm O}_6$	313.065 6	313.065 9	-0.96	271,253,209
20	24.85	Caffeic acid phenylethyl ester (CAPE) ^{a,b}	${\rm C}_{17}{\rm H}_{16}{\rm O}_4$	283.0930	283.092 9	0.35	179,135
21	25.30	Methoxy-chrysin ^{b,c}	${\rm C_{16}H_{12}O_5}$	283.057 0	283.055 3	6.01	269,239
22	30.16	Caffeic acid cinnamyl ester ^{b,c}	${\rm C}_{18}{\rm H}_{16}{\rm O}_4$	295.093 1	295.092 9	0.68	178,134
23	31.72	Pinobanksin-3-0-propionate ^{b,c}	${\rm C}_{18}{\rm H}_{16}{\rm O}_{6}$	327.082 9	327.081 5	4.28	253,209,181,165,143
24	39.33	Pinobanksin-3-O-butyrate ^{b, c}	${\rm C}_{19}{\rm H}_{18}{\rm O}_6$	341.096 5	341.097 2	-2.05	253,209,181,165,143
25	40.37	Pinobanksin-3-O-pentenoate ^{b,c}	${\rm C}_{20}{\rm H}_{18}{\rm O}_6$	353.0970	353.097 2	-0.57	271,253
26	43.59	$Pinobanksin \hbox{-} 3 \hbox{-} 0 \hbox{-} pentano at eor 2 \hbox{-} methyl butyrate^{b,c}$	${\rm C}_{20}{\rm H}_{20}{\rm O}_6$	355.112 4	355.112 8	-1.13	253,209
27	44.34	Pinobanksin-3-O-hexenoate ^{b, c}	${\rm C}_{21}{\rm H}_{20}{\rm O}_6$	367.1108	367.112 8	-5.45	271,253
28	45.00	Pinobanksin-3-O-phenylpropionate ^{b,c}	${\rm C}_{24}{\rm H}_{20}{\rm O}_6$	403.112 3	403.112 8	-1.24	253
29	46.40	Pinobanksin-3-O-hexanoate ^{b,c}	${\rm C}_{21}{\rm H}_{22}{\rm O}_6$	369.127 1	369.128 5	-3.79	253
30	47.46	Pinobanksin-3-O-phenylpentenoate ^b	$\rm C_{26}H_{22}O_6$	429.1409	429. 139 8	2.50	271,253
31	51.59	Pinobanksin-3-O-octanoate ^b	${\rm C}_{23}{\rm H}_{26}{\rm O}_{6}$	397.163 2	397.1657	-6.29	253

^aConfirmed with standard; ^bConfirmed with MSⁿ fragmentation; ^cConfired with references

3.1 黄酮类

峰9在ESI⁻模式下得到 *m/z* 271 [M – H]⁻, 其二级质谱得到 *m/z* 253 [M – H – H₂O]⁻, *m/z* 225 [M – H – H₂O – CO]⁻结合精确相对分子质量 及与文献[8]对比,鉴定其为 Pinobanksin。峰5 在 ESI⁻模式下得到 *m/z* 285 [M – H]⁻,其二级质谱 得到 *m/z* 253 [M – CH₃ – H₂O]⁻,结合精确相对分 子质量及与文献[8]对比,鉴定其为 Pinobanksin-5-

181

methyl ether。峰 19 在 ESI⁻ 模式下得到 m/z 313 [M-H]⁻,其二级质谱得到 m/z 253 M-C₂H₂O-H₂O]⁻,*m*/*z* 209 [M - C₂H₂O - H₂O - CO₂]⁻,结合 精确相对分子质量及与文献[8]对比,鉴定其为 Pinobanksin-3-0-acetate。峰23 在 ESI⁻模式下得到 *m/z* 327 [M-H]⁻,其二级质谱得到 *m/z* 253 [M-C₂H₅O - H₂O]⁻, 三级质谱得到 *m*/*z* 209 [M - $C_{3}H_{5}O - H_{2}O - CO_{2}$, m/z 181 M - $C_{3}H_{5}O - H_{2}O - H_{2}O$ $CO_2 - CO^{-1}_2$, m/z 165 $[M - C_2H_5O - H_2O - 2CO_2^{-1}_2]$. m/z 143 $[M - C_2H_5O - H_2O - C_2O_2 - C_2H_2O]^-$, 结 合精确相对分子质量及与文献[8]对比,鉴定其为 Pinobanksin-3-0-propionate。其一级、二级及三级 质谱图见图 3。峰 24 在 ESI⁻模式下得到 m/z 341 「M-H]⁻,其二级质谱得到 m/z 253 M - C₄H₇O -H₂O]⁻,三级质谱得到 *m/z* 209 M - C₄H₂O - H₂O - CO_2] - , m/z 181 [M - C₄H₂O - H₂O - CO₂ - CO] - , $m/z = 165 \left[M - C_4 H_7 - O - H_2 O - 2 C O_2 \right]^{-1} m/z = 143$ [M - C₄H₇O - H₂O - C₃O₂ - C₂H₂O]⁻,结合精确 相对分子质量及与文献[8]对比,鉴定其为 Pino-

