摘要
纳米晶体是以少量表面活性剂或高分子聚合物为稳定剂,将难溶性药物粒子分散于水或油中形成的纳米级(1~ 1 000 nm)分散体系。纳米晶体含药量高,制备工艺简单成熟。目前,已上市的24个纳米晶体制剂主要集中在改善难溶性药物溶解性以及提高生物利用度上。近几年来,关于纳米晶体通过控制粒径或表面修饰实现靶向给药的研究逐渐成为热点。本文主要介绍了用于延长纳米晶体体内循环时间、增加对肿瘤细胞的亲和力、实现对内外刺激的响应的3种靶向策略,并探讨了纳米晶体技术应用于靶向抗肿瘤药物存在的瓶颈,为纳米晶体制剂的开发提供参考。
化学治疗是治疗恶性肿瘤的三大主流手段之一,但许多抗肿瘤药物(如紫杉醇、姜黄素等)存在溶解性差、非特异性分布导致生物利用度低、不良反应大等缺陷,在制剂开发中受到限
纳米晶体的被动靶向是通过肿瘤微环境中增强的渗透滞留(EPR)效应实现的。为了满足肿瘤生长代谢的需求,机体发展出新生血管用于肿瘤细胞的营养摄取、氧气输送、代谢物的排泄。但这些血管内皮细胞大小形状不一、排列紊乱、细胞间隙大、通透性高、无基底膜,因此100~1 000 nm的纳米晶体很容易通过细胞间隙进入肿瘤组织。另外,肿瘤组织内部的淋巴引流系统不完善,使得纳米晶体在肿瘤组织集聚,这种现象被称为EPR效
针对这一问题,研究人员开发了表面修饰聚乙二醇(PEGs)、磷脂等的长循环纳米晶体。其中,PEGs化的纳米晶体被认为是最有前景的长循环纳米晶体。PEGs是亲水性非离子型聚合物,且生物相容性好。PEG化的纳米晶体可以降低药物表面的抗原性,减少MPS的摄取,达到“隐身”的目的,增加药物在体内循环的时
PEG等修饰的纳米晶体虽然增加了药物在体内的循环时间,但对肿瘤组织的特异性低,抗肿瘤效果并不理想,主动靶向给药应运而生。主动靶向给药是利用肿瘤细胞上过度表达的受体或抗原,以相应的配体或抗体为“靶头”,从而增加药物对肿瘤细胞的特异性识别能力和亲和力,将药物定向运送到靶部位发挥疗效,减少对机体其他组织器官的不良反
叶酸(falate,FA)又名维生素 B11,参与真核细胞核苷酸的合成。叶酸受体(falate receptor, FR)是一种糖蛋白,现已发现的FR有4种类型,分别是FR-ɑ、FR-β、FR-γ和FR-σ。其中FR-ɑ在一些肿瘤(如卵巢癌、肾癌、子宫癌、睾丸癌等)中高水平表达 。叶酸作为配体具有无毒、价廉易得、便于修饰、与叶酸受体结合能力强等优点,并且叶酸分子稳定性好,经过较长时间的体内循环依然可以保持较高的受体亲和力,因此被广泛用作主动靶向的修饰配
透明质酸(hyaluronic acid,HA)是天然存在的阴性亲水性多糖,是胞外基质和关节液的组成成分,具有生物相容性好、无毒、无免疫原性、生物可降解的特点。透明质酸受体CD44存在于多种具有高转移活性的恶性肿瘤细胞表面,且有很强的黏附
转铁蛋白(transferrin,Tf)大量存在于人血浆中,可与细胞表面的转铁蛋白受体(transferrin receptor,TfR)形成复合物,参与铁离子的体内转运。铁离子作为核糖核苷酸还原酶的辅因子,直接参与DNA的合成与修
RGD肽(精氨酸-甘氨酸-天冬氨酸)是一种能够与表面整合素受体特异性结合的环状三肽。整合素是细胞表面兼具黏附和信号传导功能的受体,除此之外它还介导肿瘤血管生成、生长和转移的进程。整合素,尤其是αvβ3,在多种肿瘤细胞表面和新生血管内皮细胞上有高表达, 而在成熟血管内皮细胞和绝大多数正常器官系统中不表达或者少量表
单克隆抗体(monoclonal antibody,MAb)因兼具靶向和治疗作用,自1995年第1个治疗结直肠癌的单克隆抗体17-1A上市以来,受到广泛关注,目前全球市场共批准20多个上市产品。随着研究的深入,单抗药物也表现出耐药、不良反应、因相对分子质量大难以进入实体肿瘤等问
针对肿瘤靶向治疗的刺激包括基于肿瘤微环境的内源性刺激:pH、氧化还原梯度、高酶浓度(如,糖苷酶、脂肪酶、磷脂酶等);外源性刺激:光、热、磁、超
与其他纳米载体相比,纳米晶体优势明显,应用前景广泛。具体优势有:(1)剂型优势——纳米晶体可提高BCSⅡ药物的生物利用度;在此基础上,通过控制粒径或表面修饰,纳米晶体还可实现对肿瘤组织的靶向给
纳米晶体的应用主要集中在改善难溶性药物溶解性上,而作为靶向给药载体仅处于实验室研究阶段,主要原因在于纳米晶体基础研究不足和靶向效率不高。基础研究方面,纳米晶体存在物理稳定性差的问题,需加入空间稳定剂和电荷稳定
中国药科大学2020年1~7月获授权专利情况(2)
(图书与信息中心 顾东蕾)
参 考 文 献
Fan M,Geng S,Liu Y, et al. Nanocrystal technology as a strategy to improve drug bioavailability and antitumor efficacy for the cancer treatment[J].Curr Pharm Des, 2018, 24(21):2416-2424. [百度学术]
Huang ZG,Lv FM,Wang J, et al. RGD-modified PEGylated paclitaxel nanocrystals with enhanced stability and tumor-targeting capability[J].Int J Pharm,2019,556:217-225. [百度学术]
Gao L,Liu G,Ma J, et al. Drug nanocrystals: in vivo performances[J]. J Control Release, 2012, 160(3):418-430. [百度学术]
