摘要
研究黄葵总黄酮对人肝微粒体中细胞色素P450(CYP450)酶不同亚型的影响机制并在大鼠体内对受抑制最为显著的CYP2C9亚型进行验证。利用HPLC-MS/MS技术,通过鸡尾酒法在体外评估黄葵总黄酮对人CYP3A4、CYP2C9、CYP2C19、CYP2E1、CYP1A2和CYP2D6的抑制效应,考察其抑制机制,计算酶抑制动力学参数。在大鼠体内通过比较单次或多次给药200 mg/kg黄葵总黄酮与等剂量CMC-Na后甲苯磺丁脲的药代动力学行为差异,评估黄葵总黄酮对大鼠CYP2C11酶(CYP2C9同工酶)的影响。结果表明黄葵总黄酮对CYP2C9和CYP2E1存在显著抑制作用,IC50分别为3.22和8.64 μg/mL,对其他亚型也表现出一定的抑制作用,IC50介于20~30 μg/mL。黄葵总黄酮并非为潜在的时间依赖性抑制剂,它能竞争性抑制CYP2E1和CYP2C9,抑制常数Ki分别为3.84和6.33 μg/mL,对CYP3A4介导的睾酮-6β-羟基化和咪达唑仑-4-羟基化的抑制方式为非竞争性抑制,Ki分别为7.37和3.32 μg/mL,同时它也是CYP1A2、CYP2D6和CYP2C19的非竞争性抑制剂,Ki分别为8.66、11.49和21.94 μg/mL。在大鼠体内,黄葵总黄酮并没有引起大鼠体内CYP2C11探针底物甲苯磺丁脲药动学行为的改变,但影响了其代谢物4-羟基甲苯磺丁脲的AUC0-t、cmax等参数(P < 0.05)。因此在临床研究中应当考察可能存在的CYP450酶介导的药物-药物相互作用。
黄蜀葵花(Abelmoschi Corolla)为锦葵科植物黄蜀葵[Abelmoschusmanihot(L.)Medicus]的干燥花冠,有清热利湿,消肿解毒的作用,主要化学成分有黄酮
细胞色素450酶(CYP450酶)是体内主要负责药物代谢的Ⅰ相酶,其中CYP1A2、CYP2C9、CYP2C19、CYP3A4、CYP2D6、CYP2B6、CYP2C8介导了90%的药物代
黄葵总黄酮粉末由江苏苏中药业提供;咪达唑仑马来酸盐(MDZ,中国药品生物制品检定所);睾酮(GT)、奥美拉唑(OP)、右美沙芬(DM)、非那西丁(PN)、氯唑沙宗(CZ)、甲苯磺丁脲(TB)、乙酰氨基酚(ACE)、右啡烷(DMT)、6-羟基氯唑沙宗(6-OH-CZ)、4-羟基甲苯磺丁脲(4-OH-TB)、5-羟基奥美拉唑(5-OH-OP)、6β-羟基睾酮(6β-OH-GT)、4-羟基咪达唑仑(4'-OH-MDZ)、烟酰胺腺嘌呤二核苷酸磷酸(NAD
高效液相色谱-三重四极杆串联质谱仪(含日本岛津高效液相色谱系统(LC-20A)、美国Sciex质谱系统(API4000)、电喷雾离子源、及Analyst 1.5.1工作站);Thermo Sorwall Biofuge Stratos台式低温高速离心机(美国赛默飞世尔公司);Eppendorf Mix⁃Mate混匀小精灵、Eppendorf Minispin AG22331台式离心机(德国艾本德公司);Milli-Q Gradient A1超纯水机(美国密理博公司);Vortex Mixer XW- 80A涡旋混合器(海门市其林贝尔仪器制造有限公司)。
孵育体系组成:总体系200 μL,PBS缓冲液(pH ≈ 7.4,超纯水配制,含2.68 mmol/L KCl,68.4 mmol/L NaCl,5.8 mmol/L Na2HPO4,1.6 mmol/L KH2PO4),HLM(终质量浓度为0.2 mg/mL),MgCl2.6H2O(终浓度为10 mmol/L),NADPH能量系统(PBS缓冲液配制,含G-6-P 10 mmol/L,NAD
将终浓度为0(空白对照),0.5,1,5,25,50,100 μg/mL等7个质量浓度的HKZ溶液按照“2.1”项下方法加入混合探针底物1 μL,加入微粒体后轻微混匀,于37 ℃恒温水浴锅中水浴5 min,后加入能量体系开始反应,在37 ℃中温孵20 min,取出后冰浴终止反应,加入含坦洛新(终浓度为5 ng/mL)的乙腈溶液600 μL直接沉淀,充分振荡5 min,两次离心后(18 000 r/min,5 min)转移上清液80 μL进样分析。每个浓度平行制备3份同时测定。按照实验室之前建立的UPLC-MS/MS共检测方法在适应现有仪器状态的改良后对各底物代谢生成的特征代谢物(ACE,DMT,6-OH-CZ,4-OH-TB,5-OH-OP,6β-OH-GT,4'-OH-MDZ)进行测
实验分为两组,第1组为在HLM中预先加入能量体系和HKZ(终质量浓度分别为0.5,1,5,25,50,100 μg/mL)在37 ℃预孵30 min后分别加入特征性底物(底物终质量浓度同上述“2.1”)启动反应。第2组为不存在能量体系的情况下,在HLM中加入HKZ及特征性底物(浓度同第1组)预孵育30 min后,加入能量体系启动反应。上述体系于37 ℃反应20 min,取出后冰浴终止反应,按照“2.2”项下方法处理进样。
