摘要
铂类脂质体在肿瘤部位的定点药物释放是其发挥疗效的关键,本研究以二棕榈酰磷脂酰胆碱和二硬脂酰磷脂酰乙醇胺-聚乙二醇2k两种磷脂为基础,构建带有面两亲性分子石胆酸(lithocholic acid, LCA)或3-酮石胆酸(3-keto lithocholic acid, kLCA)的新型脂质体(LCA-Lip,kLCA-Lip),测试其对肿瘤分泌性磷脂酶A2 (secretory phospholipase A2,sPLA2)的响应性。采用薄膜水化-挤出法制备脂质体,对所制备脂质体进行理化性质表征,通过酶刺激脂质体释放荧光素CF实验研究其酶响应性,并通过体外毒性实验研究其抑制肿瘤细胞增殖的活性。结果表明:所制备的面两亲分子改造的奥沙利铂脂质体平均粒径约为100 nm,且分散均匀(PDI < 0.11),相比于不含面两亲性分子的脂质体(C-Lip),包封率和载药量没有显著性差异;与不加胎牛血清(FBS)的孵育条件相比,加入10%,50%的FBS没有显著性地增加奥沙利铂从脂质体的泄漏率。体外荧光素CF释放特性实验结果表明,相比C-Lip脂质体,LCA-Lip和kLCA-Lip脂质体对Colo205结肠癌细胞分泌的sPLA2响应度更高,在酶的作用下LCA-Lip和kLCA-Lip在24 h释放约70%的荧光素CF,而C-Lip释放率仅约20%;体外抗肿瘤活性结果表明,奥沙利铂LCA-Lip和奥沙利铂kLCA-Lip对高表达sPLA2的Colo205细胞增殖的抑制效果明显高于奥沙利铂C-Lip。本研究表明,LCA或者3-kLCA面两亲性分子可提高脂质体对肿瘤细胞分泌的sPLA2的响应性,为未来开发可应用于临床,具有定点释药功能的铂类脂质体提供了新的思路。
铂类化疗药是临床上广泛使用的药物,具有较高的抗肿瘤活性,但因其非靶向体内分布以及无选择性进而杀伤正常细胞造成严重的不良反应,从而限制了其临床应
分泌性磷脂酶A2(secretory phospholipase A2, sPLA2)在大部分肿瘤类型中高表达,包括前列腺癌、乳腺癌、胰腺癌和结直肠癌
石胆酸是胆酸类化合物,是人体内胆固醇代谢的次级胆酸,其疏水甾核结构和甲基基团形成疏水凸面,其羟基和羧基形成亲水凹面,是一个面两亲性分子,可自身相互作用形成胶束,也可与磷脂、胆固醇等形成混合胶束,用于运输药物,相比于不含石胆酸改造的脂质体,加入石胆酸改造脂质体的优势在于石胆酸能提高脂溶性药物溶解性,并且可作为膜渗透性增强剂,促进药物透过生物障碍,包括皮肤、血脑屏障、肠壁、鼻黏膜和角
本研究选择石胆酸(lithocholic acid,LCA)和3-酮石胆酸(3-keto lithocholic acid,kLCA)两种面两亲性胆酸类分子与磷脂制备成脂质体,LCA相比于其他的胆酸类分子,其甾核含羟基个数最少(只有1个3α-OH),疏水性更强,不易造成包封药物的早期泄漏。本研究以二棕榈酰磷脂酰胆碱(DPPC)和二硬脂酰基磷脂酰乙醇胺-聚乙二醇2k(DSPE-PEG2k)两种磷脂为基础,加入LCA或者kLCA构建脂质体,研究其sPLA2酶刺激响应释放药物的特性和体外抗肿瘤效果。面两亲性分子LCA或者kLCA改造脂质体的制备流程及其响应sPLA2刺激触发药物释放的示意图见路线1。

Scheme 1 Schematic diagram of the preparation of facial amphiphiles-included liposomes (LCA-Lip), (n(DPPC): n(LCA): n(DSPE-PEG2k) = 95∶10∶5); kLCA-Lip, (n(DPPC): n(kLCA): n(DSPE-PEG2k) = 95∶10∶5) and subjection to secretory phospholipase A2 (sPLA2) degradation for drug release. DPPC: Dipalmitoyl phosphatidylcholine; DSPE-PEG2k: distearoyl phosphoethanolamine-PEG2k; LCA: Lithocholic acid; kLCA: 3-keto-lithocholic acid; L-OHP: Oxaliplatin; MLVs: Multilamellar vesicles
1,2-二棕榈酰-sn-甘油-3-磷酰胆碱(dipalmitoyl phosphatidylcholine,DPPC)、1,2-硬脂酰-sn-甘油-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-2000](distearoyl phosphoethanolamine-PEG2k,DSPE-PEG-2k)(美国Avanti Polar Lipids公司);石胆酸(Lithocholic Acid,LCA,英国Fluorochem有限公司);3-酮基-5β-胆烷-24-羧酸(3-keto lithocholic acid,kLCA)按文献方法合
超高效液相色谱-三重四极杆液质联用仪(美国Sciex公司);高效液相色谱仪(美国安捷伦科技公司);纳米粒度与Zeta电位仪(美国麦奇克公司);Gen5多功能酶标仪(美国伯腾仪器公司);CytoFLEX流式细胞仪、高速冷冻离心机(美国贝克曼贝尔特公司);中型挤压仪(美国Northern Lipids公司)。
脂质体通过薄膜水化-冻融循环挤出法制备。首先按配方要求将定量的磷脂、LCA、kLCA或DiO (质量分数,3%磷脂)先溶于三氯甲烷中,然后使用微量玻璃进样针将其转移到圆底烧瓶中,使用减压旋蒸仪除去有机溶剂三氯甲烷以形成均匀薄膜。痕量有机溶剂通过过夜真空干燥除去。加入所要包封物质的水溶液(100 mmol/L荧光素CF水溶液或9 g/L的奥沙利铂水溶液),在55 ℃中水化2 min,然后涡旋2 min,重复此步骤使薄膜全部水化成脂质体混悬液。混悬液在液氮冻结,然后在55 ℃下水浴溶解,重复此冻融循环6次。使用中型挤压仪使混悬液挤压通过两层聚碳酸酯膜(100 nm)5次以上,获得分散均一的单层囊泡脂质体。未包封的荧光素CF或者DiO通过G75凝胶柱分离除去,未包封的奥沙利铂通过透析法透析48 h除去,透析袋截留相对分子质量大小为7 kD。制备好的脂质体放在4 ℃下保存待用。
