摘要
断裂内含肽Npu DnaE介导的蛋白质剪接、剪切反应,可以应用于蛋白质工程领域诸多方面,但其C段重组蛋白在表达纯化过程中发生的降解,降低了重组蛋白的产率和纯度。为提高NpuC段稳定性,本研究构建了N端融合NpuN2片段的NpuC延长变体N2C。将N2C在BL21(DE3)中进行表达、用亲和色谱进行纯化,用ImageJ扫描计算表达纯化中降解情况,进而对影响内含肽C端剪切反应的各因素如温度、DTT浓度、N/C比例等进行了考察。结果表明,延长变体N2C使降解产物占比降低至2.7%~7.2%,在1 mmol/L DTT催化,N/C比例为5∶1,37 ℃反应条件下,30 min产物生成率达90%。N2C在提升Npu DnaE内含肽C段在大肠埃希菌表达系统中表达、纯化过程的稳定性的同时,保留了其C端剪切反应的活性,对其在蛋白纯化领域应用有重要意义。
断裂型内含肽能够自发催化蛋白质剪接反应,相比连续型内含肽,它具有抑制不可控的提前剪接和剪切的天然优势,常被用于蛋白质纯化、蛋白质连接、毒素蛋白的生产等领
Npu DnaE是一种来源于念珠藻(Nostoc punctiforme, Npu)的断裂型内含肽,具有高效、快速的蛋白质反式剪接活
研究人员发现,断裂内含肽Npu DnaE的N段(1-102 aa)和C段(103-137 aa)的识别、结合、折叠依赖于两者之间的静电作用和疏水作
本研究从NpuN和NpuC重构机制出发,构建N端融合NpuN2片段的NpuC延长变体N2C,技术路线如

