摘要
骨关节炎(OA)是一种常见的慢性关节疾病,主要的病理改变为关节软骨的退化和继发性骨质增生。现有的药物治疗方式存在明显的局限性,仅从镇痛角度治疗或行关节置换术,二者均不能从根本上改善关节软骨的病变。因此,抑制OA疾病进展的药物(DMOAD)应运而生。DMOAD通过参与调节软骨代谢平衡、参与软骨下骨重塑和控制局部炎症等机制从根本上抑制关节软骨结构性退变,从而使OA患者得到疼痛及功能的症状改善,延缓做人工关节置换术的时间,提高患者生活质量。目前全球范围内尚无DMOAD类药物上市,本文从DMOAD药物的研发背景、作用机制以及各类机制下在研代表药物的研发进展进行综述,为今后的研究提供参考。
骨关节炎(osteoarthritis,OA)是一种严重影响患者生活质量的关节退行性疾病,主要症状为关节疼痛及压痛、关节活动受限、关节畸形等,会对个人和社会造成沉重的经济负担。
OA在中老年人群中发病率较高,65岁以上的人群50%以上为OA患者,我国膝关节症状性OA(膝关节Kellgren & Lawrence评分≥2,同时存在膝关节疼痛)的患病率为8.1%;女性高于男性,从区域特征来看,农村地区膝关节症状性OA患病率高于城市地区。OA可导致关节疼痛、畸形与活动功能障碍,进而增加心血管事件的发生率及全因病死率,尤其是症状性膝关节OA,研究认为可导致全因病死率增加近1倍。随着我国人口老龄化的发展趋势,OA的发病率还有逐渐上升的趋
OA的治疗目的是缓解疼痛,延缓疾病进展,矫正畸形,改善或恢复关节功能,提高患者生活质量。总体治疗原则是依据患者年龄、性别、体重、自身危险因素、病变部位及程度等选择阶梯化及个体化治
在现有的治疗方案中,镇痛的治疗手段无法抑制关节结构的进一步恶化,OA最终会进展至终末期从而需要进行手术治疗,给患者带来更长的恢复期以及伴随发生并发症的风险。因此,在OA发展为需要进行药物干预的病程时,理想的情况下是药物不仅能改善患者的症状,还能及时从根本上修复受损的软骨关节结构,抑制疾病进一步发展,延缓疾病病程。迄今为止,尚无被监管机构批准的疗法可有效阻止或逆转软骨和骨骼的结构退化,努力寻找可改善关节结构的药物是骨关节炎新药研发中的重要策略之一。
DMOAD(disease-modifying OA drug)是一种旨在改善OA结构性进展的药物,是相对于现阶段治疗骨关节炎的旨在缓解症状的药物方案提出的。根据欧洲药品管理局(EMA
目前为止OA的发病机制暂不清楚,与年龄有关的关节软骨和下骨磨损,肢体过度使用,以及遗传疾病和代谢综合征(肥胖/炎症反应和糖尿病等)都被视为OA发病和进展的重要因素。最初OA被定义为机械诱发的疾病,异常的生物力学会引起关节稳态的变
关节软骨磨损是骨关节炎最主要的发病原因,促进透明软骨的主要成分Ⅱ型胶原和蛋白聚糖的表达并抑制其分解代谢是修复软骨的主要目的。OA软骨中几种关键的合成代谢和分解代谢途径酶的失调,为鉴定和验证新药靶标提供了机会,目前已进入临床阶段的代表性药物见
生长因子,例如成纤维细胞生长因子18(FGF-18)、骨形态发生蛋白7(BMP-7)等,以及包含多种生长因子的富含血小板的血浆(PRP
Sprifermin是一种重组人成纤维细胞生长因子18(rhFGF18)的截短形式,可诱导软骨细胞增殖和软骨基质产生。一项研究病例192例的临床Ⅰ期研究(NCT01033994)显
骨形态发生蛋白7(BMP-7)又称成骨蛋白1(OP-1)。已有研究证明其具有刺激相关组织(如关节软骨、韧带和骨骼)的细胞中的基质合成的作
血小板包含多种生长因子,例如血小板衍生生长因子(PDGF)、转化生长因子β(TGF-β)、胰岛素样生长因子、血管内皮生长因子以及细胞因子、趋化因子等,在组织修复和再生机制中起关键作用。TGF-β和PDGF可能指导局部间充质细胞迁移,促进胶原蛋白和基质的合
干细胞治疗也是促进软骨再生的一种选择,来源于脂肪或骨髓的间充质干细胞注射入关节腔后分化为软骨细胞,同时刺激生长因子的表达和软骨基质成分的分泌,达到软骨再生的目的。和PRP治疗存在同样的问题,目前的研究在部分OA患者中观察到有效的趋势,但高质量的证据较少,无长期随访数据。同时,受不同研究中注射的干细胞制剂、剂量和老年自体干细胞分化能力的差异的影响,无法获得具有一致性的有效性评估标
软骨及软骨基质的降解是关节炎患者软骨损伤的另一个重要因素,基质金属蛋白酶(MMPs)抑制
MMPs是一类锌原子依赖性内肽酶,激活的MMPs可选择性降解多种细胞外基质成分,主要包括胶原,明胶,弹性蛋白等,是较早被发现在OA关节中影响软骨基质降解的关键蛋白酶。用于治疗骨关节炎的广谱MMPs抑制剂的代表候选物为宝洁公司开发的PG-116800(PG-530742),在治疗1年后并未显著改善JSW或WOMAC评分,并且在治疗组中出现了肌肉骨骼毒性,导致研究终止(NCT00041756
ADAMTs-5是软骨中主要的聚集蛋白聚糖酶,参与软骨细胞外基质的主要成分聚集蛋白聚糖的降解过程,蛋白聚糖的丢失是OA患者关节软骨降解中的重要因
Wnt/β-catenin信号途径参与了软骨细胞和成骨细胞的分化及与软骨分解代谢相关蛋白酶的生成,在关节塑形中具有重要作用。在关节炎患者中,Wnt信号上调驱使间充质干细胞分化为成骨细胞,并刺激金属蛋白酶产生,导致软骨退
软骨下骨骼除了营养供应以外,吸收生理和非生理的冲击和对软骨的支撑才是其主要的功
双磷酸盐类药物是有效的抗骨吸收药,能够通过抑制骨质疏松症中的破骨细胞活性来有效的减慢骨转换,但其在OA中的有效性仍不确
降钙素是由卵泡旁甲状腺细胞产生的一种多肽激素,通过破骨细胞上的降钙素受体抑制破骨细胞的骨吸
重组人甲状旁腺激素(PTH)特立帕肽是一种用于骨质疏松症的骨合成代谢疗法。在临床前研究中特立帕肽对软骨变性的减速、基质再生的刺激以及微结构和软骨下骨重塑的改善产生了令人鼓舞的效
组织蛋白酶K是破骨细胞分泌的主要溶骨蛋白