脂质体磷脂浓度通过Bartlett无机磷酸盐分析法测
脂质体对sPLA2酶刺激响应性通过考察包裹荧光素CF脂质体的CF释放特性进行分析。首先把包裹荧光素CF的脂质体和氯化钙加入玻璃试管中,用Tri-HCl缓冲液稀释使磷脂和氯化钙的最终浓度分别为50 μmol/L和1 mmol/L,实验组加入sPLA2酶(100 μg/L),对照组不加sPLA2酶,然后放置在27 ℃水浴中孵育,首先在0 h取样品200 μL,通过酶标仪检测荧光强度F0,作为荧光背景强度,检测激发光波长为480 nm,发射光波长为510 nm,然后分别在不同时间点取样品200 μL检测荧光强度Ft,最后加入10%曲拉通X-100 10 μL破膜后检测总的荧光强度Ftriton。荧光素CF释放率 = (Ft-F0)/(Ftriton-F0) × 100%。
为了预测载药脂质体在体内生理条件下的稳定性,使用10%,50% FBS体外模拟生理条件,使用透析法分析载药脂质体的药物泄漏率。首先使用0%,10%,50% FBS/HEPES缓冲液(HEPES缓冲液含5%葡萄糖和10 mmol/L,pH 7.4)稀释载药脂质体并定容到2 mL,最终使药物质量浓度统一为58 μg/mL,待分析液加入到透析袋(截留相对分子质量为7 kD)中,透析液为HEPES缓冲液15 mL,放在37 ℃摇床上振荡,在24 h和48 h时,收集透析液1 mL进样测量载药脂质体泄漏的奥沙利铂峰面积Afree,另外取相同体积的脂质体,使用曲拉通破膜,定容到15 mL,取1 mL进样分析载药脂质体总的奥沙利铂的峰面积Atol。采用超高效液相色谱-三重四极杆质谱联用仪测定奥沙利铂峰面积。奥沙利铂脂质体药物泄漏率(%)= Afree/Atol × 100。
液相色谱条件:反向色谱柱为Kinetex C18 (100 mm × 2.1 mm,2.6 μm);进样体积为5 μL;流动相为10%甲醇和90%水(含0.1%甲酸);流速为0.5 mL/min;柱温为40 ℃。
质谱条件:离子源,ESI源;扫描模式,正离子模式的多反应监控模式(MRM);采集离子对,母离子Q1 mass/子离子Q3 mass (m/z):397.90/96.0;离子化电压,5.5 kV;离子化温度,550 ℃;去族电压,60 V;碰撞电压,52 eV。
结肠癌Colo205细胞分泌的磷脂酶A2(secretory phospholipase A2 from Colo205 cells culture conditioned medium,CCM sPLA2)来源于体外培养Colo205细胞的上清液,通过超滤管浓缩上清液的CCM sPLA2到合适浓度。将3 × 1
脂质体体外细胞摄取量通过流式细胞仪分析测定。制备4 g/L DiO储备液,取DiO 4 mg溶于氯仿1 mL中,使用甲醇稀释成4 000,400,40,4 μg/L 4个标准溶液浓度,通过酶标仪测定荧光强度,激发光波长和发射光波长分别为484 nm和501 nm,以荧光强度为纵坐标,以DiO浓度为横坐标绘制标准曲线。线性方程和相关系数分别为y = 0.736x + 51.56,
Colo205细胞或者HT-29细胞以每孔2 × 1
采用CCK-8分析法考察药物抑制细胞增殖的能力。将Colo205和HT-29细胞接种于96孔板上,细胞密度分别为每孔6 × 1
胆酸类分子与磷脂膜共存时,胆酸类分子浓度超过一定的阈值会破环磷脂膜结构。研究表明,胆酸类分子与磷脂的物质的量比例小于0.11的时候,胆酸类分子(如去氧胆酸和鹅去氧胆酸)会完全嵌入磷脂膜内;当其比例高于0.11时,胆酸类分子和磷脂会形成胶

Figure 1 Size distribution of liposome suspensions was determined by dynamic light scattering (DLS)
C-Lip, n(DPPC): n(DSPE-PRG2k) = 95∶5; LCA-Lip, n(DPPC): n(LCA): n(DSPE-PEG2k), 95∶10∶5; kLCA-Lip, n(DPPC): n(kLCA): n(DSPE-PEG2k), 95∶10∶5
PDI: Polymer dispersity index; LD: Loading efficiency; EE: Encapsulation efficiency
荧光素CF释放实验可以用来推断包裹亲水性药物脂质体在刺激物作用下的释放特

Figure 2 Release rate of 6-CF from liposomal formulations C-Lip, LCA-Lip or kLCA-Lip induced by (A) sPLA2 from bee venom (Bv sPLA2) or (B) sPLA2 from Colo205 cells culture conditioned medium (CCM sPLA2) at 27 °C; Inset figures describe the release pattern of the mentioned systems in the absence of sPLA2 at 27 °C ()
*P < 0.05,
纳米药物载体在体内血液循环中应避免早期药物泄漏,使更多包载药物到达肿瘤部位,减少药物不良反应和提高药物疗效。通过静脉给药的载药脂质体,血循环系统中的磷脂酶、高密度脂蛋白以及调理素会破坏脂质体的基本结构,造成脂质体药物泄漏或者被网状巨噬系统清

