摘要
为揭示柴胡皂苷d(SSd)的体内外肠道吸收机制,采用Caco-2单层和大鼠在体单向肠灌流模型,研究了不同实验条件(时间、浓度、温度、pH、肠段)、转运蛋白抑制剂、细胞旁途径增强剂、代谢酶抑制剂等因素对SSd体内外肠道吸收的影响。研究结果表明,SSd的表观渗透系数(Papp)和有效渗透系数(Peff)分别为4.75 × 1
柴胡,为伞形科植物柴胡Bupleurum chinense DC.或狭叶柴胡Bupleurum scorzonerifolium Wild.的干燥根,具有升举阳气、行气活血、疏肝解郁等功
药物在体内的肠道吸收由溶解性和渗透性共同决定。SSd的水溶性系数(Sw)为4.47 × 1
因此,本实验的目的是利用Caco-2单层和大鼠在体单向肠灌流模型对SSd的体内外肠道吸收机制进行全面研究,为新药开发、药理学研究和潜在的药物-药物相互作用提供参考依据。
SSd(纯度 > 99.0 %,成都德斯特生物科技有限公司);坎利酮(纯度 > 99.0 %)、利福平、柚皮苷(中国食品药品检定研究院);HBSS,N-2-hydroxyethylpiperazine-N-ethane-sulphonicacid(HEPES),二甲基亚砜(DMSO)(美国Sigma-Aldrich公司);2-Morpholinoethanesulfonic acid(MES)(索莱宝生物科技有限公司);维拉帕米、荧光素、普萘洛尔、呋塞米、普鲁卡因胺(上海源叶生物科技有限公司);MTT试剂盒、MK571(碧云天生物技术有限公司);Ko143、四乙基氯化铵、乙二胺四乙酸(EDTA)(阿拉丁试剂有限公司);2,4-二硝基酚(DNP)、色谱纯甲醇、乙腈、异丙醇(德国Merck公司);MEM不完全培养基(凯基生物有限公司)。甲酸(色谱纯,美国ROE科技公司)。其余试剂均为市售分析纯。
雄性 Sprague-Dawley 大鼠,体重(250 ± 20)g,购自上海实验室动物研究中心,合格证号:SCXK(沪)2018-0006。所有动物研究均遵循国际医学伦理规范并经中国药科大学动物伦理委员会批准。
Caco-2细胞购自中国科学院(上海)细胞库,实验中所用细胞代数在25代以内。取细胞密度为每毫升1 × 1
Caco-2 细胞单层用37 ℃预热的Hank's平衡盐溶液(HBSS)洗涤3次。在AP侧加入空白HBSS溶液(pH 6.5)0.5 mL,在BL侧加入空白HBSS溶液(pH 7.4)1.0 mL,12孔板置于细胞培养箱预孵育30 min。SSd的双向转运实验中,对于AP-BL/BL-AP方向,在供给侧(AP/BL)加入含有5 μmol/L柴胡皂苷d的HBSS溶液(pH 6.5/7.4),接收侧(BL/AP)加入空白HBSS溶液(pH 7.4/6.5)。随后,12孔Transwell培养板置于37 ℃,100 r/min,分别在0、60、100、140、180 min于接收侧吸取转运介质100 μL,每次取样之后补充空白HBSS溶液100 μL。转运实验结束,再次测定TEER评估细胞单层的完整性,然后收集细胞并通过超声裂解获得细胞基质样品溶液。所有样品在分析之前保存于-80 ℃条件下。
按照相同的实验操作,分别研究不同因素对SSd转运的影响,包括不同浓度(0.5、1、5 μmol/L)、温度(4 ℃、37 ℃)、AP侧 pH(6.0、6.5、7.4)等。为进一步探究摄取转运蛋白和外排转运蛋白在 SSd 肠道吸收中的潜在作用,考察了转运蛋白抑制剂对SSd吸收的影响,包括有机阴离子转运多肽(OATPs)抑制剂(100 μmol/L利福平、200 μmol/L柚皮苷
此外,为评估SSd降解及Transwell小室滤膜对SSd的吸附对实验结果的影响,设置无Transwell小室(不含细胞)以及有Transwell小室(不含细胞)的对照组。
肠道灌流液采用改良的Krebs-Ringer(K-R)缓冲液配制而成,含有7.80 g/L NaCl、0.35 g/L KCl、0.32 g/L NaH2PO4、1.37 g/L NaHCO3、0.02 g/L MgCl2和1.40 g/L葡萄糖,溶液的pH调节至6.5。
根据已有报道进行大鼠在体单向肠灌流研
本实验考察了不同浓度SSd(40、80、120 μmol/L)、不同肠段(十二指肠、空肠和回肠)、不同转运蛋白抑制剂(150 μmol/L维拉帕米、200 μmol/L柚皮苷和500 μmol/L四乙基氯化铵)、EDTA(5 mmol/L)和代谢酶抑制剂(DNP)(500 μmol/L
精密吸取转运介质样品溶液100 μL,加入900 nmol/L的坎利酮溶液(IS)10 μL、萃取试剂(乙酸乙酯-二氯甲烷,4∶1) 1 mL,涡旋5 min,4 ℃,12 000 r/min,离心10 min,取上清液800 μL,氮气吹干,以初始比例流动相40 μL复溶,供UPLC-MS/MS分析。
精密吸取灌流样品溶液100 μL,加入6 μmol/L坎利酮溶液(IS)10 μL、乙腈溶液300 μL,涡旋5 min,4 ℃,12 000 r/min,离心10 min,取上清液,0.22 μm滤膜过滤,最终取上清液供UPLC-MS/MS分析。
精密吸取血浆/胆汁样品200 μL,加入900 nmol/L坎利酮溶液(IS)10 μL、乙酸乙酯溶液1 mL,涡旋5 min,4 ℃,12 000 r/min,离心10 min,取上清液900 μL,氮气吹干,以初始比例流动相30 μL复溶,供UPLC-MS/MS分析。
Caco-2细胞是人源结直肠腺癌细胞株,由其培养分化得到Caco-2单层模型已被广泛用于药物体外吸收研究,但该模型存在一些缺陷,如缺少黏液层,转运蛋白和代谢酶的表达与小肠存在一定差异
利用高、低渗透性标志物和细胞旁转运标志物对细胞单层通透性进行评估,普萘洛尔、呋塞米和荧光素的Papp分别为(13.28 ± 0.90) × 1