现在普遍认为OA具有炎性成分,在特定患者亚组的关节组织中可能更为明显。在许多临床前OA动物模型和患者中已证明了各种促炎性介质(如前列腺素,细胞因子和趋化因子)的释
靶向炎症通路的在研药物中大多数生物制剂都是针对类风湿性关节炎(RA)开发的,在RA的治疗中属于成功的改善疾病进展型药物,但在OA中的尝试结果并不乐观。迄今为止,靶向白介素1(IL-1)和白介素6(IL-6)以及肿瘤坏死因子α(TNF-α)的生物制剂在预防和治疗OA的疼痛和结构性进展方面的尝试并未成功。Amgen公司由于缺乏可证明的临床益
从以上结果中可以推测靶向单细胞因子的影响可能很小,最近的策略旨在干扰促炎性信号传导级联的其他上游通路。Toll样受体下游靶标包括p38 MAPK(促分裂素原活化蛋白激酶)、Janus激酶等分子,以及核转录因子
OA是涉及整个关节的异质性疾病,通过复杂的分子机制介导多个组织受累,关节软骨的损伤、软骨下骨的重塑和滑膜炎症在OA疾病进展中可能会起到重要作用。通过对本文提到的多个在研药物分析,靶向关节软骨的在研药物Ⅱ期结果较为喜人,靶向软骨下骨和炎症通路的药物研发过程中需要更关注安全性以及耐受性的问题。DMOAD类药物的研发中仍存在许多问题和挑战,如需要进一步明确骨关节结构改善与症状改善的关系,明确这类药物作用于OA时效果最优的疾病进展阶段,发展影像学技术并突破现有诊断在精度和灵敏度上对OA诊断和疾病进展评估的局限性,探索更多可以辅助影像学结果进行疗效判断的替代终点,以及为了提高安全性和依从性开发长效关节内注射的药物递送系统等。
DMOAD的研发目的是为了填补现有治疗方案中的止痛治疗与手术治疗之间的从根本上抑制疾病进展药物的空白,在OA的药物治疗方案中具有重要意义。靶向软骨的DMOAD在除骨关节炎的适应证之外,还可开发如急性软骨损伤等其他和软骨修复相关的适应证,对整个软骨修复领域的治疗具有革命性的突破。
References
Guidelines for the diagnosis and treatment of osteoarthritis.(2018[J]. Chin J Orthop(中华骨科杂志),2018,38(12):705–715. [百度学术]
European Medicines Agency. Guideline on clinical investigation of medicinal products used in the treatment of osteoarthritis[R]. London:European Medicines Agency,2010. [百度学术]
Food and Drug Administration. Osteoarthritis:structural endpoints for the development of drugs,devices,and biological products for treatment guidance for industry[R]. Rockville: [百度学术]
U. S. Department of Health and Human Services, 2018. [百度学术]
Guilak F. Biomechanical factors in osteoarthritis[J]. Best Pract Res Clin Rheumatol, 2011, 25(6): 815-823. [百度学术]
Jotanovic Z, Mihelic R, Sestan B, et al. Emerging pathways and promising agents with possible disease modifying effect in osteoarthritis treatment[J]. Curr Drug Targets, 2014, 15(6): 635-661. [百度学术]
Deveza LA, Nelson AE, Loeser RF. Phenotypes of osteoarthritis: current state and future implications[J]. Clin Exp Rheumatol, 2019, 37(5): 64-72. [百度学术]
Karsdal MA, Bay-Jensen AC, Lories RJ, et al. The coupling of bone and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives and anabolics as potential treatments[J]? Ann Rheum Dis, 2014, 73(2): 336-348. [百度学术]
Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!)[J]. Osteoarthr Cartil, 2013, 21(1): 16-21. [百度学术]
Oo WM, Yu SP, Daniel MS, et al. Disease-modifying drugs in osteoarthritis: current understanding and future therapeutics[J]. Expert Opin Emerg Drugs, 2018, 23(4): 331-347. [百度学术]
Muchedzi TA, Roberts SB. A systematic review of the effects of platelet rich plasma on outcomes for patients with knee osteoarthritis and following total knee arthroplasty[J]. Surgeon, 2018, 16(4): 250-258. [百度学术]
