摘要
肿瘤治疗药物通常存在水溶性差、靶向性低、稳定性差、不易被肿瘤细胞摄取等不足,开发一种理想的药物递送载体仍是肿瘤治疗领域亟待解决的重要问题。由于具有良好的序列可编程性、生物相容性和生物可降解性,基于DNA的纳米材料已被广泛用作肿瘤治疗的药物递送载体。大量研究表明,DNA纳米材料可以有效装载肿瘤治疗药物,实现肿瘤组织靶向递送、高效细胞摄取与刺激响应性药物释放。本文从DNA纳米技术的历史与发展入手,例举DNA纳米材料作为药物递送载体在化疗、基因治疗、免疫治疗和光动力疗法中的应用进展,并对其未来发展进行展望,以期为该领域其他研究工作者提供参考。
目前,肿瘤导致的死亡在发达国家中占比21%,在发展中国家占比9.5%,且呈逐年上升趋势,肿瘤已成为全球第二大死
理想的药物载体需具备以下特性:(1)在血清等生理环境中保持稳定,并保护所载药物免于降解;(2)可以通过共价连接、非共价连接等方式装载一种或多种药物;(3)可以靶向递送至肿瘤组织并被肿瘤细胞成功摄取;(4)可以响应近红外光等外部刺激、肿瘤微环境与溶酶体内较低的pH、细胞质高浓度谷胱甘肽等内部条件特异性释放药物;(5)具有良好的生物相容性,可以在完成药物递送后被降解与清除。
DNA纳米材料作为近年来新兴的药物递送载体,具有良好的序列可编程性、生物相容性与生物可降解性,在肿瘤治疗领域具有光明的前景。DNA纳米材料能够有效装载多种药物,在某些功能元件的帮助下实现肿瘤部位靶向递送,提高细胞摄取效率并实现刺激响应性药物释放,在提高药物抗肿瘤活性的同时降低对正常组织器官的损伤。
本文从DNA纳米技术的历史与发展入手,例举DNA纳米材料作为药物递送载体在化疗、基因治疗、免疫治疗和光动力疗法中的应用进展,并对其未来发展进行展望,以期涉及多学科研究领域的DNA纳米材料蓬勃发展,并最终使更多患者受益。
DNA作为遗传信息的载体,在调节生物体的生物学功能中发挥至关重要的作用。在发现DNA双螺旋结构近30年后,1982年,Seema
纳米结构的制造方法包括自上而下和自下而上两种。自下而上的制备方法通常是将小的、简单的成分结合在一起以形成大而复杂的结构,这种方法制备的结构具有良好的可预测性。在过去的30年里,自下而上制备DNA纳米结构的方法快速发展,其中DNA Tile自组装是最先发展起来的一种策略,成为DNA纳米技术领域中不可或缺的一部分。Tile自组装制备的DNA结构由一组短的、人工合成的单链DNA组装而成,这些DNA链经过合理的设计可在指定部位相互杂交(

Figure 1 Introduction of DNA nanotechnology
A: Self-assembly of four-armed junction
RCA是新近发展起来的一种扩增DNA的方法,可以在等温条件下以单链环状DNA为模板,在Phi29 DNA聚合酶的催化下连续延伸互补的单链DNA(
RCA已被用于开发各种类型的DNA纳米结构。Y型DNA作为一种简单的DNA纳米结构,是树枝状DNA结构与DNA水凝胶的组成部分。Hong
2006年,Rothemun
SST自组装是DNA纳米技术中另一个重要的设计策
与常规的单链或双链DNA相比,自组装DNA纳米结构在生理环境中更稳定,可抵抗一定程度的降解作用。目前,基于DNA的纳米材料呈现出多种新颖的生物医学功能,包括药物递送、生物成像、生物传感以及诊断学应
DNA纳米技术的新兴应用之一是肿瘤纳米医学,通过利用纳米颗粒的独特特性递送并增强肿瘤治疗药物的抗肿瘤功效。
化学治疗是目前临床上应用最广泛的肿瘤治疗方法之一。然而,化疗药物较差的水溶性与全身非特异性分布影响了药物到达肿瘤组织的效率,并且可能会引起严重的不良反应,例如骨髓抑制、胃肠道不适、脱发和器官损伤,降低病人的生存质量并可能导致化疗失败。为了克服这些缺点,DNA纳米材料被开发用于抗肿瘤化疗药物的递送,以提高化疗的安全性与有效性。
阿霉素(doxorubicin,DOX)是一种广谱抗肿瘤药物,可通过抑制DNA合成治疗包括实体瘤和血液瘤在内的多种肿瘤。由于其可插入DNA双链鸟嘌呤(G)与胞嘧啶(C)碱基对中,研究人员采用DNA纳米技术制备多种形状的载体用于DOX的高效递送,包括DNA四面

Figure 2 Application of DNA nanostructure in tumor chemotherapy
A: DNA triangle and tube origami structures for DOX deliver
顺铂及基于铂的药物已是临床上治疗各种肿瘤的一线化疗药物。铂类药物的抗肿瘤活性主要来自与DNA碱基对的共价和非共价(例如嵌入)相互作用。化疗期间,患者通常需承受严重的不良反应,包括药物引起的肾毒性、耳毒性和神经毒性。铂类药物的靶向递送将改善治疗效果并降低药物毒性。Ma
随着基因编辑、基因沉默等基因操作技术的不断发展,人们可以位点特异性地上调或下调目标基因的表达以治疗各种疾病。近年来,基因治疗在肿瘤治疗领域引起人们的广泛关注。一系列肿瘤相关基因,例如Ras、Myc和polo样激酶1(polo-like kinase 1,PLK1)等已被验证并用于临床试
Lee

Figure 3 Application of DNA nanostructure in cancer gene theapy
A: DNA tetrahedron nanoparticles for siRNA loading and targeted deliver