黄葵总黄酮对CYP450酶各亚型的可逆性抑制是在不同浓度的HKZ和特征底物下进行的。根据黄葵总黄酮对各底物的IC50确定HKZ浓度,选取底物浓度为Km、2Km、4Km,设定针对CYP2C9亚型,TB浓度为50、100、200 μmol/L,HKZ为0、0.5、2、4、8 μg/mL;针对CYP2E1,CZ浓度为50、100、200 μmol/L,HKZ质量浓度为0、2.5、5、10、20 μg/mL;针对CYP3A4亚型,MDZ浓度为5、10、20 μmol/L,GT浓度为30、60、120 μmol/L,HKZ质量为0、10、20、30、40 μg/mL;针对其他亚型,DM浓度为10、20、40 μmol/L,PN浓度为0.5、1、2 mmol/L,OP浓度为20、40、80 μmol/L,HKZ质量浓度为0,5、10、20、40 μg/mL。孵育及样品处理操作同上述“2.2”。
选择20只健康雄性SD大鼠,随机分为4组:单次灌胃CMC-Na组、单次灌胃HKZ组、多次灌胃CMC-Na组、多次灌胃HKZ组(n = 5),分别在单次以及连续7 d灌胃HKZ(200 mg/kg)溶液30 min后口服给予甲苯磺丁脲溶液0.5 mg/kg,溶剂组口服等体积的CMC-Na溶液。实验前所有大鼠禁食12 h。分别收集给予甲苯磺丁脲后10 min、20 min、30 min、1 h、1.5 h、2 h、4 h、6 h、8 h、10 h、24 h、36 h的眼眶静脉血200 μL,置于含有肝素钠的洁净EP管中,8 000 r/min离心5 min,转移上清液至洁净EP管中并保存于-80 ℃。
色谱柱:Phenomenox Luna C18柱(2.0 mm×150 mm,5 μm),柱温:40 ℃;流速:0.5 mL/min;分析时间:10.0 min;水相(A):含5 mmol/L乙酸铵和0.1%乙酸水;有机相(B):甲醇-乙腈(1∶1);洗脱梯度:0 ~ 0.5 min(2% B)、 0.5 ~ 4.0 min(2% ~ 45% B)、4.0 ~ 6.5 min(45% ~ 60% B)、6.5 ~ 6.8 min(60% ~ 80% B)、6.8 ~ 7.2 min(80% B)、7.2 ~ 7.5 min(80% ~ 2% B)、7.5 ~ 10.0 min(2% B)。
选用电喷雾离子源(ESI),设定源参数分别为:喷雾电压(IS)5 000 V/-4 500 V,辅助气1(N2)65 Arb(1 Arb = 175 kPa),辅助气2(N2)70 Arb,辅助气加热温度550 ℃,气帘气30 Arb,碰撞气10 Pa。CYP450s特征代谢产物的MRM参数列于
CYP450s metabolite | Positive | Prototype ion/(m/z) | Product ion/(m/z) | DP/V | CE/eV | EP/V | CXP/V |
---|---|---|---|---|---|---|---|
ACE(CYP1A2) | + | 152.0 | 110.0 | 60 | 24 | 10 | 12 |
DMT(CYP2D6) | + | 258.15 | 157.0 | 120 | 48 | 10 | 12 |
4-OH-TB(CYP2C9) | - | 285.0 | 186.0 | -60 | -18 | -10 | -12 |
6β-OH-GT(CYP3A4) | + | 305.0 | 269.0 | 60 | 21 | 10 | 12 |
4'-OH-MDZ(CYP3A4) | + | 342.0 | 234.0 | 130 | 32 | 10 | 12 |
5-OH-OP(CYP2C19) | + | 362.0 | 214.0 | 80 | 15 | 10 | 12 |
6-OH-CZ(CYP2E1) | - | 184.2 | 120.0 | -60 | -25 | -10 | -12 |
Tamsulosin(IS) | + | 409.2 | 228.2 | 120 | 32 | 10 | 12 |
HKZ对CYP450酶各亚型的抑制曲线结果如

Figure 1 Inhibition curves of total flavonoids from Abelmoschus Manihot (HKZ) on CYP450 enzymes in human liver microsomes ()
A: CYP1A2; B: CYP2D6; C: CYP3A4 mediated midazolam-4-hydroxylation reaction; D: CYP3A4 mediated testosterone-6β-hydroxylation reaction; E: CYP2C19; F: CYP2C9; G: CYP2E1
CYP enzymes | CYP1A2 | CYP2D6 | CYP3A4 | CYP3A4 | CYP2C19 | CYP2C9 | CYP2E1 |
---|---|---|---|---|---|---|---|
Substrate | PN | DM | MDZ | GT | OP | TB | CZ |
Metabolite | ACE | DMT | 4'-OH-MDZ | 6β-OH-GT | 5-OH-OP | 4-OH-TB | 6-OH-CZ |
