摘要
对三七总皂苷(Panax notoginseng saponins,PNS)与卵磷脂、β-谷甾醇、玉米醇溶蛋白共组装制备的三七总皂苷玉米脂蛋白纳米粒(PNS-lipid-zein nanoparticles,PLZ-NPs)进行了体外细胞实验,以及大鼠脑缺血再灌注损伤的药效学研究。采用反溶剂沉淀法制备了PLZ-NPs,运用激光粒度仪和透射电镜显微镜对纳米粒进行表征,MTT法评价了纳米粒的细胞毒性,激光共聚焦和流式细胞术分析了Caco-2细胞对纳米粒的摄取情况。大脑中动脉闭塞(MCAO)法构建了大鼠脑缺血再灌注损伤模型,连续3 d灌胃给药后,取脑组织进行2,3,5-氯化三苯基四氮唑(TTC)染色,并检测脂质过氧化物丙二醛(MDA)、炎症因子IL-1β、TNF-α、凋亡相关蛋白Bax、Bcl-2的水平。结果显示,PLZ-NPs平均粒径为(116.4 ± 0.81)nm,PDI为0.048,Zeta电位为-(31.5 ± 0.31)mV。MTT实验表明,玉米脂蛋白载体的生物安全性良好,且能显著提高Caco-2细胞对纳米粒的摄取(纳米粒组在4 h时细胞摄取量提高至游离组的1.76倍)。TTC染色中,PNS和PLZ-NPs组的梗死面积比模型组均有减少,另外MDA、IL-1β、TNF-α、Bax的含量明显下降,Bcl-2含量增加,而且PLZ-NPs组对脑缺血再灌注损伤的保护作用显著优于PNS组(P<0.05)。实验结果表明,本实验制备的玉米脂蛋白纳米粒具有良好的稳定性、药物负载能力和生物安全性,能显著提高肠上皮细胞对药物的摄取,有效改善脑缺血再灌注对大鼠造成的损伤。
三七总皂苷(Panax notginseng saponins,PNS)来源于五加科植物三七,具有改善脑缺血和缺血再灌注引起的损伤、促进神经功能恢复、降低心肌耗氧量、改善心肌供血等功
PNS中的主要成分三七皂苷R1、人参皂苷Rg1和人参皂苷Rb1均属于具有一定表面活性的皂苷类成分,由皂苷元和糖基构成,具有易溶于水,膜渗透性差的特
玉米醇溶蛋白(zein)是一种生物相容性良好的植物蛋白,含有超过50%的疏水性氨基酸,形成了同时具有亲水区域和疏水区域的两亲性蛋白,这种两亲性特征是玉米醇溶蛋白能够自组装的主要原因之
实验借鉴纳米制剂能够提高药物口服吸收,玉米醇溶蛋白能有效提高载药量的特点,设计并制备了PNS、玉米醇溶蛋白、卵磷脂和β-谷甾醇共组装的三七总皂苷玉米脂蛋白纳米粒(PNS-lipid-zein nanoparticles,PLZ-NPs)。其中卵磷脂作为一种能增强药物膜渗透性的两性离子表面活性剂,常与胆固醇共用制备脂质
三七总皂苷(PNS,南京景竹生物科技有限公司,纯度85%);玉米醇溶蛋白(东京化成工业株式会社);蛋黄卵磷脂(安庆中创磷脂工程技术有限责任公司);β-谷甾醇(阿拉丁试剂有限公司);水合氯醛(上海凌峰化学试剂有限公司);TTC染色试剂(北京谨明生物科技有限公司);BCA蛋白含量检测试剂盒(江苏凯基生物技术股份有限公司);丙二醛(MDA)试剂盒、ELISA试剂盒(南京建成生物工程研究所);甲醇、乙醇、乙腈均为色谱纯,其他试剂均为市售分析纯。
Nano-ZSE激光粒度仪(英国Malvern公司);SPARK酶联免疫细胞仪(瑞士Tecan公司);FV3000激光共聚焦显微镜(日本Olympus公司);Accuri c6小型全自动流式细胞仪(美国Becton Dickinson公司);H-7650透射电镜显微镜(日本Hitachi 公司)。
根据本实验已有经
将纳米粒溶液适当稀释后,用激光粒度仪测定纳米粒的粒径、PDI以及Zeta电位,并用透射电镜观察形貌。
取对数生长期的Caco-2细胞接种于96孔板中并培养48 h后,分别与PNS、PLZ-NPs以及空白纳米粒LZ-NPs共孵育4 h;之后加入1 mg/mL MTT溶液,继续孵育4 h。孵育结束后加入二甲基亚砜(DMSO),酶联免疫细胞仪在570 nm处测定各孔吸收度(A),通过计算得到细胞存活率。
将对数生长期的Caco-2细胞接种于共聚焦皿上,分别与游离的FITC、FLZ-NPs共孵育4 h。孵育结束后,用4%多聚甲醛固定细胞15 min, DAPI溶液0.1 mL染核15 min,激光共聚焦拍摄细胞摄取图片。
大鼠的脑缺血再灌注造模选择雄性SD大鼠(260 ± 20)g,术前禁食12 h,可自由饮水。3.3%水合氯醛(330 mg/kg)腹腔注射麻醉后,剪开颈部皮肤,钝性分离肌肉组织并游离血管,自制栓线从颈外动脉沿着血管插入颈内动脉,直至脑内。大鼠缺血2 h后松动栓线恢复血液灌注,待完全清醒后,选择有行为损伤的动物进行后续实
如

Figure 1 Images of PZ-NPs (left) and PLZ-NPs (right) at 0 h(A), 2 h(B) and 24 h (C); the TEM images of PLZ-NPs(D) and "fingerprint structure" of PLZ-NPs(E)
PZ-NPs:Panax notginseng saponins-zein nanoparticles;PLZ-NPs:Panax notginseng saponins -lipid-zein nanoparticles
PLZ-NPs的平均粒径为(116.4 ± 0.81)nm,PDI为0.048,Zeta电位为-(31.5 ± 0.31)mV,结合
MTT法考察了纳米粒的细胞毒性,从

Figure 2 Cytotoxicity test and the uptake assay in Caco-2 cells by flow cytometry and laser confocal microscopy