对转运实验结束供给侧、接收侧和细胞基质样品溶液中SGG的含量进行检测,结果发现其远低于方法的检测限,表明双向转运实验中SSd的代谢可以忽略不计。该结论通过对照组实验得到证实,SSd在供给侧的减少可以排除是由药物降解引起的并且Transwell小室没有对SSd产生物理吸附。
根据Yang

Figure 1 A: Transport kinetic of saikosaponin d (SSd) across Caco-2 monolayers in the AP-BL/BL-AP direction; B: Relationship between transport rate and SSd concentration ()
AP: Apical side; BL: Basolateral side
ER: Effusion ratio
研究AP侧pH对SSd双向转运的影响,如

Figure 2 A: Effect of apical pH on the transport of SSd across Caco-2 monolayers
除了高表达的OATPs转运蛋白外,Caco-2单层还高表达摄取转运蛋白OCTs和外排转运蛋白P-gp、MRP2、BCRP
在4 ℃下进行SSd的转运研究,将结果与之前的37 ℃,无抑制剂时SSd的转运实验结果进行比较,以评估其他可能的主动转运机制,结果发现SSd的Papp(AP-BL)从(4.75 ± 0.89) × 1
利用大鼠在体单向肠灌流模型研究SSd在不同肠段的通透性,Peff和Ka测定结果表明各肠段对SSd的吸收能力强弱依次为回肠>空肠>十二指肠(

Figure 3 MRM chromatograms of biological samples
A: Blank plasma sample; B: Blank plasma with SSd; C: Plasma samples collected at the end of perfusion; D: Blank bile sample; E: Blank bile with SSd; F: Bile sample collected at the end of perfusion
已有研究表明,药物在Caco-2单层与体内空肠的渗透结果具有高度相关性,且药物的吸收主要发生在小肠上半段,因此采用空肠进行后续研
以Caco-2单层模型实验结果为依据,选取具有显著抑制活性的转运体抑制剂用于大鼠在体单向肠灌流研究,结果如

Figure 4 Effect of inhibitors, paracellular permeability enhancer and metabolic inhibitor on the absorption parameters of SSd in situ single pass intestinal perfusion via jejunum ()
*P < 0.05,
本实验采用Caco-2单层和大鼠在体单向肠灌流模型系统地研究了SSd的肠道吸收机制,为深入了解其肠道吸收过程、药效机制研究、潜在的药物-药物相互作用和新药开发等提供了参考依据。体内外研究结果提示SSd的跨膜渗透性较低,在所研究浓度范围内,SSd的吸收未出现饱和现象,吸收速率和转运量具有时间和浓度依赖性。抑制剂实验表明SSd的转运过程涉及P-gp介导的主动转运和细胞旁通路途径等。针对OATPs转运体和OCTs转运体的体内外研究结果差异,有待从基因水平或蛋白质水平对空肠中这两类转运体的表达量及蛋白活性进行评估,以验证在体单向肠灌流的结果推测。此外,对本研究筛选出的参与SSd肠道吸收的特异性转运体P-gp可采用转染细胞技术或基因敲除动物进行进一步验证。
References
Jiang H,Yang L,Hou AJ,et al. Botany,traditional uses,phytochemistry,analytical methods,processing,pharmacology and pharmacokinetics of Bupleuri Radix: a systematic review[J]. Biomed Pharmacother,2020,131:110679. [百度学术]
Yuan BC,Yang R,Ma YS,et al. A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their applications[J]. Pharm Biol,2017,55(1):620-635. [百度学术]
Boto REF,Almeida P,Queiroz JA. Thiacarbocyanine as ligand in dye-affinity chromatography for protein purification[J]. Biomed Chromatogr,2008,22(3):278-288. [百度学术]
Yan ZX,Chen Y,Li TX,et al. Identification of metabolites of Si-Ni-San,a traditional Chinese medicine formula,in rat plasma and urine using liquid chromatography/diode array detection/triple-quadrupole spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2012,885/886:73-82. [百度学术]
Xu L,Song R,Tian JX,et al. Analysis of saikosaponins in rat plasma by anionic adducts-based liquid chromatography tandem mass spectrometry method[J]. Biomed Chromatogr,2012,26(7):808-815. [百度学术]