IC50/(μg/mL) | 20.43 | 29.81 | 25.34 | 21.59 | 24.96 | 3.22 | 8.64 |
Ki/(μg/mL) | 8.66 | 11.49 | 3.32 | 7.37 | 21.94 | 6.33 | 3.84 |
Inhibition type | Noncompetitive | Noncompetitive | Noncompetitive | Noncompetitive | Noncompetitive | Competitive | Competitive |
如果抑制剂对酶存在TDI作用就会产生IC50偏移,IC50偏移[(-)NADPH情况下的IC50除以(+)NADPH的IC50]大于1,表示左移,小于1时,表示右移,IC50偏移大于1.5时即存在时间依赖性作用。HKZ对各CYP450酶亚型的抑制机制结果见

Figure 2 IC50 shift curves of HKZ to CYP450 enzymes in human liver microsomes ()
A: CYP1A2; B: CYP2D6; C: CYP3A4 mediated midazolam-4-hydroxylation reaction; D: CYP3A4 mediated testosterone-6β-hydroxylation reaction; E: CYP2C19; F: CYP2C9; G: CYP2E1
在排除黄葵总黄酮对CYP450酶各亚型不存在时间依赖性抑制作用后,通过酶抑制动力学实验来计算抑制表观动力学参数Ki。HKZ对CYP1A2/CYP2D6/CYP3A4/CYP2C9/CYP2C19/CYP2E1的酶动力学曲线见

Figure 3 Kinetics curves of HKZ on CYP450 enzyme (n = 3)
A: CYP1A2; B: CYP2D6; C: CYP3A4 mediated midazolam-4-hydroxylation reaction; D: CYP3A4 mediated testosterone-6β-hydroxylation reaction; E: CYP2C19; F: CYP2C9; G: CYP2E1; H: CYP1A2, I: CYP2D6; J: CYP3A4 mediated midazolam-4-hydroxylation reaction; K: CYP3A4 mediated testosterone-6β-hydroxylation reaction; L: CYP2C19; M: CYP2C9; N: CYP2E1
单次及多次灌胃黄葵总黄酮后,测得甲苯磺丁脲及代谢物4-羟基甲苯磺丁脲的血浆药物浓度-时间曲线如

Figure 4 Mean plasma concentration over time curves in rats ()
A: Tolubutamide after single dose of HKZ; B: 4-Hydroxytolubutamide after single dose of HKZ; C: Tolubutamide after after multiple dose of HKZ; D: 4-Hydroxytolubutamide after multiple dose of HKZ
Parameter | Single | Multiple | ||
---|---|---|---|---|
CMC-Na | HKZ | CMC-Na | HKZ | |
AUC0-∞/(ng/mL·h) | 25 334.63 ± 2 094.46 | 22 744.16 ± 2 181.62 | 31 159.04 ± 6 229.90 | 29 049.51 ± 4 407.84 |
AUC0-t/(ng/mL·h) | 22 381.74 ± 1 102.84 | 19 470.32 ± 934.13 | 26 567.41 ± 4 439.68 | 24 428.97 ± 3 508.56 |
cmax/(ng/mL) | 1 818.00 ± 328.51 | 1 718.00 ± 608.58 | 2 112.00 ± 426.58 | 1 950.00 ± 215.06 |
Vz/F/(L/kg) | 0.30 ± 0.04 | 0.41 ± 0.05 | 0.31 ± 0.06 | 0.37 ± 0.09 |
Clz/F/(mL/(h·kg)) | 19.85 ± 1.66 | 22.15 ± 2.12 | 16.69 ± 3.76 | 17.51 ± 2.47 |
MRTlast/h | 10.75 ± 0.65 | 11.12 ± 0.92 | 11.52 ± 1.65 | 11.42 ± 1.48 |
tmax/h | 0.47 ± 0.32 |
1.60 ± 0.4 | 1.00 ± 0.35 | 1.2 ± 0.57 |
t1/2/h | 10.70 ± 2.13 | 12.98 ± 2.74 | 13.34 ± 4.56 | 14.75 ± 2.61 |
*P < 0.05,