Kalyane D,Raval N,Maheshwari R,et al. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer[J].Mater Sci Eng C, 2019,98:1252-1276. [百度学术]
Zheng HL,Song YZ,Deng YH.A review for phagocyte system: the executors of nanoparticles clearance[J].J Shenyang Pharm Univ(沈阳药科大学学报),2019,36(1):91-102. [百度学术]
Wilhelm S,Tavares A,Dai Q,et al. Analysis of nanoparticle delivery to tumours[J].Nat Rev Mater, 2016, 1(5):1-12. [百度学术]
Ma YQ,Zhang ZZ,Li G,et al.The research progress on nanocrystal technology and its targeted delivery[J].Chin J Hosp Pharm(中国医院药学杂志),2018,38(9):1014-1017. [百度学术]
Mishra P,Nayak B,Dey RK.PEGylation in anti-cancer therapy: an overview[J]. Asian J Pharm Sci, 2016, 11(3):337-348. [百度学术]
Sharma S, Singh J, Verma A, et al. Hyaluronic acid anchored paclitaxel nanocrystals improves chemotherapeutic efficacy and inhibits lung metastasis in tumor-bearing rat model[J]. RSC Advances, 2016, 6(77):73083-73095. [百度学术]
Yin TJ,Cai H,Liu JY,et al. Biological evaluation of PEG modified nanosuspensions based on human serum albumin for tumor targeted delivery of paclitaxel[J]. Eur J Pharm Sci, 2015, 83:79-87. [百度学术]
Zhao J,Liu YY,Wang LL,et al.Functional and modified nanocrystals technology for target drug delivery[J].J Nanosci Nanotechnol,2018,18(8):5207-5221. [百度学术]
Zhang WP,Chen YW,Zhang K,et al.Research of folic acid mediated targeted drug delivery system[J].Chin Arch Tradit Chin Med(中华中医药学刊),2017,35(7):1855-1859. [百度学术]
Hong JY,Sun ZH,Li YJ,et al. Folate modified annonaceous acetogenins (ACGs) nanosuspensions and improved anti-tumor efficacy[J].Int J Nanomedicine,2017,12:5053-5067. [百度学术]
Sun XF,Liu T,Ling Y,et al.Advances in research of hyaluronic acid modified nanomicelles for targeting tumor therapy and drug release behavior[J].J China Pharm Univ(中国药科大学学报),2019,50(6):641-647. [百度学术]
Wan L, Jiao J, Cui Y, et al. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells[J]. Nanotechnology, 2016, 27(13):102-115. [百度学术]
Agrawal S,Dwivedi M,Ahmad H, et al. CD44 targeting hyaluronic acid coated lapatinib nanocrystals foster the efficacy against triple-negative breast cancer[J].Nanomedicine, 2018, 14(2):327-337. [百度学术]
Gomme PT,Mccann KB, Bertolini J. Transferrin: structure, function and potential therapeutic actions[J]. Drug Discov Today, 2005, 10(4):267-273. [百度学术]
Peng J,Zhang YT,Chen J,et al. Structural function and potential clinical value of transferrin[J].Chin J Mod Med(中国现代医学杂志),2017,27(26):56-60. [百度学术]