Hu SCS,Lai YC,Lin CL,et al. Inclusion complex of saikosaponin-d with hydroxypropyl-β-cyclodextrin:improved physicochemical properties and anti-skin cancer activity[J]. Phytomedicine,2019,57:174-182. [百度学术]
Li Y,Gao XX,Wang H,et al. Study on intestinal absorption of Chaigui granules in vitro based on UPLC-Q/exactive orbitrap-MS/MS[J]. J Shanxi Med Univ (山西医科大学学报),2020,51(2):165-170. [百度学术]
Du T,Zeng M,Chen L,et al. Chemical and absorption signatures of Xiao Chaihu Tang[J]. Rapid Commun Mass Spectrom,2018,23:1107-1125. [百度学术]
Chen Y,Wang JY,Yuan L,et al. Interaction of the main components from the traditional Chinese drug pair Chaihu-Shaoyao based on rat intestinal absorption[J]. Molecules,2011,16(11):9600-9610. [百度学术]
Ren SQ,Liu JJ,Xue YW,et al. Comparative permeability of three saikosaponins and corresponding saikogenins in Caco-2 model by a validated UHPLC-MS/MS method[J]. J Pharm Anal,2021,11(4):435-443. [百度学术]
Keiser M,Kaltheuner L,Wildberg C,et al. The organic anion-transporting peptide 2B1 is localized in the basolateral membrane of the human jejunum and caco-2 monolayers[J]. J Pharm Sci,2017,106(9):2657-2663. [百度学术]
Xu F,Zhu L,Qian CQ,et al. Impairment of intestinal monocarboxylate transporter 6 function and expression in diabetic rats induced by combination of high-fat diet and low dose of streptozocin:involvement of butyrate-peroxisome proliferator-activated receptor-γ activation[J]. Drug Metab Dispos,2019,47(6):556-566. [百度学术]
Engel K,Wang J. Interaction of organic cations with a newly identified plasma membrane monoamine transporter[J]. Mol Pharmacol,2005,68(5):1397-1407. [百度学术]
Wang C,Zhou YM,Gong XH,et al. In vitro and in situ study on characterization and mechanism of the intestinal absorption of 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside[J]. BMC Pharmacol Toxicol,2020,21(1):7. [百度学术]
Yang H,Zhai BT,Fan Y,et al. Intestinal absorption mechanisms of araloside A in situ single-pass intestinal perfusion and in vitro Caco-2 cell model[J]. Biomed Pharmacother,2018,106:1563-1569. [百度学术]
Citi S. Protein kinase inhibitors prevent junction dissociation induced by low extracellular calcium in MDCK epithelial cells[J]. J Cell Biol,1992,117(1):169-178. [百度学术]
Zhang WZ,Liu H,Liu CF. Biopharmaceutics classification and intestinal absorption of chikusetsusaponin IVa[J]. Biopharm Drug Dispos,2019,40(8):276-281. [百度学术]
Shinohara Y,Yoshikawa K,Terada H. Effect of the weakly acidic uncoupler 2,4-dinitrophenol and dimethyl sulfoxide on the coordination of M