Parameters | Single | Multiple | ||
---|---|---|---|---|
CMC-Na | HKZ | CMC-Na | HKZ | |
AUC(0-∞)/(ng/mL·h) | 220.76 ± 33.84 | 176.02 ± 29.75 | 205.48 ± 31.05 |
149.83 ± 30.0 |
AUC(0-t)/(ng/(mL·h) | 193.25 ± 24.65 |
137.99 ± 32.9 | 183.22 ± 28.43 |
127.69 ± 30.8 |
cmax/(ng/mL) | 15.56 ± 4.01 | 10.93 ± 4.60 | 20.38 ± 6.83 |
11.20 ± 2.9 |
MRTlast/h | 11.14 ± 0.52 | 12.36 ± 1.57 | 10.85 ± 1.09 | 11.77 ± 1.38 |
tmax/h | 1.70 ± 0.45 | 2.40 ± 1.52 | 1.33 ± 0.56 | 0.90 ± 0.55 |
t1/2/h | 11.42 ± 3.07 | 16.91 ± 4.86 | 11.10 ± 2.90 | 14.23 ± 2.12 |
*P < 0.05,
黄葵黄酮类成分中的杨梅素在体外能通过非竞争和竞争性的方式分别抑制CYP3A4、CYP2C9、CYP2D6和CYP2B
体外肝微粒体实验并不能完全模拟体内的生理情况,HKZ的体内浓度是决定是否会发生CYP450抑制及抑制程度的关键因素,体外孵育结果显示,HKZ对CYP2C9的影响最为显著,因此选用大鼠来验证黄葵总黄酮对CYP2C9的强抑制效应。在大鼠中形成的与人类CYP2C9功能对应的CYP2C亚型包括CYP2C6和CYP2C11,其中CYP2C11与人类体内的CYP2C9具有77%的同源性,被认为是人类CYP2C9的功能对应
本研究选择对具有广阔应用前景的黄葵黄酮提取物进行相互作用研究,结果表明在体外黄葵总黄酮对CYP450酶亚型表现出不同程度的抑制作用,但排除时间依赖性抑制的可能,它通过不同的抑制机制以不同的Ki抑制CYP2C9、CYP2E1、CYP3A4、CYP2D6、CYP2C19和CYP1A2。但现有结果并不能完全排除黄葵黄酮与经CYP酶尤其是CYP2C9酶代谢药物相互作用的可能性,需要更加系统和深入的研究来全面评估黄葵总黄酮的安全性从而为临床合理用药提供佐证。
References
Yin SX, Cai ZC, Chen CH, et al. Comparative study on chemical constituents of medicinal and non-medicinal parts of Flos abelmoschus manihot, based on metabolite profiling coupled with multivariate statistical analysis[J]. Horticulturae, 2022, 8(4): 317. [百度学术]
Xia KY, Zhang CL, Cao ZY, et al. Chemical constituents from Corolla abelmoschi[J]. Strait Pharm J (海峡药学), 2019, 31(9): 58-61. [百度学术]
Yin SX, Wei lf, Mei YQ, et al. Simultaneous determination of multiple bioactive constituents in Abelmoschi Corolla by UFLC-QTRAP-MS/MS[J]. China J Chin Mater Med (中国中药杂志), 2021, 46(10): 2527-2536. [百度学术]
Li SH, Li N, Qin SS, et al. Purification, characterization and bioactivities of polysaccharides from the stalk of Abelmoschus manihot (L.) medic[J]. Food Sci Technol Res, 2020, 26(5): 611-621. [百度学术]
Luan F, Wu QH, Yang Y, et al. Traditional uses, chemical constituents, biological properties, clinical settings, and toxicities of Abelmoschus manihot L. : a comprehensive review[J]. Front Pharmacol, 2020, 11: 1068. [百度学术]
Han WB, Ma Q, Liu YL, et al. Huangkui capsule alleviates renal tubular epithelial-mesenchymal transition in diabetic nephropathy via inhibiting NLRP3 inflammasome activation and TLR4/NF-κB signaling[J]. Phytomedicine, 2019, 57: 203-214. [百度学术]
