摘要
近年来,诸多报道表明致癌信号通路与代谢活动间存在密切联系,因此,研究者们开始认识到代谢重编程在肿瘤中的重要性。在肿瘤发生发展的过程中,乳腺肿瘤细胞经历代谢重编程,包括增强的糖酵解、三羧酸循环、谷氨酰胺分解和脂肪酸生物合成过程,然而不同亚型之间的代谢重编程会有所差异。此外,乳腺肿瘤细胞的代谢改变重塑了肿瘤的微环境,例如促进了肿瘤的血管形成和抑制机体的免疫防御机制,进而加速了肿瘤的进展。对当前乳腺癌代谢重编程以及微环境重塑的研究进展进行综述,能够为开发各乳腺癌亚型的代谢靶向药物提供一定理论依据。
根据国际肿瘤研究机构发布的全球肿瘤统计数据显示,乳腺癌是2018年发病率最高的肿瘤,全球约有200万例病例登记,到2040年,这一数字预计将超过300
能量代谢的重新编程被认为是促进肿瘤发生发展的标志之
本文探讨了乳腺肿瘤内的代谢重编程及其对乳腺癌生物学进程的重要性。从糖酵解、三羧酸循环(tricarboxylic acid cycle,TCA cycle)和氧化磷酸化、氨基酸代谢以及脂质代谢4个部分概述了乳腺癌组织和细胞中的能量代谢的重新编程,从而加深了对代谢调节乳腺癌进程的理解,有助于设计与开发乳腺肿瘤代谢的相关药物。
诸多研究表明,乳腺癌和正常乳腺组织的代谢特征之间存在差异,各种代谢途径例如糖酵解、TCA循环、氨基酸、核苷酸和脂质代谢,均发生了不同程度的改

Figure 1 Overview of metabolic reprogramming in breast cancer cells
糖酵解包括一系列复杂反应,在氧气利用率低的情况下,葡萄糖会转化为丙酮酸,并同时产生NADH和ATP。生成的丙酮酸可以转化为乙酰辅酶A并进入TCA循环,也可以生成乳酸。研究表明,许多肿瘤即使在有氧条件下也可以进行糖酵解作
在人类细胞中,葡萄糖转运膜蛋白家族(glucose transporter,GLUT)调控着葡萄糖的摄取。在人类基因组编码的14种亚型中,GLUT1在人体组织中分布最广泛,并在包括乳腺癌在内的各种肿瘤中过表
己糖激酶(hexokinase,HK)催化糖酵解的第一步,即葡萄糖转化为6-磷酸葡萄糖。在哺乳动物组织发现的4种亚型中,HK2在肿瘤组织中过表达水平最
磷酸果糖激酶1(phosphofructokinase 1,PFK1)是糖酵解限速酶,可将6磷酸果糖转化为1,6-二磷酸果糖,与正常的乳腺组织或邻近的癌旁组织相比,肿瘤部位的PFK1蛋白质表达增加并伴随着酶活性的升
糖酵解的第3个关键步骤是丙酮酸激酶(pyruvate kinase,PK)催化,将磷酸烯醇丙酮酸转化为丙酮酸。异构体PKM2在几种高度增殖的肿瘤类型中高表达。除了在糖酵解中起关键作用外,PKM2还通过充当辅助激活剂和蛋白激酶来促进肿瘤的发
对不同基因和转录因子对乳腺癌中糖酵解活性的调节作用进行了研究,乳腺癌易感基因1(breast cancer susceptibility gene 1,BRCA1)是主要的抑癌基因,也是遗传性乳腺癌中最常见的突变基
TCA循环是在线粒体中发生的一系列反应,乙酰辅酶A进入TCA循环被氧化,生成二氧化碳和还原型辅酶NADH和FADH2,以及少量的ATP。这些还原型辅酶会将其电子传递到电子传递链中,通过氧化磷酸化(oxidative phosphorylation, OXPHOS)生成大量的ATP。正常细胞主要依靠线粒体代谢产生能量,而肿瘤细胞则表现出糖酵解的上调和线粒体失
此外,已有研究发现在乳腺癌中不同的TCA循环存在着相关酶的变化。丙酮酸脱氢酶复合体(pyruvate dehydrogenase complex,PDH)催化丙酮酸氧化脱羧生成乙酰辅酶A,因此控制了代谢物从糖酵解到TCA循环以及随后通过线粒体代谢生成ATP的通量。最近据报道,人乳腺肿瘤组织中 PDHX(PDH复合物的结构成分)的表达降低,与患者低存活率相
除葡萄糖外,谷氨酰胺和丝氨酸等氨基酸也是细胞生长和增殖的重要底物。长期以来,研究表明谷氨酰胺的消耗量比其他氨基酸多十倍以上,谷氨酰胺不仅是生物合成途径(氨基酸和核酸合成)所必需的,而且能够转化为TCA循环中间体和乳酸,为肿瘤细胞提供额外的能
丝氨酸是一种非必需氨基酸,其生物合成通常在肿瘤细胞中被上
哺乳动物细胞主要通过两种机制获得脂质,即内源的从头合成和外源的摄
某些类型的肿瘤包括乳腺肿瘤,利用乙酸盐作为碳的补偿性来源,以支持从头脂肪形
谷氨酰胺通过谷氨酸进入TCA循环,然后被谷氨酸脱氢酶转化为α-酮戊二酸。这种谷氨酰胺分解通量的增加使柠檬酸盐能够离开线粒体进入细胞质,并通过ATP柠檬酸裂解酶(ATP citrate lyase,ACLY)分解成草酰乙酸和乙酰辅酶A。另外,ACLY的核定位及Akt的磷酸化促进了BRCA1的募集,这对于通过同源重组介导的DNA双链断裂修复是必不可少
乳腺肿瘤细胞内新陈代谢的失调影响了恶性组织中的多种细胞(如内皮细胞,炎性细胞和免疫细胞)的活性,从而重塑了肿瘤的微环境。通过肿瘤代谢对肿瘤微环境进行代谢重塑,进一步促进了肿瘤部位的血管生成并降低了肿瘤的免疫原性,从而促进肿瘤发展。
有氧糖酵解以及生成和分泌的乳酸导致肿瘤微环境酸化。乳酸向肿瘤微环境的释放进一步促进了肿瘤的进

Figure 2 Lactate shuttle between tumor cells and vascular endothelial cells
肿瘤免疫是一个动态过程,其中最关键的就是肿瘤细胞与免疫细胞之间的相互作
除乳酸以外,肿瘤细胞与肿瘤浸润淋巴细胞之间的谷氨酰胺竞争也会阻碍淋巴细胞对乳腺肿瘤细胞的免疫作用。乳腺肿瘤细胞与淋巴细胞竞争谷氨酰胺,从而限制了淋巴细胞的增
乳腺肿瘤细胞内的葡萄糖调节蛋白78(glucose-regulated protein 78,GRP78)是一种内质网应激蛋白,已有研究发现,敲低GRP78可抑制FA的线粒体运输,进一步抑制了FA氧化,导致多不饱和FA在细胞内积
综上,代谢重编程在乳腺癌发生和发展进程中起着关键的作用。各种不同代谢通路内酶类表达水平和活性的变化,直接导致了糖酵解作用、TCA循环、谷氨酰胺分解和脂质生物合成途径的改变,且根据乳腺癌亚型和等级的不同,这些变化之间也有所差异。在乳腺肿瘤中,无论是代谢物利用还是代谢途径的调节,都存在着不同的竞争和共生关系。这种复杂的变化也导致了肿瘤逃脱机体的免疫防御机制,进一步促进了肿瘤的进展。因此,靶向肿瘤代谢途径也能够抑制肿瘤血管生成作用以及增强肿瘤本身的免疫原性。
