摘要
采用鱼藤酮诱导SH-SY5Y细胞损伤建立帕金森病样病变细胞模型,探讨成纤维细胞生长因子21(fibroblast growth factor 21,FGF21)对其作用及机制。以不同浓度的FGF21对鱼藤酮诱导的神经细胞损伤模型进行干预,MTT法检测神经细胞活性;采用Annexin V-FITC/PI双染法分析神经细胞凋亡情况;Western blot检测FGF21及鱼藤酮对神经细胞酪氨酸羟化酶(tyrosine hydroxylase,TH)和α-突触核蛋白(α-synuclein,α-syn)表达的影响;采用DCFH-DA荧光探针检测FGF21及鱼藤酮对神经细胞内活性氧(reactive oxygen species,ROS)水平的作用。结果显示:FGF21能够减少鱼藤酮致神经细胞的损伤,抑制神经细胞凋亡,缓解鱼藤酮引起的神经细胞TH和α-syn水平的异常,同时降低神经细胞内异常ROS水平,提示FGF21可能通过调控氧化应激进而缓解鱼藤酮导致的神经细胞损伤。
关键词
帕金森病(Parkinson’s disease,PD)是最常见的神经退行性疾病之一,临床主要表现为运动迟缓、静止性震颤、肌强直和姿势反射障碍等症
研究表明,神经退行性疾病与糖尿病之间存在关
本研究采用鱼藤酮建立PD样损伤神经细胞模型,考察在该模型下FGF21对神经细胞的细胞活性和细胞凋亡、酪氨酸羟化酶(tyrosine hydroxylase,TH)和 α-syn变化、以及胞内活性氧 (reactive oxygen species,ROS)水平的影响,在细胞水平上探讨FGF21对鱼藤酮导致PD样神经细胞损伤的保护作用及机制。
FGF21(纯度:95.66%,实验室制备);鱼藤酮(纯度:98.12%,美国MCE公司);ROS检测试剂盒、Annexin V-FITC细胞凋亡检测试剂盒、BCA蛋白浓度检测试剂盒(中国碧云天生物技术研究所);胰蛋白酶、MTT(中国Biosharp公司);DMEM高糖培养基、胎牛血清(美国Gibco公司);蛋白酶抑制剂、Marker(美国Thermo公司);PVDF膜(美国Millipore公司);β-actin抗体(中国Abclonal公司);TH抗体,α-syn抗体,羊抗兔IgG,羊抗鼠IgG(美国Cell Signaling Technology公司);其他试剂均为国产分析纯。
收集密度为每毫升5×1
状态良好的SH-SY5Y细胞铺于96孔板,在细胞培养箱中培养10 h后,选取0.1 μmol/L鱼藤酮作为造模浓度,同时选用浓度为5,1,0.2,0.04,0.008 μmol/L的FGF21干预细胞24 h后,MTT法检测各组细胞活性。
收集状态良好的SH-SY5Y细胞,以每毫升 5×1
细胞铺板及给药干预实验步骤见“2.4”项。共孵育24 h后,提取细胞总蛋白,Western blot检测各实验组TH和α-syn蛋白水平变化。实验步骤:使用预冷的PBS洗涤细胞2次,加入RIPA裂解液(按1∶200加入蛋白酶抑制剂),细胞板置于冰上,细胞刮刀轻轻刮取细胞收集于EP管中,涡旋仪每隔3 min充分振荡裂解30 min,然后在4 ℃条件下以12 000 r/min离心15 min取上清液即为细胞总蛋白,蛋白制样后进行SDS-PAGE电泳,湿转恒流转膜40 min,转膜后的PVDF膜以5% 脱脂奶粉封闭2 h,TBST洗涤3次,每次10 min,孵育一抗放置于摇床上4 ℃过夜,TBST洗涤后放置于摇床上常温孵育二抗2 h,洗涤、化学发光显色成像,检测目的蛋白变化。
细胞铺板及给药干预实验步骤见“2.4”项。共孵育24 h后,采用DCFH-DA探针结合流式检测SH-SY5Y细胞内ROS水平。实验步骤:以无血清DMEM高糖培养基稀释DCFH-DA溶液使其终浓度为10 μmol/L并避光保存;轻轻吸去6孔板内培养基,用胰酶消化并于显微镜下观察细胞形态,当大部分细胞间隙变大立即用DMEM高糖培养基将细胞轻轻吹打并收集在EP管内,1 500 r/min离心5 min,弃培养基,每管加入已稀释的DCFH-DA溶液1 mL,重悬细胞,37 ℃避光孵育20 min,1 500 r/min离心5 min收集细胞,用无血清DMEM高糖培养基洗涤3次,流式细胞仪检测各组细胞荧光强度。
以不同浓度鱼藤酮损伤SH-SY5Y细胞后,MTT法检测细胞活性。结果如