banksin-3-0-butvrate。其一级、二级及三级质谱图 见图3。峰25.27在ESI⁻模式下分别得到 m/z 353 [M-H]⁻, *m*/z 367 [M-H]⁻, 其二级质谱都有 $m/z \ 271 \ [M - C_5 H_7 O/C_6 H_9 O]^{-}, \ m/z \ 253 \ [M C_{e}H_{2}O/C_{e}H_{0}O - H_{2}O$ ⁻.结合精确相对分子质量 及与文献[8]对比,鉴定其分别为 Pinobanksin-3-0pentenoate, Pinobanksin-3-0-hexenoate。峰 26,28, 29 在 ESI⁻模式下分别得到 m/z 355 [M-H]⁻,m/ z 403 [M-H]⁻, m/z 369 [M-H]⁻, 其二级质谱都 有 m/z 253 [M - C₅H₀O/C₀H₀O/C₆H₁₁O - H₂O]⁻. 结合精确相对分子质量及与文献[9]对比,鉴定其 分别为 Pinobanksin-3-0-pentanoate 或 2-methylbutyrate, Pinobanksin-3-O-phenylpropionate, Pinobanksin-3-O-hexanoate。峰30,31在ESI⁻模式下分别 得到 m/z 429 [M-H]⁻, m/z 397 [M-H]⁻, 其二 级质谱都有 m/z 253 [M - C₁₁ H₁₁ O/C₈H₁₅ O -H₂O]⁻,结合精确相对分子质量,鉴定其分别为 Pinobanksin-3-O-phenylpentenoate, Pinobanksin-3-0-octanoate