Figure 3 Leakage of oxaliplatin (L-OHP) from C-Lip, LCA-Lip and kLCA-Lip which were incubated in HEPES buffer including 0%, 10%, or 50% FBS for 24 h (A) and 48 h (B) at 37 °C ()
为了考察LCA或者kLCA是否对脂质体的细胞内吞程度造成影响,本研究使用流式细胞仪分析Colo205细胞和HT-29细胞对DiO标记脂质体的摄取量。如

Figure 4 Flow cytometric histograms illustrating fluorescence from (A) HT-29 cells or (B) Colo205 cells incubated with DiO-labelled liposomes; Quantitative analysis of cellular uptake efficiency of DiO-labelled liposomes by (C) HT-29 cells or (D) Colo205 cells. Cells were treated with different DiO-labelled liposomes (3 μmol/L DiO) for 2 h. The flow cytometric analysis was performed in triplicate ()
Pourhassan

Figure 5 Cytotoxicity on free L-OHP, L-OHP-loaded liposomes and blank liposomes against sPLA2-secreting Colo205 cells and non sPLA2-secreting HT-29 cells. Free L-OHP and L-OHP-loaded liposomes were added to (A) Colo205 cells or (B) HT-29 cells; Blank liposomes were added to (C) Colo205 cells or (D) HT-29 cells. The lipid concentration of the blank liposome corresponding to the lipid concentration of L-OHP loaded liposomes at the value of IC50 were indicated by the arrows. Cells proliferation was determined by CCK-8 assay and the results represent as the percentage of untreated control group ()
为了确定在载药脂质体杀死癌细胞过程中脂质体载体本身对癌细胞的杀伤性大小,本研究进一步分析了空白脂质体的细胞毒性。如
本研究使用面两亲性分子LCA或者kLCA构建sPLA2酶响应性脂质体(LCA-Lip,kLCA-Lip),实验结果表明,相比于普通脂质体C-Lip,LCA-Lip和kLCA-Lip脂质体对肿瘤细胞来源的sPLA2具有更佳酶刺激响应性,且在运载铂类药物奥沙利铂时,对高表达sPLA2的肿瘤细胞有更强的增殖抑制能力。本研究发现面两亲性分子LCA或者kLCA改造的脂质体具有一个新的功能特点,即对肿瘤部位超表达的sPLA2具有较高的响应性,补充并拓展了此类脂质体在抗肿瘤领域中的应用。
References
Arantseva DA,Vodovozova EL. Platinum-based antitumor drugs and their liposomal formulations in clinical trials[J]. Russ J Bioorg Chem,2018,44(6):619-630. [百度学术]
Li YN,Xu PC,He DS,et al. Long-circulating thermosensitive liposomes for the targeted drug delivery of oxaliplatin[J]. Int J Nanomedicine,2020,15:6721-6734. [百度学术]
Seetharamu N,Kim E,Hochster H,et al. Phase II study of liposomal cisplatin (SPI-77) in platinum-sensitive recurrences of ovarian cancer[J]. Anticancer Res,2010,30(2):541-545. [百度学术]
Yamashita S,Yamashita J,Sakamoto K,et al. Increased expression of membrane-associated phospholipase A2 shows malignant potential of human breast cancer cells[J]. Cancer,1993,71(10):3058-3064. [百度学术]
Jiang JZ,Neubauer BL,Graff JR,et al. Expression of group IIA secretory phospholipase A2 is elevated in prostatic intraepithelial neoplasia and adenocarcinoma[J]. Am J Pathol,2002,160(2):667-671. [百度学术]
Kiyohara H,Egami H,Kako H,et al. Immunohistochemical localization of group II phospholipase A2 in human pancreatic carcinomas[J]. Int J Pancreatol,1993,13(1):49-57. [百度学术]