Eckstein F, Wirth W, Guermazi A, et al. Brief report: intraarticular sprifermin not only increases cartilage thickness, but also reduces cartilage loss: location-independent post hoc analysis using magnetic resonance imaging[J]. Arthritis Rheumatol, 2015, 67(11): 2916-2922. [百度学术]
Hochberg MC, Guermazi A, Guehring H, et al. Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage thickness in patients with osteoarthritis: the FORWARD randomized clinical trial[J]. JAMA, 2019, 322(14): 1360-1370. [百度学术]
Chubinskaya S, Hurtig M, Rueger DC. OP-1/BMP-7 in cartilage repair[J]. Int Orthop, 2007, 31(6): 773-781. [百度学术]
Hunter DJ, Pike MC, Jonas BL, et al. Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis[J]. BMC Musculoskelet Disord, 2010, 11: 232. [百度学术]
Dhillon RS, Schwarz EM, Maloney MD. Platelet-rich plasma therapy — future or trend[J]? Arthritis Res Ther, 2012, 14(4): 219. [百度学术]
Jevotovsky DS, Alfonso AR, Einhorn TA, et al. Osteoarthritis and stem cell therapy in humans: a systematic review[J]. Osteoarthritis Cartilage, 2018, 26(6): 711-729. [百度学术]
Lee WY, Wang B. Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives[J]. J Orthop Translat, 2017, 9: 76-88. [百度学术]
Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis[J]. Front Biosci, 2006, 11: 529-543. [百度学术]
Verma P, Dalal K. ADAMTS-4 and ADAMTS-5: key enzymes in osteoarthritis[J]. J Cell Biochem, 2011, 112(12): 3507-3514. [百度学术]
Wu LH, Huang XH, Li LF, et al. Insights on biology and pathology of HIF-1α/-2α, TGFβ/BMP, Wnt/β-catenin, and NF-κB pathways in osteoarthritis[J]. Curr Pharm Des, 2012, 18(22): 3293-3312. [百度学术]
Tonge DP, Pearson MJ, Jones SW. The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics[J]. Osteoarthritis Cartilage, 2014, 22(5): 609-621. [百度学术]
Wang MN, Sampson ER, Jin HT, et al. MMP13 is a critical target gene during the progression of osteoarthritis[J]. Arthritis Res Ther, 2013, 15(1): R5. [百度学术]
Ge XP, Ma XC, Meng JH, et al. Role of Wnt-5A in interleukin-1beta-induced matrix metalloproteinase expression in rabbit temporomandibular joint condylar chondrocytes[J]. Arthritis Rheum, 2009, 60(9): 2714-2722. [百度学术]
Yazici Y, McAlindon TE, Gibofsky A, et al. Results from a 52-week randomized, double-blind, placebo-controlled, phase 2 study of a novel, intra-articular wnt pathway inhibitor (SM04690) for the treatment of knee osteoarthritis[J]. Osteoarthr Cartil, 2018, 26: S293-S294. [百度学术]
Malekipour F, Whitton C, Oetomo D, et al. Shock absorbing ability of articular cartilage and subchondral bone under impact compression[J]. J Mech Behav Biomed Mater, 2013, 26: 127-135. [百度学术]