Figure 1 Effects of different concentrations of rotenone on SH-SY5Y cell viability ()
## P<0.01 vs control group
根据“3.1”项实验结果,选用0.1 μmol/L鱼藤酮损伤SH-SY5Y细胞,分别与梯度浓度FGF21孵育24 h后,MTT检测细胞活性。结果如

Figure 2 Protective effects of FGF21 against rotenone-induced toxicity on SH-SY5Y cells ()
##P<0.01 vs control group
采用鱼藤酮对神经细胞损伤并进行FGF21干预,Annexin V-FITC/PI双染法检测神经细胞凋亡情况。流式检测结果如

Figure 3 Effects of FGF21 and rotenone on the apoptotic levels of SH-SY5Y cells ()
A:Analysis of apoptotic levels in SH-SY5Y cells by flow cytometry;B:Quantification of apoptotic levels
用0.1 μmol/L鱼藤酮对SH-SY5Y细胞损伤造模,采用5 μmol/L FGF21进行干预,Western blot检测各实验组细胞TH和 α-syn的表达量。结果如

Figure 4 Effects of FGF21 and rotenone on the protein levels of TH and α-syn in SH-SY5Y cells ()
A:Detection of protein levels of TH and α-syn by Western blot;B:Quantitative analysis of protein levels of TH;C:Quantitative analysis of protein levels of α-syn
采用鱼藤酮对神经细胞损伤并进行FGF21干预,DCFH-DA探针法检测细胞内ROS水平。结果如