Figure 3 Negative ion MS (A) and MS²(B), MS³(C) spectra of compound 23,24

通过总结可发现,短叶松素(Pinobanksin)及其 酯类都会产生 m/z 253 的碎片离子峰,是因为其是 二氢黄酮醇类化合物,C 环上 C3 位连有-OH,脱水 产生^[1]。本文以 Pinobanksin-3-O-propionate 为例, 对该类型化合物可能发生的裂解途径进行归纳总 结^[10-11],结果如图 4。 峰 17 在 ESI⁻模式下得到 m/z 255 [M – H]⁻, 其二级质谱得到 m/z 213 [M – H – C₂H₂O]⁻,碎片 峰 m/z 151 为 A 环 RDA 裂解所得碎片离子。通过 其精确相对分子质量及与对照品的保留时间进行对 比,鉴定其为 Pinocembrin,其一级及二级质谱图见 图 5。峰 15 在 ESI⁻模式下得到 m/z 253 [M – H]⁻, 其二级质谱得到 m/z 209 [M-H-CO,], m/z 143 $[M - H - C_2O_2 - C_2H_2O]^-$,通过其精确相对分子质 量及与对照品的保留时间进行对比,鉴定其为 Chrysin。峰21在ESI⁻模式下得到 m/z 283 [M-H]⁻. 其二级质谱得到 m/z 269 [M - CH₂]⁻, m/z 239 [M -H-CO,], 通讨其精确相对分子质量及与文献对 比.鉴定其为 Methoxy-chrvsin。峰7 在 ESI⁻模式下 得到 m/z 267 [M-H]⁻,其二级质谱得到 m/z 252 $[M - H - CH_3]^-$, m/z 224 $[M - H - CH_3 - CO]^-$, $\tilde{\mathbb{H}}$ 讨其精确相对分子质量及与文献[8]对比,鉴定其 为 Chrysin-5-methyl-ether。峰 11 在 ESI⁻ 模式下得 到 m/z 299 [M-H]⁻, 其二级质谱得到 m/z 284 [M-H-CH₂]⁻,*m*/*z* 255 [M-H-CO₂]⁻,通讨其 精确相对分子质量及与文献[8]对比,鉴定其为 Luteolin-methyl-ether。峰4在ESI⁻模式下得到 m/z 301 [M-H]⁻,其二级质谱得到 m/z 179 [M-H- $C_7H_7O_7$]⁻,*m*/z 151 [M - H - C_7H_7O_7 - CO]⁻,通过 其精确相对分子质量及标准品对比,鉴定其为 Ouercetin。峰6在ESI⁻模式下得到 *m/z* 315 [M-H]⁻. 其二级质谱得到 m/z 300 [M-H-CH]-.m/z 271 $[M - H - CO_{3}]^{-}$,通讨其精确相对分子质量及与文 献[8]对比,鉴定其为 Quercetin-3-methyl ether。峰 10 在 ESI⁻模式下得到 m/z 315 [M-H]⁻,其二级质 谱得到 m/z 300 [M - H - CH₂]⁻, 151 [M - H -C。H。O。-CO]通讨其精确相对分子质量及与文献 [8] 对比,鉴定其为 Isorhamnetin。峰 12.14 在 ESI-模式下得到 m/z 329 $[M - H]^{-}$, 二级质谱都有 m/z314 [M-CH₃]⁻, *m*/z 299 [M-2CH₃]⁻, 通过其精确 相对分子质量及与文献[8]对比,鉴定其为 Ouercetin-dimethyl-ether。峰13在ESI⁻模式下得到 m/z 283 [M - H]⁻, 其二级质谱得到 m/z 268 [M -CH,]⁻.239 [M-H-CO,]⁻ 通讨其精确相对分子质 量及与文献[8]对比,鉴定其为 Galangin-5-methylether。碎片离子 m/z 151 来源于 A 环的 RDA(RetroDiels-Alder)反应。

Figure 4 Fragmentation pathway of Pinobanksin-3-O-propionate (compound 23)

Figure 5 Negative ion MS and MS² spectra of compound 17,20

3.2 酚酸类

峰2 在 ESI⁻模式下得到 m/z 179 [M-H]⁻.其 二级质谱得到 m/z 135 [M – H – CO₂]⁻.结合精确相 对分子质量及与文献[8]对比,鉴定其为 Caffeic acid。峰3在ESI⁻模式下得到 *m/z* 163 [M-H]⁻. 其二级质谱得到 m/z 119 [M-H-CO,]⁻,结合精 确相对分子质量及与标准品对比,鉴定其为 p-Coumaric。峰1在ESI⁻模式下得到 m/z 341 M-H]⁻, 其二级质谱得到 m/z 179 M - H - $C_{6}H_{10}O_{5}$]⁻,结合精确相对分子质量及与文献[12] 对比,鉴定其为 Caffeic acid 4-0-glucoside。峰 16 在 ESI⁻模式下得到 m/z 269 [M-H]⁻.其二级质 谱得到 m/z 178 [M - H - C₇H₇]⁻,134 [M - H - $C_{7}H_{7} - CO_{7}$]⁻,结合精确相对分子质量及与文献 [8] 对比,鉴定其为 Caffeic acid benzyl ester。峰 20 在 ESI⁻模式下得到 m/z 283 [M-H]⁻,其二级质 谱得到, m/z 179 [M - C₈H₉]⁻, 135 [M - C₈H₀ -CO。] 结合精确相对分子质量及与标准品对比,鉴 定其为 Caffeic acid phenylethyl ester (CAPE)。其 一级及二级质谱图见图 5。峰 22 在 ESI⁻模式下得 到 m/z 295 [M-H]⁻,其二级质谱得到 m/z 178 $[M - H - C_0H_0]^-$,134 $[M - H - C_0H_0 - CO_2]^-$,结 合精确相对分子质量及与文献[8]对比,鉴定其为 Caffeic acid cinnamyl ester

通过总结上述化合物碎片离子峰信息可发现, 肉桂酸及羟基肉桂酸,易脱去 COOH 产生[M-H-CO₂]⁻;肉桂酸酯类酯键断裂产生[M-H-R]⁻碎 片,前体离子进一步丢失 CO₂产生[M-H-R-CO₂]⁻碎片。