目前,乳腺癌多数代谢特征仍然是未知的,高通量基因组学、蛋白质组学和代谢组学等研究技术的进一步发展将有助发现乳腺癌的新代谢特性,对其代谢作用的深入研究将能够帮助发现抗肿瘤治疗的新靶标,从而研制出新型有效的抗乳腺癌药物。
References
Waks AG,Winer EP. Breast cancer treatment: a review[J]. JAMA, 2019, 321(3): 288-300. [百度学术]
Jauhari Y, Gannon MR, Dodwell D, et al. Addressing frailty in patients with breast cancer: a review of the literature[J]. Eur J Surg Oncol, 2020, 46(1): 24-32. [百度学术]
Thorat MA, Balasubramanian R. Breast cancer prevention in high-risk women[J]. Best Pract Res Clin Obstet Gynaecol, 2020, 65: 18-31. [百度学术]
Nagarajan D, McArdle SEB. Immune landscape of breast cancers[J]. Biomedicines, 2018, 6(1): 20. [百度学术]
Fouad YA, Aanei C. Revisiting the hallmarks of cancer[J]. Am J Cancer Res, 2017, 7(5): 1016-1036. [百度学术]
Luengo A, Gui DY, Vander Heiden MG. Targeting metabolism for cancer therapy[J]. Cell Chem Biol, 2017, 24(9): 1161-1180. [百度学术]
Chang H, Zhang Y, Ding X. Research progress on lipid metabolism in non-small cell lung cancer[J]. J China Pharm Univ(中国药科大学学报), 2020, 50(1): 107-113. [百度学术]
Sun L, Suo C, Li ST, et al. Metabolic reprogramming for cancer cells and their microenvironment: beyond the Warburg effect[J]. Biochim Biophys Acta Rev Cancer, 2018, 1870(1): 51-66. [百度学术]
Tayyari F, Gowda GAN, Olopade OF, et al. Metabolic profiles of triple-negative and luminal A breast cancer subtypes in African-American identify key metabolic differences[J]. Oncotarget, 2018, 9(14): 11677-11690. [百度学术]
More TH, RoyChoudhury S, Christie J, et al. Metabolomic alterations in invasive ductal carcinoma of breast: a comprehensive metabolomic study using tissue and serum samples[J]. Oncotarget, 2017, 9(2): 2678-2696. [百度学术]
Budczies J, Denkert C, Müller BM, et al. Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue — a GC-TOFMS based metabolomics study[J]. BMC Genomics, 2012, 13: 334. [百度学术]
Tang X, Lin CC, Spasojevic I, et al. A joint analysis of metabolomics and genetics of breast cancer[J]. Breast Cancer Res, 2014, 16(4): 415. [百度学术]
Haukaas TH, Euceda LR, Giskeødegård GF, et al. Metabolic clusters of breast cancer in relation to gene-and protein expression subtypes[J]. Cancer Metab, 2016, 4: 12. [百度学术]
Lane AN, Tan J, Wang Y, et al. Probing the metabolic phenotype of breast cancer cells by multiple tracer stable isotope resolved metabolomics[J]. Metab Eng, 2017, 43(pt b): 125-136. [百度学术]
Dubuis S, Baenke F, Scherbichler N, et al. Metabotypes of breast cancer cell lines revealed by non-targeted metabolomics[J]. Metab Eng, 2017, 43(pt b): 173-186. [百度学术]
Willmann L, Schlimpert M, Halbach S, et al. Metabolic profiling of breast cancer: differences in central metabolism between subtypes of breast cancer cell lines[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2015, 1000: 95-104. [百度学术]
Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells [J] ? Trends Biochem Sci, 2016, 41(3): 211-218. [百度学术]