Figure 1 Illustration of the “NpuN2 extended NpuC”. The reconstitution of Npu DnaE follows the “Capture and Collapse” mechanism. NpuC is highly basic, and is disordered, which makes it sensitive to proteolytic degradation (A); NpuN is comprised of two different lobes, NpuN1 (residues 1-50) is partially folded while NpuN2 (residues 51-102) is acidic and disordered (B). NpuC preferentially binds to NpuN2 through the electrostatic interaction to form a compacted intermediat
PCR所用DNA聚合酶、连接酶和限制性内切酶均购自宝生物工程(大连)有限公司;质粒DNA抽提试剂盒、DNA凝胶回收试剂盒和PCR清洁试剂盒均购自康宁生命科学(吴江)有限公司;ECL发光显色液购自苏州新赛美生物科技有限公司;异丙基-β-D-硫代半乳糖苷(IPTG)和二硫苏糖醇(DTT)购自美国Sigma公司;抗MBP一抗(鼠源)、抗His一抗(鼠源)、和羊抗鼠二抗均购自生工生物工程(上海)股份有限公司;引物合成及DNA测序服务由生工生物工程(上海)股份有限公司提供;其他试剂均为市售分析纯。
DNA 凝胶电泳仪和凝胶成像分析系统(上海Tanon科技有限公司);蛋白凝胶电泳仪(美国Bio-Rad公司);LRH-70F型生化培养箱(上海天呈仪器制造有限公司);镍柱亲和色谱填料(通用电气(中国)医疗集团生命科学部);Dextrin Beads 6FF填料(常州天地人和生物科技有限公司)。
本研究使用MBP作为NpuC端外显肽,将NpuC段内含肽与之融合后在原核表达系统中进行诱导表达。表达质粒的名称、抗性、目的基因片段的理论相对分子质量等信息见
本研究中构建的质粒均以基本的分子生物学实验手段,以酶切连接的方法进行构建。以下以pET30a/N2C-MBP重组表达质粒的构建为例进行说明。
以上游引物NpuN2-F, 含有限制性酶切位点Nde I, 下游引物NpuC-MBP-R, 以pET28a/Npu质粒为模板扩增N2C片段。PCR条件为: 98 ℃变性10 s,55 ℃退火5 s,72 ℃延伸10 s,35个循环后,72 ℃终延伸5 min。PCR产物通过1%琼脂糖凝胶电泳鉴定后回收待用。同样的PCR方法以pET30a/MBP质粒为模板,NpuC-MBP-F和MBP-R为引物扩增MBP片段。
通过重叠PCR连接N2C片段和MBP片段,以NpuN2-F为上游引物,MBP-R为下游引物,以回收的N2C片段和MBP片段DNA为模版,重叠PCR扩增N2C-MBP片段,PCR程序同N2C片段的扩增。琼脂糖凝胶电泳分离得到的N2C-MBP连接片段,用Nde Ⅰ和Kpn Ⅰ双酶切后,连入经过Nde Ⅰ和Kpn Ⅰ双切的pET30a质粒中,将连接产物转化入大肠埃希菌DH5α感受态中,挑取单克隆提取质粒并送测序。
将以上所得重组表达质粒分别转化入大肠埃希菌BL 21(DE3)中得到相应重组蛋白表达菌株。挑取单克隆菌落分别接种至含有对应抗性的LB培养基中,在37 ℃,220 r/min摇床培养9 h后,将获得的种子菌液按1∶100接种量接种至LB培养基500 mL 中继续培养,当A600达到0.6时,加入IPTG至终浓度1 mmol/L,过夜诱导培养(25 ℃,180 r/min)。重组蛋白的相对分子质量、等电点等信息如
2.2.2 重组蛋白的亲和纯化 过夜诱导表达的培养液经4 ℃,5 000 r/min离心15 min,收集菌体,用上样缓冲液(20 mmol/L Tris,150 mmol/L NaCl,20 mmol/L咪唑)将沉淀菌体重悬分散,用高压均质机加压至900 bar(1 bar = 0.1 MPa),4 ℃破菌 5 min后,减压收集破裂菌液。然后转移至离心机内,4 ℃,12 000 r/min离心30 min,收集上清液并用0.45 μm滤膜过滤后,上样于镍亲和色谱柱,用上样缓冲液和2 mol/L咪唑母液配置不同浓度的缓冲液进行梯度洗脱。收集纯化过程中的流穿及各洗脱浓度下收集的样品,进行SDS-PAGE电泳检测。
对于NpuC段重组蛋白,先经过上述镍柱亲和纯化步骤纯化,收集200 mmol/L咪唑洗脱液,用Dextrin Beads 6FF(MBP标签亲和重力柱)纯化,使用洗脱液(20 mmol/L Tris,1 mmol/L EDTA, 10 mmol/L 麦芽糖,pH 8.5)洗脱。收集纯化过程中的流穿及洗脱样品,进行SDS-PAGE电泳检测。
为研究N2C的C端剪切反应活性,本研究进行的C端剪切反应如
反应体系在不同时刻取样,并立即加入还原型 5×蛋白上样缓冲液,95 ℃煮样5 min终止反应。反应结果用SDS-PAGE和 Western blot进行检测,WB分别使用抗组氨酸抗体(anti-His)和抗麦芽糖结合蛋白抗体(anti-MBP)作为一抗。
2.3.2 影响N2C的C端剪切反应因素 为了进一步研究N2C的剪切反应条件耐受性,本研究对影响其反应速率和产物生成率的3个因素进行考察:对反应温度的考察中,N/C比例为5∶1,DTT浓度为1 mmol/L,温度分别选取4,25,30,37 ℃进行实验;对N/C比例的考察中, 温度为30 ℃, DTT浓度为 1 mmol/L,N/C比例分别选取1∶1,3∶1,5∶1,10∶1进行实验;对DTT浓度的考察中,温度为30 ℃,N/C比例为5∶1,DTT浓度分别选取0,1,5,10,50 mmol/L进行实验。对以上3个因素考察的C端剪切反应底物为N2C-MBP和NpuN。
内含肽C端剪切反应在0,5,10,30,60,120,360,1 440 min时刻取样,并用SDS-PAGE电泳检测,用Image J软件对SDS-PAGE 电泳图上的产物条带和底物条带进行灰度扫描,并按照如下公式计算C端剪切反应产物生成率。产物生成率(%)=(产物条带灰度值/产物相对分子质量)/[(底物条带灰度值/底物相对分子质量+(产物条带灰度值/产物相对分子质量]×100。反应结果制作曲线。
PCR产物经1%琼脂糖凝胶电泳鉴定,结果显示N2C-MBP片段(1 407 bp)、Trx-N2C-MBP片段 (1 773 bp)、Trx-NpuC-MBP片段(1 587 bp)、Trx-MBP片段(1 461 bp)、NpuN1片段(222 bp)和NpuN片段(336 bp)均与理论片段大小一致,电泳结果如