Deng JF, He ZP, Li XR, et al. Huangkui capsule attenuates lipopolysaccharide-induced acute lung injury and macrophage activation by suppressing inflammation and oxidative stress in mice[J]. Evid Based Complement Alternat Med, 2021, 2021: 6626483. [百度学术]
Cai HD, Tao WW, Su SL, et al. Antidepressant activity of flavonoid ethanol extract of Abelmoschus manihot Corolla with BDNF up-regulation in the hippocampus[J]. Acta Pharm Sin (药学学报), 2017, 52(2): 222-228. [百度学术]
Gao YN, Liang ZH, Lv NY, et al. Exploring the total flavones of Abelmoschus manihot against IAV-induced lung inflammation by network pharmacology[J]. BMC Complement Med Ther, 2022, 22(1): 36. [百度学术]
Pan XX, Tao JH, Jiang S, et al. Characterization and immunomodulatory activity of polysaccharides from the stems and leaves of Abelmoschus manihot and a sulfated derivative[J]. Int J Biol Macromol, 2018, 107: 9-16. [百度学术]
Hou JH, Qian JJ, Li ZL, et al. Bioactive compounds from Abelmoschus manihot l. alleviate the progression of multiple myeloma in mouse model and improve bone marrow microenvironment[J]. Onco Targets Ther, 2020, 13: 959-973. [百度学术]
Yang BL, Zhu P, Li YR, et al. Total flavone of Abelmoschus manihot suppresses epithelial-mesenchymal transition via interfering transforming growth factor-β1 signaling in Crohn's disease intestinal fibrosis[J]. World J Gastroenterol, 2018, 24(30): 3414-3425. [百度学术]
Yang ZZ, Tang HT, Shao Q, et al. Enrichment and purification of the bioactive flavonoids from flower of Abelmoschus manihot (L.) medic using macroporous resins[J]. Molecules, 2018, 23(10): 2649. [百度学术]
Lai XY, Liang H, Zhao YY, et al. Simultaneous determination of seven active flavonols in the flowers of Abelmoschus manihot by HPLC[J]. J Chromatogr Sci, 2009, 47(3): 206-210. [百度学术]
Dahlinger D, Duechting S, Nuecken D, et al. Development and validation of an in vitro, seven-in-one human cytochrome P450 assay for evaluation of both direct and time-dependent inhibition[J]. J Pharmacol Toxicol Methods, 2016, 77: 66-75. [百度学术]
Liu ZX, Liu SJ, Ju WZ, et al. Effects of Huangkui Capsule on the P450 activities in rats[J]. Chin J Clin Pharmacol Ther (中国临床药理学与治疗学), 2010, 15(4): 367-372. [百度学术]