Azad GK, Taylor BP, Green A, et al. Prediction of therapy response in bone-predominant metastatic breast cancer: comparison of
Wang J, Ye C, Chen C, et al. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: a systematic review and meta-analysis[J]. Oncotarget, 2017, 8(10): 16875-16886. [百度学术]
Choi J, Jung WH, Koo JS. Metabolism-related proteins are differentially expressed according to the molecular subtype of invasive breast cancer defined by surrogate immunohistochemistry[J]. Pathobiology, 2013, 80(1): 41-52. [百度学术]
Krzeslak A, Wojcik-Krowiranda K, Forma E, et al. Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers[J]. Pathol Oncol Res, 2012, 18(3): 721-728. [百度学术]
Garcia SN, Guedes RC, Marques MM. Unlocking the potential of HK2 in cancer metabolism and therapeutics[J]. Curr Med Chem, 2019, 26(41): 7285-7322. [百度学术]
Brown RS, Goodman TM, Zasadny KR, et al. Expression of hexokinase II and glut-1 in untreated human breast cancer[J]. Nucl Med Biol, 2002, 29(4): 443-453. [百度学术]
Patra KC, Wang Q, Bhaskar PT, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer[J]. Cancer Cell, 2013, 24(2): 213-228. [百度学术]
Hennipman A, Smits J, van Oirschot B, et al. Glycolytic enzymes in breast cancer, benign breast disease and normal breast tissue[J]. Tumour Biol, 1987, 8(5): 251-263. [百度学术]
Wang G, Xu Z, Wang C, et al. Differential phosphofructokinase-1 isoenzyme patterns associated with glycolytic efficiency in human breast cancer and paracancer tissues[J]. Oncol Lett, 2013, 6(6): 1701-1706. [百度学术]
Dong G, Mao Q, Xia W, et al. PKM2 and cancer: the function of PKM2 beyond glycolysis[J]. Oncol Lett, 2016, 11(3): 1980-1986. [百度学术]
Yang Y, Wu K, Liu Y, et al. Prognostic significance of metabolic enzyme pyruvate kinase M2 in breast cancer: a meta-analysis[J]. Medicine(Madr), 2017, 96(46): e8690. [百度学术]
Mahdavi M, Nassiri M, Kooshyar MM, et al. Hereditary breast cancer; genetic penetrance and current status with BRCA[J]. J Cell Physiol, 2019, 234(5): 5741-5750. [百度学术]
Vázquez-Arreguín K, Maddox J, Kang J, et al. BRCA1 through its E3 ligase activity regulates the transcription factor Oct1 and carbohydrate metabolism[J]. Mol Cancer Res, 2018, 16(3): 439-452. [百度学术]
Zhao YH, Zhou M, Liu H, et al. Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth[J]. Oncogene, 2009, 28(42): 3689-3701. [百度学术]
Semenza GL. Hypoxia-inducible factors: coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype[J]. EMBO J, 2017, 36(3): 252-259. [百度学术]
Dupuy F, Tabariès S, Andrzejewski S, et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer[J]. Cell Metab, 2015, 22(4): 577-589. [百度学术]
Chiavarina B, Martinez-Outschoorn UE, Whitaker-Menezes D, et al. Metabolic reprogramming and two-compartment tumor metabolism: opposing role(s) of HIF1α and HIF2α in tumor-associated fibroblasts and human breast cancer cells[J]. Cell Cycle, 2012, 11(17): 3280-3289. [百度学术]