Figure 2 Detection of the PCR products amplified from the constructed plasmids by agarose gel electrophoresis
(A) N2C-MBP; (B) 1-2: Trx-N2C-MBP; (C) 1-2: Trx-NpuC-MBP, 3: Trx-MBP; (D) NpuN1; (E) NpuN
NpuC段重组蛋白经两步纯化后,用SDS-PAGE检测延长前后的降解情况,并对条带进行灰度扫描作图,结果如

Figure 3 SDS-PAGE analysis of NpuC-Fusion expression and purification
A: Trx-NpuC-MBP; B: Trx-MBP; C: N2C-MBP; D: Trx-N2C-MBP purification, using Ni column and Dextrin Beads 6FF.BI: before induction, AI: after induction, SF:soluble fraction after lysis, IF:insoluble fraction after lysis, FT1: flow through by Ni column, FT2: flow through by Dextrin, W: 20 mmol/L imidazole wash, E1: 200 mmol/L imidazole elution, E2: elution by Dextrin.← denotes fusion protein, + denotes degradated species

Figure 4 SDS-PAGE and grayscale scanning analysis of NpuC-Fusion after purification
A: SDS-PAGE of NpuC-fusion, Lane 1, 3, 5, 7, 9, 11 and 13 were protein eluted by 200 mmol/L imidazole, lane 2, 4, 6, 8, 10 and 12 were protein purified by Dextrin. ← denotes fusion protein, + denotes degradated species; B: Degradation histogram of NpuC-fusion (, n = 4)
延长变体N2C-MBP和Trx-N2C-MBP在菌体裂解后的降解得到显著缓解(P < 0.01),经Image J软件对降解条带进行灰度扫描,计算出降解条带所占比例从31.4%~51.6%降低到了2.7%~7.2%(
将不同的N与C底物混合反应,WB考察C端断裂反应,结果如

Figure 5 Western blot analysis of the C-terminal cleavage activity of N2C. Reactions were carried out at 37 °C with the N-C ratio of 5∶1, in the presence of 1 mmol/L DTT. The compositions of the reactions were indicated above the figure. Reactions between NpuN fragments and N2C fusions were visualized by Western blot, using anti-His antibody (A) or anti-MBP antibody (B) as the primary antibody respectively. ‘MBP’ is the cleaved product
N2C的C端剪切反应用SDS-PAGE检测结果如

Figure 6 SDS-PAGE analysis of the C-terminal cleavage activity of N2C. Reactions were carried out at 37 °C with the N-C ratio of 5∶1, in the presence of 1 mmol/L DTT. Aliquots at specified time points were visualized on SDS-gels. A: reaction between NpuN and Trx-NpuC-MBP; B: reaction between NpuN1 and N2C-MBP; C: reaction between NpuN and Trx-N2C-MBP; D: reaction between NpuN and N2C-MBP. ‘Trx-NpuC’ and ‘Trx-NpuN2-IC’ are the cleaved C-intein fragments. ‘+’ denotes unidentified band

Figure 7 Time course of the cleavage product formation of different reactant combinations. C-terminal cleavage reactions were carried out at 37 °C in the presence of 1 mmol/L DTT, with the N-C ratio of 5∶1. Aliquots were removed from the mixture at specified time points and quenched by adding SDS-PAGE loading buffer and then visualized by SDS-PAGE
对影响内含肽剪切反应因素的考察结果如