Fois CAM,Le TYL,Schindeler A,et al. Models of the gut for analyzing the impact of food and drugs[J]. Adv Healthc Mater,2019,8(21):e1900968. [百度学术]
Adachi Y,Suzuki H,Sugiyama Y. Quantitative evaluation of the function of small intestinal P-glycoprotein:comparative studies between in situ and in vitro[J]. Pharm Res,2003,20(8):1163-1169. [百度学术]
Yee SY. In vitro permeability across caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man—fact or myth[J]. Pharm Res,1997,14:763-766. [百度学术]
Antonescu IE,Rasmussen KF,Neuhoff S,et al. The permeation of acamprosate is predominantly caused by paracellular diffusion across caco-2 cell monolayers:a paracellular modeling approach[J]. Mol Pharm,2019,16(11):4636-4650. [百度学术]
Tang C,Fu QC,Chen X,et al. The biotransformation of Bupleuri Radix by human gut microbiota[J]. Xenobiotica,2020,50(9):1011-1022. [百度学术]
Roth M,Obaidat A,Hagenbuch B. OATPs,OATs and OCTs:the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies[J]. Br J Pharmacol,2012,165(5):1260-1287. [百度学术]
Karlgren M,Vildhede A,Norinder U,et al. Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs):influence of protein expression on drug-drug interactions[J]. J Med Chem,2012,55(10):4740-4763. [百度学术]
Schäfer AM,Meyer Zu Schwabedissen HE,Bien-Möller S,et al. OATP1A2 and OATP2B1 are interacting with dopamine-receptor agonists and antagonists[J]. Mol Pharm,2020,17(6):1987-1995. [百度学术]
Volpe DA. Drug-permeability and transporter assays in Caco-2 and MDCK cell lines[J]. Future Med Chem,2011,3(16):2063-2077. [百度学术]
Sun HJ,Wang JF,Lv J. Effects of glycyrrhizin on the pharmacokinetics of paeoniflorin in rats and its potential mechanism[J]. Pharm Biol,2019,57(1):550-554. [百度学术]
Ranaldi G,Seneci P,Guba W,et al. Transport of the antibacterial agent oxazolidin-2-one and derivatives across intestinal (Caco-2) and renal (MDCK) epithelial cell lines[J]. Antimicrob Agents Chemother,1996,40(3):652-658. [百度学术]
Zakeri-Milani P,Barzegar-Jalali M,Azimi M,et al. Biopharmaceutical classification of drugs using intrinsic dissolution rate (IDR) and rat intestinal permeability[J]. Eur J Pharm Biopharm,2009,73(1):102-106. [百度学术]
MacLean C,Moenning U,Reichel A,et al. Regional absorption of fexofenadine in rat intestine[J]. Eur J Pharm Sci,2010,41(5):670-674. [百度学术]
Jin S,Lee S,Jeon JH,et al. Enhanced intestinal permeability and plasma concentration of metformin in rats by the repeated administration of red ginseng extract[J]. Pharmaceutics,2019,11(4):189. [百度学术]