4 讨 论

本实验用 LC-IT-TOF-MS 法对中国蜂胶(山 东)中主要成分进行分析,流动相和水相分别尝试 了水和甲酸溶液,结果发现在水相中加入甲酸可有 效改善色谱峰拖尾现象。质谱检测分别采用正负 离子两种扫描模式进行扫描,结果发现负离子模式 下质谱响应更好,故选择负离子模式进行解析。将 离子阱与飞行时间质谱(IT-TOF-MS)结合使用,通 过多级碎裂,能提供大量的碎片离子,并提供精确 相对分子质量的测定^[13]。本研究共鉴定了 31 个 成分,包括 25 个黄酮类化合物和 6 个酚酸类化合 物。结果表明,LC-IT-TOF-MS 方法可以快速,准确 地对混合物中各成分进行定性分析,可为进一步研 究蜂胶活性成分和生物学功能提供依据,为我国蜂 胶及蜂胶产品更好地开发利用提供一定借鉴意义。

参考文献

- [1] Gardana C, Scaglianti M, Pietta P, et al. Analysis of the polyphenolic fraction of propolis from different sources by liquid chromatography-tandem mass spectrometry [J]. J Pharm Biomed Anal, 2007,45(3):390-399.
- [2] Kumazawa S, Hamasaka T, Nakayama T. Antioxidant activity of propolis of various geographic origins [J]. Food Chem, 2004, 84 (3):329 339.
- [3] Wang K, Zhang CP, Hu F. Research status of propolis in 2014 [J]. J Bee(蜜蜂杂志), 2015, 35(3):1-6.
- [4] Zhang YZ, Xu F, Zhang JY, et al. Investigations of the fragmentation behavior of 11 isoflavones with ESI-IT-TOF-MSⁿ [J]. J China Pharm Sci (中国药学), 2014, 23 (9):631-641.
- [5] Liang Y, Hao HP, et al. Qualitative and quantitative determination of complicated herbal components by liquid chromatography hybrid ion trap time-of-flight mass spectrometry and a relative exposure approach to herbal pharmacokinetics independent of standards[J]. J Chromatogr A, 2010, 1217 (30) :4971 - 4979.
- [6] Zheng CN, Hao HP, Wang X, et al. Diagnostic fragment-ion-based extension strategy for rapid screening and identification of serial components of homologous families contained in traditional Chinese medicine prescription using high-resolution LC-ESI-IT-TOF/MS: Shengmai injectionas an example [J]. J Mass Spectrom, 2009, 44 (2):230 - 244.
- Geng CA, Chen XL, Zhou NJ, et al. LC-MS Guided isolation of (±)-Swe-riledugenin A, a pair of enantiomeric lactones, from Swertia leducii [J]. Org Lett, 2014, 16(26):370-373.
- [8] Pellati F, Orlandini G, Pinetti D, et al. HPLC-DAD and HPLC-ESI-MS/MS methods for metabolite profiling of propolis extracts [J]. J Pharm Biomed Anal, 2011, 55(5):934 – 948.
- [9] Falcão SI, Vale N, Gomes P, et al. Phenolic profiling of Portuguese propolis by LC-MS spectrometry: uncommon propolis rich in flavonoid glycosides [J]. Phytochem Anal, 2013, 24 (4): 309 - 318.
- [10] Ding JH, Wang XX, Zhang H, et al. Extrative electrospray ionization tandem mass spectrometry of apigenin[J]. Chem J Chin Univ (高等学校化学学报), 2011, 32(8):1714-1719.
- [11] Liu RX, Ye M, Guo HZ, et al. Liquid chromatography/electrospray ionization mass spectrometry for the characterization of twentythree flavonoids in the extract of Dalbergia odorifera [J]. Rapid Commun Mass Spectrom, 2005, 19(11):1557-1565.
- [12] Righi AA, Negri G, Salatino A. Comparative chemistry of propolis from eight Brazilian Localities [J]. Evid Based Complement Alternat Med, 2013, 2013 (878): 267878.
- [13] Wang YX, Hao HP, Wang GJ. Application of Q-TOF and IT-TOF mass spectrometry technology in identifying the natural products and their biological metabolites[J]. *Chin J Nat Med*(中国天然 药物),2009,7(5):394-400.