Abe T,Sakamoto K,Kamohara H,et al. Group II phospholipase A2 is increased in peritoneal and pleural effusions in patients with various cancers[J]. Int Congr Ser,2003,1255:351-360. [百度学术]
Davidsen J,Jørgensen K,Andresen TL,et al. Secreted phospholipase A2 as a new enzymatic trigger mechanism for localised liposomal drug release and absorption in diseased tissue[J]. Biochim Biophys Acta BBA Biomembr,2003,1609(1):95-101. [百度学术]
Zhu GD,Mock JN,Aljuffali I,et al. Secretory phospholipase A2 responsive liposomes[J]. J Pharm Sci,2011,100(8):3146-3159. [百度学术]
Pourhassan H,Clergeaud G,Hansen AE,et al. Revisiting the use of sPLA2-sensitive liposomes in cancer therapy[J]. J Control Release,2017,261:163-173. [百度学术]
Andresen TL,Davidsen J,Begtrup M,et al. Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs[J]. J Med Chem,2004,47(7):1694-1703. [百度学术]
De Jonge MJA,Slingerland M,Loos WJ,et al. Early cessation of the clinical development of LiPlaCis,a liposomal cisplatin formulation[J]. Eur J Cancer,2010,46(16):3016-3021. [百度学术]
Moghimipour E,Ameri A,Handali S. Absorption-enhancing effects of bile salts[J]. Molecules,2015,20(8):14451-14473. [百度学术]
De Luca D,Minucci A,Zecca E,et al. Bile acids cause secretory phospholipase A2 activity enhancement,revertible by exogenous surfactant administration[J]. Intensive Care Med,2009,35(2):321-326. [百度学术]
Cui JG,Fan L,Huang LL,et al. Synthesis and evaluation of some steroidal oximes as cytotoxic agents:structure/activity studies (I)[J]. Steroids,2009,74(1):62-72. [百度学术]
Bartlett GR. Phosphorus assay in column chromatography[J]. J Biol Chem,1959,234(3):466-468. [百度学术]
Li JY,Han JY. Determination of oxalipltin and relative impurity by HPLC[J]. Her Med(医药导报),2008,27(5):597-598. [百度学术]
Saitŏ H,Sugimoto Y,Tabeta R,et al. Incorporation of bile acid of low concentration into model and biological membranes studied by 2H and 31P NMR[J]. J Biochem,1983,94(6):1877-1887. [百度学术]
Klibanov AL,Maruyama K,Torchilin VP,et al. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes[J]. FEBS Lett,1990,268(1):235-237. [百度学术]
Hatakeyama H,Akita H,Ito E,et al. Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid[J]. Biomaterials,2011,32(18):4306-4316. [百度学术]
Trilli J,Caramazza L,Paolicelli P,et al. The impact of bilayer rigidity on the release from magnetoliposomes vesicles controlled by PEMFs[J]. Pharmaceutics,2021,13(10):1712. [百度学术]
Murakami M,Sato H,Miki Y,et al. A new era of secreted phospholipase A₂[J]. J Lipid Res,2015,56(7):1248-1261. [百度学术]