在过去的几十年中,作为一种相对新颖的肿瘤治疗方法,免疫治疗取得了令人鼓舞的突破。该疗法通过调节免疫系统治疗肿瘤,具有不良作用低、特异性高等特点。CpG在微生物基因组中极为常见,但在脊椎动物基因组中较少见。含有CpG基序的细菌DNA和人工合成的寡核苷酸被哺乳动物先天免疫系统识别为危险信号,并可能引发强烈的免疫反
近年来,人们已经探索利用DNA纳米结构作为CpG递送载体。由于它们固有的相容性,富含CpG的序列可以轻松整合至DNA纳米结构中,以增强其稳定性和靶向性。Rattanakiat

Figure 4 Application of DNA nanostructure in cancer immunotherapy
A: Dendrimer-like DNA containing CpG sequence for enhanced immunostimulatory activit
PDT是一种利用光敏剂与光照治疗肿瘤的新技术。经特定波长光照后,光敏剂可将能量传递给周围的氧,从而生成活性氧(reactive oxygen species,ROS)。ROS可以氧化脂质、氨基酸和蛋白质,对细胞膜和重要的细胞器造成不可逆转的损伤,通过凋亡、坏死或自噬诱导细胞死
G-四链体由于能够携带卟啉衍生物TMPyP4等光敏剂而成为最具吸引力的DNA纳米载体之一。Shieh

Figure 5 Application of DNA nanostructure in PDT
A: A G-quadruplex forming AS1411 aptamer for TMPyP4 deliver
药物递送是DNA纳米技术的重要应用,与其他递送系统(如脂质体或聚合物)相比,DNA纳米载体具有可预先设计的尺寸与形状、可编程的纳米结构、良好的生物相容性,是一种极具希望的药物递送载体。尽管研究者们已成功开发并评估了各种基于DNA的纳米载体,但为推进DNA纳米材料在肿瘤治疗领域的进一步应用,必须阐明其体内特性,包括循环半衰期、药代动力学和清除机制。此外,还需关注潜在的免疫反应。在超过90%的研究中,M13mp18噬菌体DNA被用于制备DNA折纸纳米结构的支架,这种特殊的序列可能存在免疫原
作为新型纳米平台,DNA纳米结构能够递送多种药物以实现肿瘤联合治疗。DNA纳米结构的流体动力学尺寸通常为10~200 nm,因此能够利用高渗透长滞留(enhanced permeability and retention effect,EPR)效应实现肿瘤组织的被动靶向,在适配体等功能元件的帮助下还能够通过主动靶向进一步提高肿瘤靶向能力。某些巧妙的设计能够使DNA纳米结构在特定区域触发结构重组,暴露包被的药物,实现可控的药物释放。这种递送策略能够显著提高药物的安全性与肿瘤治疗效果。
尽管基于DNA的药物递送系统尚未进入临床应用,但它们目前正处于快速发展阶段,并且在肿瘤治疗领域显示出巨大的潜力。为促进DNA纳米技术的临床应用,需合理设计纳米颗粒,使用较少量的载体提供大量活性药物,并确定胞内运输途径、内体逃逸情况以及药物释放情况。相信随着纳米技术的飞速发展,基于DNA的独特纳米材料将为有效治疗肿瘤提供强有力的手段,并在生物医学领域具有更广泛的应用。
中国药科大学2020年1~7月获授权专利情况(1)
(图书与信息中心 顾东蕾)
参考文献
Mohammad IS, He W, Yin L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR[J]. Biomed Pharmacother, 2018, 100: 335-348. [百度学术]
Liu J, Zhang Y, Zeng Q, et al. Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes[J]. Sci Adv, 2019, 5(9): eaaw6499. [百度学术]
Bhaskaran V, Yao Y, Bei F, et al. Engineering, delivery, and biological validation of artificial microRNA clusters for gene therapy applications[J]. Nat Protoc, 2019, 14(12): 3538-3553. [百度学术]
Xu J, Sun J, Ho PY, et al. Creatine based polymer for codelivery of bioengineered microRNA and chemodrugs against breast cancer lung metastasis[J]. Biomaterials, 2019, 210: 25-40. [百度学术]
Chen L, Zhou L, Wang C, et al. Tumor-targeted drug and CpG delivery system for phototherapy and docetaxel-enhanced immunotherapy with polarization toward M1-type macrophages on triple negative breast cancers[J]. Adv Mater, 2019, 31(52): e1904997. [百度学术]