Yang L, Hou Y, Yuan J, et al. Twist promotes reprogramming of glucose metabolism in breast cancer cells through PI3K/AKT and p53 signaling pathways[J]. Oncotarget, 2015, 6(28): 25755-25769. [百度学术]
Ahn CS, Metallo CM. Mitochondria as biosynthetic factories for cancer proliferation[J]. Cancer Metab, 2015, 3(1): 1. [百度学术]
Kenny TC, Gomez ML, Germain D. Mitohormesis, UP
Eastlack SC, Dong S, Ivan C, et al. Suppression of PDHX by microRNA-27b deregulates cell metabolism and promotes growth in breast cancer[J]. Mol Cancer, 2018, 17(1): 100. [百度学术]
Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities[J]. J Clin Invest, 2013, 123(9): 3678-3684. [百度学术]
Kim S, Kim DH, Jung WH, et al. Expression of glutamine metabolism-related proteins according to molecular subtype of breast cancer[J]. Endocr Relat Cancer, 2013, 20(3): 339-348. [百度学术]
Lampa M, Arlt H, He T, et al. Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition[J]. PLoS One, 2017, 12(9): e0185092. [百度学术]
Lukey MJ, Cluntun AA, Katt WP, et al. Liver-type glutaminase GLS2 is a druggable metabolic node in luminal-subtype breast cancer[J]. Cell Rep, 2019, 29(1): 76-88.e7. [百度学术]
Mattaini KR, Sullivan MR, Vander Heiden MG. The importance of serine metabolism in cancer[J]. J Cell Biol, 2016, 214(3): 249-257. [百度学术]
Murphy JP, Giacomantonio MA, Paulo JA, et al. The NA
Sullivan MR, Mattaini KR, Dennstedt EA, et al. Increased serine synthesis provides an advantage for tumors arising in tissues where serine levels are limiting[J]. Cell Metab, 2019, 29(6): 1410-1421.e4. [百度学术]
Yang M, Vousden KH. Serine and one-carbon metabolism in cancer[J]. Nat Rev Cancer, 2016, 16(10): 650-662. [百度学术]
Fan J, Teng X, Liu L, et al. Human phosphoglycerate dehydrogenase produces the oncometabolite D-2-hydroxyglutarate[J]. ACS Chem Biol, 2015, 10(2): 510-516. [百度学术]
Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells[J]. Oncogenesis, 2016, 5(1): e189. [百度学术]
Cheng C, Geng F, Cheng X, et al. Lipid metabolism reprogramming and its potential targets in cancer[J]. Cancer Commun(Lond), 2018, 38(1): 27. [百度学术]
Kinlaw WB, Baures PW, Lupien LE, et al. Fatty acids and breast cancer: make them on site or have them delivered[J]. J Cell Physiol, 2016, 231(10): 2128-2141. [百度学术]
Balaban S, Lee LS, Varney B, et al. Heterogeneity of fatty acid metabolism in breast cancer cells underlies differential sensitivity to palmitate-induced apoptosis[J]. Mol Oncol, 2018, 12(9): 1623-1638. [百度学术]
Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, et al. Cancer metabolism: a therapeutic perspective[J]. Nat Rev Clin Oncol, 2017, 14(1): 11-31. [百度学术]
Schug ZT, Vande Voorde J, Gottlieb E. The metabolic fate of acetate in cancer[J]. Nat Rev Cancer, 2016, 16(11): 708-717. [百度学术]
