摘要
查耳酮类化合物是一种多酚类黄酮物质,具有多种药理活性,毒性较低。本研究以天然甘草查耳酮母核为先导化合物骨架,设计合成了15个新型三氟甲基查耳酮类衍生物(3a ~ 3o)。目标化合物结构
宫颈癌是一种全球性妇科肿瘤,其发病率和死亡率在女性恶性肿瘤中均居于第4
转录因子p53是重要的促凋亡蛋白,参与包括细胞生长、周期阻滞、衰老或凋亡、调节肿瘤基质以及抑制肿瘤侵袭和转移等多个过
查耳酮类化合物是存在于甘草、明日叶等植物中的多酚类黄酮物质,具有1,3-二苯基丙烯酮结构骨

Figure 1 Chemical structures of chalcone and licochalcone B
含氟官能团在药物结构修饰中的优势越来越得到关注。三氟甲基作为一种含氟官能团,因其电负性较高,能增加分子的亲脂性,提高与靶点的亲和力,提高代谢稳定性,增强药物的生物利用度,从而得到重
本课题组在前期研究中,对查耳酮骨架通过氯代、甲氧基化、α-甲基化修饰等途径得到抗宫颈癌活性较高的抗肿瘤化合
顺铂对照品(美国AbMole公司);MDM2拮抗剂Nutlin-3a(上海MCE公司);其余试剂和溶剂均购自商业来源,无需进一步纯化即可使用;胎牛血清(美国Sigma公司);青霉素/链霉素溶液、胰酶、DMEM培养基(美国HyClone公司)。
将化合物1(5 mmol)和化合物2(5 mmol)在无水乙醇(12.5 mL)中溶解,缓慢滴加氢氧化钾溶液(质量分数40%)2.5 mL,反应液于室温条件下搅拌反应,TLC监测反应进程,反应完成后用稀盐酸调节pH至1.0 ~ 2.0,过滤,用冷无水乙醇多次冲洗纯化,粗产物干燥后,加入少量无水乙醇加热溶解,进行重结晶,或者用硅胶柱色谱进行分离(流动相为乙酸乙酯-石油醚)得到目标化合物3a ~ 3o。目标化合物的合成路线如

Figure 2 Synthetic route of compounds 3a-3o
以查耳酮、顺铂和Nutlin-3a作为阳性对照,采用MTT法测定目标化合物3a ~ 3o对HeLa、SiHa、C-33A、H8以及HaCaT细胞的增殖抑制活性。分别将处于对数生长期的细胞以每孔5 000 ~ 8 000个细胞的密度接种在96孔板上。在37 ℃、体积分数为5% CO2的细胞培养箱中培养12 h后,弃去培养基,将不同浓度(0、6.25、12.5、25、50、100 μmol/L)的化合物加入96孔板中,每个浓度设6个复孔。药物作用48 h后,每孔加5 mg/mL MTT溶液20 μL,在37 ℃、体积分数5%的CO2培养箱中孵育4 h,移除培养基和MTT,每孔加入DMSO 150 μL以溶解甲臜,振荡均匀。使用多功能酶标仪在490 nm波长下测量吸收度。通过吸收度计算出细胞增殖抑制率。化合物活性以半数抑制浓度IC50来表达。
细胞迁移实验采用Transwell小室实验法进行检测。取对数生长期的HeLa细胞,制成每毫升2 × 1
细胞侵袭实验:Transwell上室先用基质胶(基质胶与PBS体积比为1∶8)50 μL铺胶,将细胞侵袭小室置于培养箱中,将Matrigel烘干。后续实验步骤同“细胞迁移实验”。
采用AnnexinⅤ-FITC/PI双染色法进行检测。取对数生长期的HeLa细胞,常规制备细胞悬液后,将细胞以每孔2 × 1
为了预测化合物与MDM2蛋白可能的结合模式,本研究将一种表现良好且有选择性的化合物3n用于分子对接研究。采用Chem Bio3D Ultra 14.0绘制目标化合物结构并进行能量最小化,保存为mol2格式。将优化的目标化合物导入 AutodockTools 1.5.6进行加氢、计算并分配电荷、设置可旋转键后保存为“pdbqt”格式。从PDB数据库下载MDM2蛋白(PDB ID:5TRF),使用PyMoL(2.3.0)去除水分子,将蛋白导入AutoDocktools 1.5.6进行加氢、计算并分配电荷、指定原子类型并保存为“pdbqt”格式。采用AutodockVina 1.1.2进行对接,利用PyMOL 2.3.0、Discovery Studio2016对结果进行相互作用分析。
本研究以甘草查耳酮B为先导化合物,设计15种氟代查耳酮衍生物的结构,并通过类似的合成路线制备各衍生物,即在课题组前期研究的基础上,以无水乙醇为溶剂,氢氧化钾为催化剂的条件下,对三氟甲基苯丙酮和甲氧基取代苯甲醛类化合物通过Claisen-Schmidt缩合反应得到目标化合物3a ~ 3o,其结构
α-甲基-2′-三氟甲基-2,3-二甲氧基查耳酮(3a) 白色结晶,收率72.1%。mp:126.3 ~ 126.7 ℃;HRMS(ESI) m/z:C19H17F3O3N
α-甲基-3′-三氟甲基-2,3-二甲氧基查耳酮(3b) 白色结晶,收率56.2%。mp:123.7 ~ 125.1 ℃;HRMS(ESI) m/z:C19H17F3O3N
α-甲基-4′-三氟甲基-2,3-二甲氧基查耳酮(3c) 白色固体,收率42.7%。mp:124.9 ~ 125.7 ℃;HRMS(ESI) m/z:C19H17F3O3N
α-甲基-2′-三氟甲基-2,4-二甲氧基查耳酮(3d) 黄色结晶,收率78.1%。mp:115.4 ~ 115.9 ℃;HRMS(ESI) m/z:C19H17F3O3N