Li GY, Yin JM, Gao JJ, et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes[J]. Arthritis Res Ther, 2013, 15(6): 223. [百度学术]
Burr DB, Gallant MA. Bone remodelling in osteoarthritis[J]. Nat Rev Rheumatol, 2012, 8(11): 665-673. [百度学术]
Alliston T, Hernandez CJ, Findlay DM, et al. Bone marrow lesions in osteoarthritis: What lies beneath[J]. J Orthop Res, 2018, 36(7): 1818-1825. [百度学术]
van Spil WE, Kubassova O, Boesen M, et al. Osteoarthritis phenotypes and novel therapeutic targets[J]. Biochem Pharmacol, 2019, 165: 41-48. [百度学术]
Vaysbrot EE, Osani MC, Musetti MC, et al. Are bisphosphonates efficacious in knee osteoarthritis?A meta-analysis of randomized controlled trials[J]. Osteoarthritis Cartilage, 2018, 26(2): 154-164. [百度学术]
Deveza LA, Bierma-Zeinstra SMA, van Spil WE, et al. Efficacy of bisphosphonates in specific knee osteoarthritis subpopulations: protocol for an OA Trial Bank systematic review and individual patient data meta-analysis[J]. BMJ Open, 2018, 8(12): e023889. [百度学术]
Sondergaard BC, Madsen SH, Segovia-Silvestre T, et al. Investigation of the direct effects of salmon calcitonin on human osteoarthritic chondrocytes[J]. BMC Musculoskelet Disord, 2010, 11: 62. [百度学术]
Chen CH, Ho ML, Chang LH, et al. Parathyroid hormone-( 1-34) ameliorated knee osteoarthritis in rats via autophagy[J]. J Appl Physiol (1985), 2018, 124(5): 1177-1185. [百度学术]
Lindström E, Rizoska B, Tunblad K, et al. The selective cathepsin K inhibitor MIV-711 attenuates joint pathology in experimental animal models of osteoarthritis[J]. J Transl Med, 2018, 16(1): 56. [百度学术]
Karsdal MA, Michaelis M, Ladel C, et al. Disease-modifying treatments for osteoarthritis (DMOADs) of the knee and hip: lessons learned from failures and opportunities for the future[J]. Osteoarthritis Cartilage, 2016, 24(12): 2013-2021. [百度学术]
Conaghan PG, Bowes MA, Kingsbury SR, et al. Disease-modifying effects of a novel cathepsin K inhibitor in osteoarthritis: a randomized controlled trial[J]. Ann Intern Med, 2020, 172(2): 86-95. [百度学术]
Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications[J]. Arthritis Res Ther, 2017, 19(1): 18. [百度学术]
Pelletier JP, Martel-Pelletier J, Rannou F, et al. Efficacy and safety of oral NSAIDs and analgesics in the management of osteoarthritis: evidence from real-life setting trials and surveys[J]. Semin Arthritis Rheum, 2016, 45(4 Suppl): S22-S27. [百度学术]