Figure 8 Time course of N2C C-terminal cleavage under different temperatures (A), different ratios between NpuN and N2C (B), and different concentrations of DTT (C) (, n = 3). Aliquots were taken at different time points and ran on SDS-gels, then the band intensities corresponding to reactants and products were quantified by Image J
对不同反应温度进行考察,结果如
对不同 N/C比例进行考察,结果如
对DTT浓度进行考察,结果如
内含肽在蛋白质工程领域是一类颇具应用价值的工具,断裂型内含肽Npu DnaE在介导蛋白质剪接和C端剪切方面表现出快速和高效的特点,展现出重大的应用潜力,譬如介导免疫毒素的生
本研究基于N/C重构机制构建了N端融合NpuN2片段的NpuC延长变体N2C,探究了其在原核表达系统中融合表达、纯化过程中的稳定性,并探究了N2C发生剪切反应的可行性。结果显示,N2C在表达、纯化过程中,降解产物占比从31.4%~51.6%降低到了2.7%~7.2%;且N2C能与全长NpuN段发生快速、高效的C端剪切反应。值得注意的是,N2C与NpuN1反应效率较低(24 h,40%),较低的反应效率可能与NpuN和NpuC的重构机制有关:NpuN1通过疏水作用与NpuN2和NpuC的复合物进一步折叠,作用力弱于NpuN2与NpuC的静电作用,因而表现为N2C与NpuN1反应效率降低;另外,全长NpuN能够与N2C有较高的反应效率,可能是由于N2C中的NpuC虽然通过静电相互作用与融合的NpuN2相互结合,但由于NpuN2与NpuC的结合、折叠处于动态可逆过程,过量的全长NpuN会与N2C中的N2片段竞争结合NpuC段,形成能反应的正确折叠构象。
本研究还对影响断裂内含肽C端剪切反应的因素、反应温度、N/C比例、还原剂DTT浓度等条件进行了考察,N2C延长变体表现出与NpuC野生型相似的条件耐受
参 考 文 献
Conibear AC, Watson EE, Payne RJ, et al. Native chemical ligation in protein synthesis and semi-synthesis[J]. Chem Soc Rev, 2018, 47(24): 9046-9068. [百度学术]
Shah NH, Muir TW. Inteins: nature's gift to protein chemists[J]. Chem Sci, 2014, 5(1): 446-461. [百度学术]
Shi SW, Chen HH, Jiang H, et al. A novel self-cleavable tag Zbasic-∆I-CM and its application in the soluble expression of recombinant human interleukin-15 in Escherichia coli[J]. Appl Microbiol Biotechnol, 2017, 101(3): 1133-1142. [百度学术]
Zettler J, Schütz V, Mootz HD. The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction[J]. FEBS Lett, 2009, 583(5): 909-914. [百度学术]
Iwai H, Züger S, Jin J, et al. Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme[J]. FEBS Lett, 2006, 580(7): 1853-1858. [百度学术]
Ramirez M, Valdes N, Guan DL, et al. Engineering split intein DnaE from Nostoc punctiforme for rapid protein purification[J]. Protein Eng Des Sel, 2013, 26(3): 215-223. [百度学术]
Guan DL, Ramirez M, Chen ZL. Split intein mediated ultra-rapid purification of tagless protein (SIRP)[J]. Biotechnol Bioeng, 2013, 110(9): 2471-2481. [百度学术]
Shah NH, Eryilmaz E, Cowburn D, et al. Naturally split inteins assemble through a “capture and collapse” mechanism[J]. J Am Chem Soc, 2013, 135(49): 18673-18681. [百度学术]
Stevens AJ, Sekar G, Gramespacher JA, et al. An atypical mechanism of split intein molecular recognition and folding[J]. J Am Chem Soc, 2018, 140(37): 11791-11799. [百度学术]
Shah NH, Vila-Perelló M, Muir TW. Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein[J]. Angew Chem Int Ed Engl, 2011, 50(29): 6511-6515. [百度学术]
Wang J, Han L, Chen JS, et al. Reduction of non-specific toxicity of immunotoxin by intein mediated reconstitution on target cells[J]. Int Immunopharmacol, 2019, 66: 288-295. [百度学术]
Pirzer T, Becher KS, Rieker M, et al. Generation of potent anti-HER1/2 immunotoxins by protein ligation using split inteins[J]. ACS Chem Biol, 2018, 13(8): 2058-2066. [百度学术]
Han L, Zong HF, Zhou YX, et al. Naturally split intein Npu DnaE mediated rapid generation of bispecific IgG antibodies[J]. Methods, 2019, 154: 32-37. [百度学术]
Vila-Perelló M, Liu ZH, Shah NH, et al. StreamLined expressed protein ligation using split inteins[J]. J Am Chem Soc, 2013, 135(1): 286-292. [百度学术]
Lu W, Sun ZY, Tang YC, et al. Split intein facilitated tag affinity purification for recombinant proteins with controllable tag removal by inducible auto-cleavage[J]. J Chromatogr A, 2011, 1218(18): 2553-2560. [百度学术]