α-甲基-3′-三氟甲基-2,4-二甲氧基查耳酮(3e) 黄色结晶,收率69.8%。mp:114.3 ~ 125.7 ℃;HRMS(ESI) m/z:C19H17F3O3N
α-甲基-4′-三氟甲基-2,4-二甲氧基查耳酮(3f) 黄色结晶,收率75.9%。mp:112.7 ~ 112.9 ℃;HRMS(ESI) m/z:C19H17F3O3N
α-甲基-2′-三氟甲基-2,5-二甲氧基查耳酮(3g) 淡黄色结晶,收率47.5%。mp:111.2 ~ 112.6 ℃;HRMS(ESI) m/z:C19H17F3O3N
α-甲基-3′-三氟甲基-2,5-二甲氧基查耳酮(3h) 淡黄色结晶,收率54.1%。mp:111.3 ~ 112.3 ℃;HRMS(ESI) m/z:C19H17F3O3N
α-甲基-4′-三氟甲基-2,5-二甲氧基查耳酮(3i) 淡黄色结晶,收率72.1%。mp:113.8 ~ 113.7 ℃;HRMS(ESI) m/z:C19H17F3O3N
α-甲基-2′-三氟甲基-2,6-二甲氧基查耳酮(3j) 白色粉末,收率82.4%。mp:117.3 ~ 117.8 ℃;HRMS(ESI) m/z:C19H17F3O3N
α-甲基-3′-三氟甲基-2,6-二甲氧基查耳酮(3k) 白色结晶,收率78.1%。mp:115.7 ~ 116.8 ℃;HRMS(ESI) m/z:C19H17F3O3N
α-甲基-4′-三氟甲基-2,6-二甲氧基查耳酮(3l) 白色结晶,收率85.4%。mp:117.5 ~ 118.2 ℃;HRMS(ESI) m/z:C19H17F3O3N
α-甲基-2′-三氟甲基-3,4-二甲氧基查耳酮(3m) 白色块状固体,收率54.8%。mp:116.3 ~ 116.9 ℃;HRMS(ESI) m/z:C19H17F3O3N
α-甲基-3′-三氟甲基-3,4-二甲氧基查耳酮(3n) 白色块状固体,收率48.9%。mp:115.0 ~ 115.9 ℃;HRMS(ESI) m/z:C19H17F3O3N
α-甲基-4′-三氟甲基-3,4-二甲氧基查耳酮(3o) 白色块状固体,收率58.2%。mp:115.5 ~ 116.2 ℃;HRMS(ESI) m/z:C19H17F3O3N
以3种宫颈癌细胞(HeLa,SiHa,C-33A)和两种正常细胞(H8,HaCaT)为受试细胞,查耳酮、顺铂、Nutlin-3a作为阳性对照,通过MTT法进行了体外抗肿瘤活性评价,结果如
Compd. | IC50/(μmol/L) | ||||
---|---|---|---|---|---|
HeLa | SiHa | C-33A | H8 | HaCaT | |
3a 3b 3c 3d 3e 3f 3g 3h 3i 3j 3k 3l 3m 3n 3o Chalcone Licochalcone B Cisplatin Nutlin-3a |
73.36 ± 7.43 49.30 ± 2.31 75.79 ± 1.00 59.42 ± 0.91 45.05 ± 0.98 68.74 ± 1.07 46.38 ± 1.56 52.97 ± 1.31 > 100 > 100 > 100 30.67 ± 2.41 56.33 ± 4.00 11.69 ± 2.05 45.64 ± 2.83 66.54 ± 1.56 54.03 ± 2.48 29.79 ± 0.82 66.05 ± 1.05 |
68.67 ± 4.58 88.05 ± 5.93 > 100 66.98 ± 4.23 74.39 ± 1.13 92.34 ± 2.08 82.12 ± 3.57 88.37 ± 5.31 81.52 ± 0.68 33.49 ± 1.75 39.48 ± 2.89 82.69 ± 3.47 69.42 ± 0.18 20.53 ± 1.21 57.55 ± 5.46 55.60 ± 2.43 44.92 ± 4.40 28.77 ± 2.05 42.44 ± 0.83 |
71.87 ± 6.30 64.58 ± 1.74 65.58 ± 2.31 43.25 ± 2.56 37.41 ± 1.51 50.77 ± 0.96 39.82 ± 2.77 > 100 76.17 ± 6.23 > 100 > 100 78.92 ± 4.73 62.78 ± 0.53 19.52 ± 2.69 47.78 ± 3.02 44.45 ± 4.07 19.57 ± 1.55 15.03 ± 2.58 43.24 ± 0.54 |
> 100 94.73 ± 4.59 > 100 > 100 91.49 ± 0.24 74.96 ± 2.15 > 100 > 100 > 100 > 100 74.52 ± 4.15 > 100 > 100 62.05 ± 3.86 > 100 57.99 ± 2.44 48.23 ± 2.89 67.62 ± 3.74 30.35 ± 0.47 |
79.37 ± 4.30 > 100 > 100 62.68 ± 2.39 61.72 ± 3.27 43.10 ± 1.48 74.09 ± 5.22 > 100 > 100 > 100 41.96 ± 3.27 > 100 86.77 ± 1.77 44.87 ± 5.58 76.72 ± 4.19 44.85 ± 5.56 29.01 ± 3.56 10.2 ± 1.26 > 100 |