Mirza Z, Karim S. Nanoparticles-based drug delivery and gene therapy for breast cancer: recent advancements and future challenges[J]. Semin Cancer Biol, 2019. doi:10.1016/j.semcancer. 2019. 10. 020. [百度学术]
Zhao H, Zhao B, Wu L, et al. Amplified cancer immunotherapy of a surface-engineered antigenic microparticle vaccine by synergistically modulating tumor microenvironment[J]. ACS Nano, 2019, 13(11): 12553-12566. [百度学术]
Liu JN, Bu W, Shi J. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia[J]. Chem Rev, 2017, 117(9): 6160-6224. [百度学术]
Seeman NC. Nucleic acid junctions and lattices[J]. J Theor Biol, 1982, 99(2): 237-247. [百度学术]
Zuo H, Mao C. A minimalist's approach for DNA nanoconstructions[J]. Adv Drug Deliv Rev, 2019, 147: 22-28. [百度学术]
Mohsen MG, Kool ET. The discovery of rolling circle amplification and rolling circle transcription[J]. Acc Chem Res, 2016, 49(11): 2540-2550. [百度学术]
Hong CA, Jang B, Jeong EH, et al. Self-assembled DNA nanostructures prepared by rolling circle amplification for the delivery of siRNA conjugates[J]. Chem Commun (Camb), 2014, 50(86): 13049-13051. [百度学术]
Yata T, Takahashi Y, Tan M, et al. Efficient amplification of self-gelling polypod-like structured DNA by rolling circle amplification and enzymatic digestion[J]. Sci Rep, 2015, 5: 14979. [百度学术]
Rothemund PW. Folding DNA to create nanoscale shapes and patterns[J]. Nature, 2006, 440(7082): 297-302. [百度学术]
Wei B, Dai M, Yin P. Complex shapes self-assembled from single-stranded DNA tiles[J]. Nature, 2012, 485(7400): 623-626. [百度学术]
Seeman NC. DNA in a material world[J]. Nature, 2003, 421(6921): 427-431. [百度学术]
Ouyang C, Zhang S, Xue C, et al. Precision-guided missile-like DNA nanostructure containing warhead and guidance control for aptamer-based targeted drug delivery into cancer cells in vitro and in vivo[J]. J Am Chem Soc, 2020, 142(3): 1265-1277. [百度学术]
Di Z, Zhao J, Chu H, et al. An acidic-microenvironment-driven DNA nanomachine enables specific ATP imaging in the extracellular milieu of tumor[J]. Adv Mater, 2019, 31(33): e1901885. [百度学术]
Dutta PK, Zhang Y, Blanchard AT, et al. Programmable multivalent DNA-origami tension probes for reporting cellular traction forces[J]. Nano Lett, 2018, 18(8): 4803-4811. [百度学术]
Liu Z, Pei H, Zhang L, et al. Mitochondria-targeted DNA nanoprobe for real-time imaging and simultaneous quantification of C
Setyawati MI, Kutty RV, Leong DT. DNA nanostructures carrying stoichiometrically definable antibodies[J]. Small, 2016, 12(40): 5601-5611. [百度学术]