A:Cell viability of Caco-2 at different concentrations of Panax notginseng saponins (PNS), PLZ-NPs and lipid-zein nanoparticles(LZ-NPs) (); B:Fluorescence intensity of free FITC and FITC-lipid-zein nanoparticles (FLZ-NPs)uptake by Caco-2 cells at 1, 2, and 4 h (); C:Uptake of free FITC and FLZ-NPs in Caco-2 cells
流式细胞术定量检测细胞内荧光强度的结果如
从
从

Figure 3 Detections of PLZ-NPs for the treatment of cerebral ischemia-reperfusion injury in rats ()
A:TTC staining of brain tissues; B-F:Contents ofMDA (B), IL-1β(C), TNF-α(D), Bax(E) and Bcl-2 (F) in brain tissues
缺血再灌注损伤通常会加剧代谢性氧化应激和破坏血-脑脊液屏障,最终造成继发性脑组织损
如
Bcl-2蛋白是一种细胞存活的促进因子,Bax蛋白是与Bcl-2同源的水溶性相关蛋白,Bax基因是一种重要的凋亡基因,过度表达可拮抗Bcl-2的保护效
玉米醇溶蛋白由于分子内部的疏水作用,可自组装形成表面亲水的球状粒子结构,卵磷脂通过疏水键、氢键和静电吸引等方式与其相互作
PZ-NPs溶液极不稳定,室温下静置2 h后出现明显的浑浊,溶液透光性下降。推测由于玉米醇溶蛋白的等电点(pI=6.20)与PZ-NPs溶液的pH(pH 6.40)较为接近,导致蛋白分子之间的相互作用减弱,极易碰撞而产生聚集沉
MTT实验表明,玉米脂蛋白纳米粒的生物相容性良好,与Caco-2细胞共孵育后,能显著提升细胞对亲水性物质的摄取,且摄取量具有时间依赖性,这为PLZ-NPs促进肠上皮细胞对水溶性PNS的摄取和吸收提供了依据。
在药效实验中,相比模型组,PNS和PLZ-NPs组在TTC染色和MDA、IL-1β、TNF-α、Bax、Bcl-2的含量检测中均有更好的表现,且PLZ-NPs的效果优于游离的PNS,推测玉米脂蛋白纳米粒能有效促进肠道对药物的摄取,显著提高了体内的药物浓度,从而改善了药物对脑缺血再灌注损伤的保护作用。
本实验证实了玉米脂蛋白纳米粒能显著促进细胞对亲水性物质的摄取,改善PNS对大鼠脑缺血再灌注损伤的保护作用,为此类中药口服剂型的开发设计提供了思路与方法。
References
Huang XP,Tan H,Chen BY,et al. Combination of total Astragalus extract and total Panax notoginseng saponins strengthened the protective effects on brain damage through improving energy metabolism and inhibiting apoptosis after cerebral ischemia-reperfusion in mice[J]. Chin J Integr Med,2017,23(6):445-452. [百度学术]
Yu YL,Sun GB,Luo Y,et al. Cardioprotective effects of notoginsenoside R1 against ischemia/reperfusion injuries by regulating oxidative stress- and endoplasmic Reticulum stress- related signaling pathways[J]. Sci Rep,2016,6:21730. [百度学术]
Yang X,Xiong X,Wang H,et al. Protective effects of Panax notoginseng saponins on cardiovascular diseases:a comprehensive overview of experimental studies[J]. Evid Based Complement Alternat Med,2014,2014:204840. [百度学术]
Zhai YS,Du SY,Xu B,et al. O/W partition coefficient of PNS and absorption kinetics of it in rat intestine[J]. China J Chin Mater Med(中国中药杂志),2010,35(8):984-988. [百度学术]
Lai L,Liu HG,Qin Y,et al. Effects of absorption enhancers on small intestinal absorption of Panax notoginseng saponins[J]. Chin J New Drugs(中国新药杂志),2011,20(10):909-913. [百度学术]
Liao ZG,Han XZ,Li X,et al. Physicochemical property and protective effect on acute myocardial ischemia in rats of Panax notoginseng saponins-loaded complex nano vesicles[J]. Chin J New Drugs (中国新药杂志),2013,48(11):899-903. [百度学术]