通过对甘草查耳酮骨架的结构修饰研究中发现,分子中A、B环上取代基的种类特征对化合物的抗肿瘤活性影响较大。
(1)B环不同部位有三氟甲基取代,对宫颈癌细胞增殖的抑制活性从强到弱依次为3'-CF3、2'-CF3、4'-CF3,即B环C3'-位引入CF3的衍生物的抗肿瘤活性均较显著。3'-CF3查耳酮类衍生物有化合物3b、3e、3h、3k和3n等5个化合物。
(2)化合物均为A环上有双甲氧基的衍生物,通过双甲氧基的位置对HeLa细胞增殖的抑制活性比较中发现如下特点:3,4-二OCH3 > 2,4-二OCH3 > 2,3-二OCH3 > 2,5-二OCH3 > 2,6-二OCH3),即两个甲氧基在A环的3,4位上时,活性较高。
另外,所有合成衍生物均为α,β-不饱和羰基共轭系统中的α-碳上引入甲基的化合物(根据前期构效关系研究经验而修饰得到,先导化合物LicoB无此特征)。因此,总结以上特点,可将构效关系规律归纳如下:甘草查耳酮分子中,A环的3,4位引入两个甲氧基、α,β-不饱和羰基的α-位上引入甲基,并在B环3'-位上引入强吸电子基团三氟甲基时,化合物的抗肿瘤活性显著增强(例如,化合物3n,IC50为11.69 μmol/L,为15个衍生物中活性最强的化合物)。
本研究通过Transwell实验分别测定化合物3n对HeLa细胞迁移和侵袭的影响。结果表明,化合物3n对HeLa细胞迁移和侵袭有显著的抑制作用,与空白组相比,化合物3n处理后的HeLa细胞穿过小室膜的数量明显减少,细胞迁移和侵袭能力显著降低,具有统计学意义(P<0.05,P<0.01,

Figure 3 Effect of compound 3n on migration(×400) ability of HeLa cells ()
A: Migration was detected by Transwell assay; B: Statistical analysis of Transwell assay

Figure 4 Effect of compound 3n on invasion ( × 400) ability of HeLa cells ()
A: Invasion was detected by Transwell assay; B: Statistical analysis of Transwell assay
使用细胞凋亡检测试剂盒进行了双参数细胞荧光分析。结果显示,与空白组相比,随着化合物3n浓度的增加,细胞发生凋亡反应的比例显著性增加,具有统计学意义(P < 0.01,

Figure 5 Effect of compound 3n on HeLa cell apotosis rate ()
A: Analysis of the apoptosis level by flow cytometry; B: Quantification of the apoptosis level
细胞周期的有序发展是细胞增殖的决定性因素。选择目标化合物3h进一步评价其对HeLa细胞的周期阻滞的影响。化合物3n对HeLa细胞作用24 h检测对细胞周期的影响。结果显示(

Figure 6 Effect of compound 3n on HeLa cell cycle arresting rate ()
A: Analysis of the cell cycle by flow cytometry; B: Quantification of the cell cycle level
通过Nutlin-3a、查耳酮母核、化合物3n与MDM2蛋白晶体结构进行分子对接(

Figure 7 Docking results of Compound 3n and MDM2(A); Chalcone and MDM2(B); Licochalcone B and MDM2(C); Nutlin-3a and MDM2 (D)
Ligand | Protein | PDB ID | Lowest binding energy/(kJ/mol) | |
---|---|---|---|---|
Compd. | Hydrogen bonds | |||
Compound 3n Chalcone Licochalcone B Nutlin-3a | MDM2 | 5TRF |
-38.1 -33.9 -37.6 -36.4 |
1 - 3 - |
宫颈癌的化疗中,化疗毒性一直是临床治疗的重要问
鼠双微粒体2(MDM2)作为一种泛素酶,通过跟促凋亡蛋白p53形成MDM2-p53复合物,绑架p53并使其降解,从而降低癌细胞凋亡进
本研究中,以甘草查耳酮B位先导化合物,利用前期研究经验,将分子进行三氟甲基化、α-甲基化、甲氧基化等修饰,得到15种全新的氟代查耳酮衍生物。通
References
D'Oria O,Corrado G,Laganà AS,et al. New advances in cervical cancer: from bench to bedside[J]. Int J Environ Res Public Health,2022,19(12):7094. [百度学术]