Murase R,Taketomi Y,Miki Y,et al. Group III phospholipase A2 promotes colitis and colorectal cancer[J]. Sci Rep,2017,7(1):12261. [百度学术]
Wilschut JC,Regts J,Scherphof G. Action of phospholipase A2 on phospholipid vesicles. Preservation of the membrane permeability barrier during asymmetric bilayer degradation[J]. FEBS Lett,1979,98(1):181-186. [百度学术]
Boyanovsky BB,Webb NR. Biology of secretory phospholipase A2[J]. Cardiovasc Drugs Ther,2009,23(1):61-72. [百度学术]
Jensen SS,Andresen TL,Davidsen J,et al. Secretory phospholipase A2 as a tumor-specific trigger for targeted delivery of a novel class of liposomal prodrug anticancer etherlipids[J]. Mol Cancer Ther,2004,3(11):1451-1458. [百度学术]
Murakami M,Masuda S,Shimbara S,et al. Cellular distribution,post-translational modification,and tumorigenic potential of human group III secreted phospholipase A2[J]. J Biol Chem,2005,280(26):24987-24998. [百度学术]
Ramana LN,Sharma S,Sethuraman S,et al. Investigation on the stability of saquinavir loaded liposomes:implication on stealth,release characteristics and cytotoxicity[J]. Int J Pharm,2012,431(1/2):120-129. [百度学术]
Li SH,Goins B,Phillips WT,et al. Remote-loading labeling of liposomes with
Matloub AA,Salama AH,Aglan HA,et al. Exploiting bilosomes for delivering bioactive polysaccharide isolated from Enteromorpha intestinalis for hacking hepatocellular carcinoma[J]. Drug Dev Ind Pharm,2018,44(4):523-534. [百度学术]
Zafar A,Alruwaili NK,Imam SS,et al. Development and evaluation of luteolin loaded pegylated bilosome:optimization,in vitro characterization,and cytotoxicity study[J]. Drug Deliv,2021,28(1):2562-2573. [百度学术]
Abbas H,El-Feky YA,Al-Sawahli MM,et al. Development and optimization of curcumin analog nano-bilosomes using 2 1.3 1 full factorial design for anti-tumor profiles improvement in human hepatocellular carcinoma:in-vitro evaluation,in-vivo safety assay[J]. Drug Deliv,2022,29(1):714-727. [百度学术]
Jiang L,Li L,He XD,et al. Overcoming drug-resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response[J]. Biomaterials,2015,52:126-139. [百度学术]
Herr I,Debatin KM. Cellular stress response and apoptosis in cancer therapy[J]. Blood,2001,98(9):2603-2614. [百度学术]
Østrem RG,Parhamifar L,Pourhassan H,et al. Secretory phospholipase A2 responsive liposomes exhibit a potent anti-neoplastic effect in vitro,but induce unforeseen severe toxicity in vivo[J]. J Control Release,2017,262:212-221. [百度学术]
Katona BW,Anant S,Covey DF,et al. Characterization of enantiomeric bile acid-induced apoptosis in colon cancer cell lines[J]. J Biol Chem,2009,284(5):3354-3364. [百度学术]