Choi JS,Park JS. Development of docetaxel nanocrystals surface modified with transferrin for tumor targeting[J]. Drug Des Devel Ther, 2016,11:17-26. [百度学术]
Sohn JS,Yoon DS,Sohn JY,et al. Development and evaluation of targeting ligands surface modified paclitaxel nanocrystals[J]. Mater Sci Eng C, 2017, 72:228-237. [百度学术]
Song ZW,Lin Y,Zhang X, et al. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects[J].Int J Nanomed, 2017, 12:1941-1958. [百度学术]
Sun Y.Advances in research on monoclonal antibodies against tumors[J]. Int J Biologicals(国际生物制品学杂志), 2016, 39(3):128-133. [百度学术]
Liang NS. New advances in the research and application of monoclonal antibodies against cancer[J].J China Pharm(中国药房), 2010,21(14):19-22. [百度学术]
Noh JK,Naeem M,Cao J,et al. Herceptin-functionalized pure paclitaxel nanocrystals for enhanced delivery to HER2-postive breast cancer cells[J]. Int J Pharm, 2016, 513(1/2):543-553. [百度学术]
Danhier F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine[J]. J Control Release, 2016,244:108-121. [百度学术]
Mura S,Nicolas J,Couvreur P. Stimuli-responsive nanocarriers for drug delivery[J]. Nat Mater, 2013, 12(11):991-1003. [百度学术]
Fuhrmann K,Połomska A,Aeberli C,et al. Modular design of redox-responsive stabilizers for nanocrystals[J]. ACS Nano, 2013, 7(9):8243-8250. [百度学术]
Li TJ,Huang CC,Ruan PW,et al. In vivo anti-cancer efficacy of magnetite nanocrystal - based system using locoregional hyperthermia combined with 5-fluorouracil chemotherapy[J]. Biomaterials, 2013, 34(32):7873-7883. [百度学术]
Gao L,Liu GY,Ma JL,et al. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs[J]. Pharm Res, 2013,30(2):307-324. [百度学术]
Tuomela A,Saarinen J,Clare J,et al.Production, applications and in vivo fate of drug nanocrystals[J].J Drug Deliv Sci Tec,2016,34:21-31. [百度学术]
Mohammad IS,Hu H, Yin L,et al. Drug nanocrystals: fabrication methods and promising therapeutic applications[J].Int J Pharm, 2019,562:187-202. [百度学术]
Chen ML,John M,Lee SL,et al. Development considerations for nanocrystal drug products[J].AAPS J,2017,19(3):642-651. [百度学术]
Pawar VK, Singh Y, Mehe JG,et al. Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery[J]. J Control Release,2014,183:51-66. [百度学术]
Thanuja MY,Anupama C,Ranganath SH. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: so near and yet so far[J]. Adv Drug Deliv Rev, 2018,132:57-80. [百度学术]