di Fiore R,Suleiman S,Drago-Ferrante R,et al. Cancer stem cells and their possible implications in cervical cancer:a short review[J]. Int J Mol Sci,2022,23(9):5167. [百度学术]
Sung H,Ferlay J,Siegel RL,et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249. [百度学术]
Liu ZC,Li ZX,Zhang Y,et al. Interpretation on the report of global cancer statistics 2020[J]. J Multidiscip Cancer Manag Electronic Version(肿瘤综合治疗电子杂志),2021,7(2):1-14. [百度学术]
Drețcanu G,Iuhas CI,Diaconeasa Z. The involvement of natural polyphenols in the chemoprevention of cervical cancer[J]. Int J Mol Sci,2021,22(16):8812. [百度学术]
He MZ,Xia LJ,Li JY. Potential mechanisms of plant-derived natural products in the treatment of cervical cancer[J]. Biomolecules,2021,11(10):1539. [百度学术]
He XL,Liao YK,Liu J,et al. Research progress of natural small-molecule compounds related to tumor differentiation[J]. Molecules,2022,27(7):2128. [百度学术]
Xiong JF,Li GN,Mei XY,et al. Co-delivery of p53 restored and E7 targeted nucleic acids by poly(beta-amino ester) complex nanoparticles for the treatment of HPV related cervical lesions[J]. Front Pharmacol,2022,13:826771. [百度学术]
Kooti A,Abuei H,Farhadi A,et al. Activating transcription factor 3 mediates apoptotic functions through a p53-independent pathway in human papillomavirus 18 infected HeLa cells[J]. Virus Genes,2022,58(2):88-97. [百度学术]
Heijkants RC,Teunisse AFAS,de Jong D,et al. MDMX regulates transcriptional activity of p53 and FOXO proteins to stimulate proliferation of melanoma cells[J]. Cancers(Basel),2022,14(18):4482. [百度学术]
Chinnam M,Xu C,Lama R,et al. MDM2 E3 ligase activity is essential for p53 regulation and cell cycle integrity[J]. PLoS Genet,2022,18(5):e1010171. [百度学术]
Zhang JW,Yu GH,Yang YT,et al. A small-molecule inhibitor of MDMX suppresses cervical cancer cells via the inhibition of E6-E6AP-p53 axis[J]. Pharmacol Res,2022,177:106128. [百度学术]
Espadinha M,Lopes EA,Marques V,et al. Discovery of MDM2-p53 and MDM4-p53 protein-protein interactions small molecule dual inhibitors[J]. Eur J Med Chem,2022,241:114637. [百度学术]
Grinkevich VV,Vema A,Fawkner K,et al. Novel allosteric mechanism of dual p53/MDM2 and p53/MDM4 inhibition by a small molecule[J]. Front Mol Biosci,2022,9:823195. [百度学术]