Hasegawa H,Sung JH,Matsumiya S,et al. Main ginseng saponin metabolites formed by intestinal bacteria[J]. Planta Med,1996,62(5):453-457. [百度学术]
Liu HF,Yang JL,Du FF,et al. Absorption and disposition of ginsenosides after oral administration of Panax notoginseng extract to rats[J]. Drug Metab Dispos,2009,37(12):2290-2298. [百度学术]
Guo YP,Shao L,Chen MY,et al. In vivo metabolic profiles of Panax notoginseng saponins mediated by gut microbiota in rats[J]. J Agric Food Chem,2020,68(25):6835-6844. [百度学术]
Lai L,Liu HG,Lu SH,et al. Pharmacokinetics and correlation between in vivo absorption and in vitro release of Panax notoginseng saponins enteric microcapsule[J]. Chin J New Drugs(中国新药杂志),2012,21(6):693-696. [百度学术]
Han M,Fu S,Fang XL. Screening of Panax notoginsenoside water in oil microemulsion formulations and their evaluation in vitro and in vivo[J]. Acta Pharm Sin(药学学报),2007,42(7):780-786. [百度学术]
Liu Z,Zhang Q,Ding L,et al. Preparation procedure and pharmacokinetic study of water-in-oil nanoemulsion of Panax notoginseng saponins for improving the oral bioavailability[J]. Curr Drug Deliv,2016,13(4):600-610. [百度学术]
Momany FA,Sessa DJ,Lawton JW,et al. Structural characterization of alpha-zein[J]. J Agric Food Chem,2006,54(2):543-547. [百度学术]
Hong SS,Thapa RK,Kim JH,et al. Role of zein incorporation on hydrophobic drug-loading capacity and colloidal stability of phospholipid nanoparticles[J]. Colloids Surf B Biointerfaces,2018,171:514-521. [百度学术]
Li M,Yu M. Development of a nanoparticle delivery system based on zein/polysaccharide complexes[J]. J Food Sci,2020,85(12):4108-4117. [百度学术]
Xie ZH,Zhang ZH,Lv H. Rapamycin loaded TPGS-Lecithins-Zein nanoparticles based on core-shell structure for oral drug administration[J]. Int J Pharm,2019,568:118529. [百度学术]
Cheng ZT,Yao K,Liu WW,et al. Preparation and characterization of composite delivery system of paclitaxel-loaded temperature sensitive liposome and siRNA-loaded gold nanostar[J]. J China Pharm Univ (中国药科大学学报),2017,48(4):445-452. [百度学术]
Hao JM,Wang H,Li Q,et al. Preparation and in vitro studies of polysaccharide modified compound liposomes loaded with paclitaxe and doxorubicin[J]. J China Pharm Univ (中国药科大学学报),2017,48 (6) :680-686. [百度学术]