Wu SY, Chou HY, Yuh CH, et al. Radiation-sensitive dendrimer-based drug delivery system[J]. Adv Sci (Weinh), 2018, 5(2): 1700339. [百度学术]
Ge Z, Guo L, Wu G, et al. DNA origami-enabled engineering of ligand-drug conjugates for targeted drug delivery[J]. Small, 2020, 16(16): e1904857. [百度学术]
Liu J, Song L, Liu S, et al. A tailored DNA nanoplatform for synergistic RNAi-/chemotherapy of multidrug-resistant tumors[J]. Angew Chem Int Ed Engl, 2018, 57(47): 15486-15490. [百度学术]
Zhao H, Yuan X, Yu J, et al. Magnesium-stabilized multifunctional DNA nanoparticles for tumor-targeted and pH-responsive drug delivery[J]. ACS Appl Mater Interfaces, 2018, 10(18): 15418-15427. [百度学术]
Liu J, Song L, Liu S, et al. A DNA-based nanocarrier for efficient gene delivery and combined cancer therapy[J]. Nano Lett, 2018, 18(6): 3328-3334. [百度学术]
Jiang Q, Song C, Nangreave J, et al. DNA origami as a carrier for circumvention of drug resistance[J]. J Am Chem Soc, 2012, 134(32): 13396-13403. [百度学术]
Zhang Q, Jiang Q, Li N, et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy[J]. ACS Nano, 2014, 8(7): 6633-6643. [百度学术]
Zhang H, Ma Y, Xie Y, et al. A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery[J]. Sci Rep, 2015, 5: 10099. [百度学术]
Yao C, Yuan Y, Yang D. Magnetic DNA nanogels for targeting delivery and multistimuli-triggered release of anticancer drugs[J]. ACS Applied Bio Materials, 2018, 1(6): 2012-2020. [百度学术]
Ma Y, Wang Z, Ma Y, et al. A telomerase-responsive DNA icosahedron for precise delivery of platinum nanodrugs to cisplatin-resistant cancer[J]. Angew Chem Int Ed Engl, 2018, 57(19): 5389-5393. [百度学术]
Wu T, Liu J, Liu M, et al. A nanobody-conjugated DNA nanoplatform for targeted platinum-drug delivery[J]. Angew Chem Int Ed Engl, 2019, 58(40): 14224-14228. [百度学术]
Liu J, Wu T, Lu X, et al. A self-assembled platform based on branched DNA for sgRNA/Cas9/antisense delivery[J]. J Am Chem Soc, 2019, 141(48): 19032-19037. [百度学术]
Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy[J]. Chem Soc Rev, 2016, 45(15): 4074-4126. [百度学术]
Lee H, Lytton-Jean AK, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery[J]. Nat Nanotechnol, 2012, 7(6): 389-393. [百度学术]
Roh YH, Lee JB, Shopsowitz KE, et al. Layer-by-layer assembled antisense DNA microsponge particles for efficient delivery of cancer therapeutics[J]. ACS Nano, 2014, 8(10): 9767-9780. [百度学术]