Figure 5 Effects of FGF21 and rotenone on the ROS levels in SH-SY5Y cells ()
A:Analysis of ROS levels in SH-SY5Y cells by flow cytometry;B:Quantification of ROS levels
PD是世界第二大神经退行性疾病,仅次于阿尔茨海默病,其发病机制复杂,目前尚无定论,缺乏有效的治愈手段,使得大量研究寻求新的治疗思路与治疗靶标。研究表明FGF21能以简单扩散的方式通过血脑屏
PD发病机制复杂,其中氧化应激在PD发生机制中备受关注。越来越多的研究表明氧化应激异常和线粒体功能障碍会引起中枢神经系统紊乱以及多巴胺能神经元退化和死
参 考 文 献
Betarbet R,Sherer TB,MacKenzie G,et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease[J]. Nat Neurosci,2000,3(12):1301‒1306. [百度学术]
Collier TJ,Kanaan NM,Kordower JH. Ageing as a primary risk factor for Parkinson's disease:evidence from studies of non-human primates[J]. Nat Rev Neurosci,2011,12(6):359‒366. [百度学术]
Braak H,Del Tredici K,Rüb U,et al. Staging of brain pathology related to sporPDic Parkinson's disease[J]. Neurobiol Aging,2003,24(2):197‒211. [百度学术]
Ristow M. Neurodegenerative disorders associated with diabetes mellitus[J]. J Mol Med,2004,82(8):510‒529. [百度学术]
Moran C,Beare R,Wang W,et al. Type 2 diabetes mellitus,brain atrophy,and cognitive decline[J]. Neurology,2019,92(8):e823‒e830. [百度学术]
Leng Y,Wang Z,Tsai LK,et al. FGF-21,a novel metabolic regulator,has a robust neuroprotective role and is dramatically elevated in neurons by mood stabilizers[J]. Mol Psychiatry,2015,20(2):215‒223. [百度学术]
Yu Y,Bai F,Wang W,et al. Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation[J]. Pharmacol Biochem Behav,2015,133:122‒131. [百度学术]
Chen S,Chen ST,Sun Y,et al. Fibroblast growth factor 21 ameliorates neurodegeneration in rat and cellular models of Alzheimer’s disease[J]. Redox Biol,2019,22:101133. [百度学术]
Yin J,Bao LC,Tian H,et al. Genetic fusion of human FGF21 to a synthetic polypeptide improves pharmacokinetics and pharmacodynamics in a mouse model of obesity[J]. Br J Pharmacol,2016,173(14):2208‒2223. [百度学术]
Venkatesh GV,Rajasankar S,Ramkumar M,et al. Agaricus blazei extract attenuates rotenone-induced apoptosis through its mitochondrial protective and antioxidant properties in SH-SY5Y neuroblastoma cells[J]. Nutr Neurosci,2018,21(2):97‒107. [百度学术]
Hsuchou H,Pan W,Kastin AJ. The fasting polypeptide FGF21 can enter brain from blood[J]. Peptides,2007,28(12):2382‒2386. [百度学术]
Fon Tacer K,Bookout AL,Ding X,et al. Research resource:comprehensive expression atlas of the fibroblast growth factor system in adult mouse[J]. Mol Endocrinol,2010,24(10):2050‒2064. [百度学术]
Bookout AL,De Groot MH,Owen BM,et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system[J]. Nat Med,2013,19(9):1147‒1152. [百度学术]
Sun Y,Gao XD,Chen S. Effect and mechanism of FGF21 on astrocyte damage induced by Aβ25-35[J]. J China Pharm Univ(中国药科大学学报),2019,50(4):490‒496. [百度学术]
MäKelä J,Tselykh TV,Maiorana F,et al. Fibroblast growth factor-21 enhances mitochondrial functions and increases the activity of PGC-1α in human dopaminergic neurons via Sirtuin-1[J]. Springer Plus,2014,3(1):2. [百度学术]
Schapira AH,Jenner P. Etiology and pathogenesis of Parkinson's disease[J]. Mov Disord,2011,26(6):1049‒1055. [百度学术]
Zhu J,Chu CT. Mitochondrial dysfunction in Parkinson's disease[J]. J Alzheimers Dis,2010,20:S325‒334. [百度学术]
Jenner P,Olanow CW. The pathogenesis of cell death in Parkinson's disease[J]. Neurology,2006,66(10 Suppl 4):S24‒36. [百度学术]
JrParker WD,Parks JK,Swerdlow RH. Complex I deficiency in Parkinson's disease frontal cortex[J]. Brain Res,2008,1189:215‒218. [百度学术]
Henchcliffe C,Beal MF. Mitochondrial biology and oxidative stress in Parkinson's disease pathogenesis[J]. Nat Clin Pract Neurol,2008,4(11):600‒609. [百度学术]
Gandhi S,Wood NW. Molecular pathogenesis of Parkinson's disease[J]. Hum Mol Genet,2005,14(18):2749‒2755. [百度学术]
Sun C,Mo M,Wang Y,et al. Activation of the immunoproteasome protects SH-SY5Y cells from the toxicity of rotenone[J]. Neurotoxicology,2019,73:112‒119. [百度学术]
Ramalingam M,Huh YJ,Lee YI. The impairments of α-synuclein and mechanistic target of rapamycin in rotenone-induced SH-SY5Y cells and mice model of Parkinson's disease [J]. Front Neurosci,2019,13:1028. [百度学术]
Yun HM,Jin P,Park KR,et al. Thiacremonone potentiates anti-oxidant effects to improve memory dysfunction in an APP/PS1 transgenic mice model[J]. Mol Neurobiol,2016,53(4):2409‒2420. [百度学术]
Chattopadhyaya I,Gupta S,Mohammed A,et al. Neuroprotective effect of Spirulina fusiform and amantadine in the 6-OHDA induced Parkinsonism in rats[J]. BMC Complement Altern Med,2015,15:296. [百度学术]
Alghamdi BSA. Possible prophylactic anti-excitotoxic and anti-oxidant effects of virgin coconut oil on aluminium chloride- induced Alzheimer's in rat models[J]. J Integr Neurosci,2018,17(3/4):593‒607. [百度学术]