Bin Sayeed MS,Karim SMR,Sharmin T,et al. Critical analysis on characterization,systemic effect,and therapeutic potential of beta-sitosterol:a plant-derived orphan phytosterol[J]. Medicines (Basel),2016,3 (4) :29. [百度学术]
Huang LF,Chen CW,Zhang X,et al. Neuroprotective effect of curcumin against cerebral ischemia-reperfusion via mediating autophagy and inflammation[J]. J Mol Neurosci,2018,64(1):129-139. [百度学术]
Zhang Y,Chen WA,Huang SS,et al. Protective effects of mangiferin on cerebral ischemia-reperfusion injury and its mechanisms[J]. Eur J Pharmacol,2016,771:145-151. [百度学术]
Zou S,Zhang MX,Feng LM,et al. Protective effects of notoginsenoside R1 on cerebral ischemia-reperfusion injury in rats[J]. Exp Ther Med,2017,14(6):6012-6016. [百度学术]
Jin Z,Guo P,Li X,et al. Neuroprotective effects of irisin against cerebral ischemia/ reperfusion injury via Notch signaling pathway[J]. Biomed Pharmacother,2019,120:109452. [百度学术]
Lin J,Liang P,Huang Q,et al. Research progress of protective effect of Panax notoginseng saponins on cerebral ischemia injury[J]. World Latest Med Inf(世界最新医学信息文摘),2018,18(16):97-99. [百度学术]
Bibi S,Kaur R,Henriksen-Lacey M,et al. Microscopy imaging of liposomes:from coverslips to environmental SEM[J]. Int J Pharm,2011,417(1/2):138-150. [百度学术]
Majzoub RN,Ewert KK,Safinya CR. Cationic liposome—nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing[J]. Philos Trans A Math Phys Eng Sci,2016,374(2072):20150129. [百度学术]
Almgren M ,Edwards K,Karlsson G. Cryo transmission electron microscopy of liposomes and related structures[J]. Colloids Surf A Physicochem Eng Asp,2000,174(1/2):3-21. [百度学术]
Zhang CB,Shen MH,Teng FM,et al. Ultrasound-enhanced protective effect of tetramethylpyrazine via the ROS/HIF-1A signaling pathway in an in vitro cerebral ischemia/reperfusion injury model[J]. Ultrasound Med Biol,2018,44(8):1786-1798. [百度学术]
He R,Jiang Y,Shi Y,et al. Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis[J]. Mater Sci Eng C Mater Biol Appl,2020,117:111314. [百度学术]
Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury[J]. Free Radic Biol Med,1990,9(6):515-540. [百度学术]
Kvansakul M,Hinds MG. Structural biology of the Bcl-2 family and its mimicry by viral proteins[J]. Cell Death Dis,2013,4:e909. [百度学术]
Li M,Yu M. Development of a nanoparticle delivery system based on zein/polysaccharide complexes[J]. J Food Sci,2020,85(12):4108-4117. [百度学术]
Pascoli M,Lima DR,Fraceto LF. Zein nanoparticles and strategies to improve colloidal stability:a mini-review[J]. Front Chem,2018,6:6. [百度学术]