Chen G, Liu D, He C, et al. Enzymatic synthesis of periodic DNA nanoribbons for intracellular pH sensing and gene silencing[J]. J Am Chem Soc, 2015, 137(11): 3844-3851. [百度学术]
Hu Q, Li H, Wang L, et al. DNA nanotechnology-enabled drug delivery systems[J]. Chem Rev, 2019, 119(10): 6459-6506. [百度学术]
Rattanakiat S, Nishikawa M, Funabashi H, et al. The assembly of a short linear natural cytosine-phosphate-guanine DNA into dendritic structures and its effect on immunostimulatory activity[J]. Biomaterials, 2009, 30(29): 5701-5706. [百度学术]
Qu Y, Yang J, Zhan P, et al. Self-assembled DNA dendrimer nanoparticle for efficient delivery of immunostimulatory CpG motifs[J]. ACS Appl Mater Interfaces, 2017, 9(24): 20324-20329. [百度学术]
Li J, Pei H, Zhu B, et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides[J]. ACS Nano, 2011, 5(11): 8783-8789. [百度学术]
Ouyang X, Li J, Liu H, et al. Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs[J]. Small, 2013, 9(18): 3082-3087. [百度学术]
Schuller VJ, Heidegger S, Sandholzer N, et al. Cellular immunostimulation by CpG-sequence-coated DNA origami structures[J]. ACS Nano, 2011, 5(12): 9696-9702. [百度学术]
Wang C, Sun W, Wright G, et al. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody[J]. Adv Mater, 2016, 28(40): 8912-8920. [百度学术]
Zhuang X, Ma X, Xue X, et al. A photosensitizer-loaded DNA origami nanosystem for photodynamic therapy[J]. ACS Nano, 2016, 10(3): 3486-3495. [百度学术]
Chang K, Tang Y, Fang X, et al. Incorporation of porphyrin to pi-conjugated backbone for polymer-dot-sensitized photodynamic therapy[J]. Biomacromolecules, 2016, 17(6): 2128-2136. [百度学术]
Park J, Jiang Q, Feng D, et al. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy[J]. J Am Chem Soc, 2016, 138(10): 3518-3525. [百度学术]
Shieh YA, Yang SJ, Wei MF, et al. Aptamer-based tumor-targeted drug delivery for photodynamic therapy[J]. ACS Nano, 2010, 4(3): 1433-1442. [百度学术]
Yang Y, Zhu W, Feng L, et al. G-quadruplex-based nanoscale coordination polymers to modulate tumor hypoxia and achieve nuclear-targeted drug delivery for enhanced photodynamic therapy[J]. Nano Lett, 2018, 18(11): 6867-6875. [百度学术]
Auvinen H, Zhang H, Nonappa, et al. Protein coating of DNA nanostructures for enhanced stability and immunocompatibility[J]. Adv Healthc Mater, 2017, 6(18):1700692. [百度学术]