de Souza PS,Bibá GCC,Melo EDDN,et al. Chalcones against the hallmarks of cancer:a mini-review[J]. Nat Prod Res,2022,36(18):4809-4826. [百度学术]
Constantinescu T,Lungu CN. Anticancer activity of natural and synthetic chalcones[J]. Int J Mol Sci,2021,22(21):11306. [百度学术]
Shukla S,Sood AK,Goyal K,et al. Chalcone scaffolds as anticancer drugs:a review on molecular insight in action of mechanisms and anticancer properties[J]. Anticancer Agents Med Chem,2021,21(13):1650-1670. [百度学术]
Ouyang Y,Li JJ,Chen XY,et al. Chalcone derivatives:role in anticancer therapy[J]. Biomolecules,2021,11(6):894. [百度学术]
Wang JC,Yang CB,Zhuo YL,et al. Recent advances of MDM2-p53 inhibitors[J]. Acta Pharm Sin(药学学报),2021,56(4):983-995. [百度学术]
Si DJ,Luo HJ,Zhang XM,et al. Design,synthesis and biological evaluation of novel pyrrolidone-based derivatives as potent p53-MDM2 inhibitors[J]. Bioorg Chem,2021,115:105268. [百度学术]
Mireguli M. Preparation and anti-cervical cancer activity of glycyrrhiza inflata chalcones and its derivatives(胀果甘草查耳酮类活性成分及其衍生物的制备及抗宫颈癌活性研究)[D]. Xinjiang:Xinjiang Medical University,2020. [百度学术]
Liu LM,Wang ZJ,Gao C,et al. Design,synthesis and antitumor activity evaluation of trifluoromethyl-substituted pyrimidine derivatives[J]. Bioorg Med Chem Lett,2021,51:128268. [百度学术]
Wang ZJ,Dai HL,Si XJ,et al. Synthesis and antitumor activity of 2,4,6-trisubstituted novel quinazoline derivatives containing trifluoromethyl[J]. Chin J Org Chem(有机化学),2022,42(1):249-256. [百度学术]
Aizitiaili A,Yang Z,Mourboul A,et al. Synthesis and anti-cervical cancer activities of novel α-methyl chalcone derivatives[J]. Chin J Med Chem(中国药物化学杂志),2022,32(1):8-18. [百度学术]
Yuan H,Zuo J,Li N,et al. Fronter research on drug treatment of gynecological oncology[J]. Chin J Cancer Prevention and Treatment(中华肿瘤防治杂志),2022,29(14):1023-1032. [百度学术]
Islam F,Mitra S,Emran TB,et al. Natural small molecules in gastrointestinal tract and associated cancers:molecular insights and targeted therapies[J]. Molecules,2022,27(17):5686. [百度学术]
Sun TZ. Mathematical modeling of the synergy between hyperthermia and radiotherapy in tumor treatment based on p53 signaling network[J]. J China Pharm Univ(中国药科大学学报),2021,52(3):361-370. [百度学术]