Savvidou O, Milonaki M, Goumenos S, et al. Glucocorticoid signaling and osteoarthritis[J]. Mol Cell Endocrinol, 2019, 480: 153-166. [百度学术]
Cohen SB, Proudman S, Kivitz AJ, et al. A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee[J]. Arthritis Res Ther, 2011, 13(4): R125. [百度学术]
Wang SX, Abramson SB, Attur M, et al. Safety, tolerability, and pharmacodynamics of an anti-interleukin-1α/β dual variable domain immunoglobulin in patients with osteoarthritis of the knee: a randomized phase 1 study[J]. Osteoarthritis Cartilage, 2017, 25(12): 1952-1961. [百度学术]
Fleischmann RM, Bliddal H, Blanco FJ, et al. A phase II trial of lutikizumab, an anti-interleukin-1α/β dual variable domain immunoglobulin, in knee osteoarthritis patients with synovitis[J]. Arthritis Rheumatol, 2019, 71(7): 1056-1069. [百度学术]
Verbruggen G, Wittoek R, Vander Cruyssen B, et al. Tumour necrosis factor blockade for the treatment of erosive osteoarthritis of the interphalangeal finger joints: a double blind, randomised trial on structure modification[J]. Ann Rheum Dis, 2012, 71(6): 891-898. [百度学术]
Magnano MD, Chakravarty EF, Broudy C, et al. A pilot study of tumor necrosis factor inhibition in erosive/inflammatory osteoarthritis of the hands[J]. J Rheumatol, 2007, 34(6): 1323-1327. [百度学术]
Chevalier X, Ravaud P, Maheu E, et al. Adalimumab in patients with hand osteoarthritis refractory to analgesics and NSAIDs: a randomised, multicentre, double-blind, placebo-controlled trial[J]. Ann Rheum Dis, 2015, 74(9): 1697-1705. [百度学术]
Fioravanti A, Fabbroni M, Cerase A, et al. Treatment of erosive osteoarthritis of the hands by intra-articular infliximab injections: a pilot study[J]. Rheumatol Int, 2009, 29(8): 961-965. [百度学术]
Kawasaki T, Kawai T. Toll-like receptor signaling pathways[J]. Front Immunol, 2014, 5: 461. [百度学术]
Maudens P, Seemayer CA, Pfefferlé F, et al. Nanocrystals of a potent p38 MAPK inhibitor embedded in microparticles: Therapeutic effects in inflammatory and mechanistic murine models of osteoarthritis[J]. J Control Release, 2018, 276: 102-112. [百度学术]
Grothe K, Flechsenhar K, Paehler T, et al. IκB kinase inhibition as a potential treatment of osteoarthritis — results of a clinical proof-of-concept study[J]. Osteoarthritis Cartilage, 2017, 25(1): 46-52. [百度学术]
Hellio le Graverand MP, Clemmer RS, Redifer P, et al. A 2-year randomised, double-blind, placebo-controlled, multicentre study of oral selective iNOS inhibitor, cindunistat (SD-6010), in patients with symptomatic osteoarthritis of the knee[J]. Ann Rheum Dis, 2013, 72(2): 187-195. [百度学术]