Schug ZT, Peck B, Jones DT, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress[J]. Cancer Cell, 2015, 27(1): 57-71. [百度学术]
Gao X, Lin SH, Ren F, et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia[J]. Nat Commun, 2016, 7: 11960. [百度学术]
Sivanand S, Rhoades S, Jiang Q, et al. Nuclear acetyl-CoA production by ACLY promotes homologous recombination[J]. Mol Cell, 2017, 67(2): 252-265.e6. [百度学术]
Menendez JA, Lupu R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer[J]. Expert Opin Ther Targets, 2017, 21(11): 1001-1016. [百度学术]
Ray A. Tumor-linked HER2 expression: association with obesity and lipid-related microenvironment[J]. Horm Mol Biol Clin Investig, 2017, 32(3):1-18. [百度学术]
Jin Q, Yuan LX, Boulbes D, et al. Fatty acid synthase phosphorylation: a novel therapeutic target in HER2-overexpressing breast cancer cells[J]. Breast Cancer Res, 2010, 12(6): R96. [百度学术]
Pérez-Escuredo J, Dadhich RK, Dhup S, et al. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells[J]. Cell Cycle, 2016, 15(1): 72-83. [百度学术]
Végran F, Boidot R, Michiels C, et al. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis[J]. Cancer Res, 2011, 71(7): 2550-2560. [百度学术]
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression[J]. Genes Dev, 2018, 32(19/20): 1267-1284. [百度学术]
Bantug GR, Galluzzi L, Kroemer G, et al. The spectrum of T cell metabolism in health and disease[J]. Nat Rev Immunol, 2018, 18(1): 19-34. [百度学术]
Ho PC, Bihuniak JD, Macintyre AN, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses[J]. Cell, 2015, 162(6): 1217-1228. [百度学术]
Cui G, Staron MM, Gray SM, et al. IL-7-induced glycerol transport and TAG synthesis promotes memory CD
Sangsuwan R, Thuamsang B, Pacifici N, et al. Lactate exposure promotes immunosuppressive phenotypes in innate immune cells[J]. Cell Mol Bioeng, 2020, 13(5): 541-557. [百度学术]
Bader JE, Voss K, Rathmell JC. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy[J]. Mol Cell, 2020, 78(6): 1019-1033. [百度学术]
Taddei ML, Pietrovito L, Leo A, et al. Lactate in sarcoma microenvironment: much more than just a waste product[J]. Cells, 2020, 9(2): 510. [百度学术]
Kim JY, Heo SH, Choi SK, et al. Glutaminase expression is a poor prognostic factor in node-positive triple-negative breast cancer patients with a high level of tumor-infiltrating lymphocytes[J]. Virchows Arch, 2017, 470(4): 381-389. [百度学术]
Lecoutre S, Maqdasy S, Petrus P, et al. Glutamine metabolism in adipocytes: a bona fide epigenetic modulator of inflammation[J]. Adipocyte, 2020, 9(1): 620-625. [百度学术]
Cook KL, Soto-Pantoja DR, Clarke PA, et al. Endoplasmic reticulum stress protein GRP78 modulates lipid metabolism to control drug sensitivity and antitumor immunity in breast cancer[J]. Cancer Res, 2016, 76(19): 5657-5670. [百度学术]