Moon YJ, Wang XD, Morris ME. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism[J]. Toxicol Vitro, 2006, 20(2): 187-210. [百度学术]
Ortiz-Andrade R, Araujo-León JA, Sánchez-Recillas A, et al. Toxicological screening of four bioactive citroflavonoids: in vitro, in vivo, and in silico approaches[J]. Molecules, 2020, 25(24): 5959. [百度学术]
Kahma H, Aurinsalo L, Neuvonen M, et al. An automated cocktail method for in vitro assessment of direct and time-dependent inhibition of nine major cytochrome P450 enzymes-application to establishing CYP2C8 inhibitor selectivity[J]. Eur J Pharm Sci, 2021, 162: 105810. [百度学术]
Jia YW, Peng Y, Sun JG, et al. "N-in-One Cocktail" method to evaluate inhibition effects of 4-hydroxylmethylphenyl-O-β-D-pyranosyl alloside on CYP450 enzymes[J]. Chin J Clin Pharmacol Ther (中国临床药理学与治疗学), 2014, 19(12): 1371-1375. [百度学术]
Lou D, Bao SS, Li YH, et al. Inhibitory mechanisms of myricetin on human and rat liver cytochrome P450 enzymes[J]. Eur J Drug Metab Pharmacokinet, 2019, 44(5): 611-618. [百度学术]
Rastogi H, Jana S. Evaluation of inhibitory effects of caffeic acid and quercetin on human liver cytochrome P450 activities[J]. Phytother Res, 2014, 28(12): 1873-1878. [百度学术]
Ye LH, Yan MZ, Kong LT, et al. In vitro inhibition of quercetin and its glycosides on P450 enzyme activities[J]. Chin Pharm J(中国药学杂志), 2014, 49(12): 1051-1055. [百度学术]
Fantoukh OI, Dale OR, Parveen A, et al. Safety assessment of phytochemicals derived from the globalized South African rooibos tea (Aspalathus linearis) through interaction with CYP, PXR, and P-gp[J]. J Agric Food Chem, 2019, 67(17): 4967-4975. [百度学术]
Cui MY, Li CH, Kong XY, et al. Influence of Flavonoids from Galium verum L. on the activities of cytochrome P450 isozymes and pharmacokinetic and pharmacodynamic of warfarin in rats[J]. Phcog Mag, 2019, 15(65): 645-651. [百度学术]
Zhang D, Wu GD, Hao HM, et al. Effect of total flavonoids of Hippophae rhamnoides L. on the activity and mRNA expression of CYP450 in rats[J]. Phcog Mag, 2022, 18(77): 82-88. [百度学术]
Bi YF, Zhu HB, Pi ZF, et al. Effects of flavonoides from the leaves of Acanthopanax on the activity of CYP450 isozymes in rat liver microsomes by a UPLC-MS/MS and cocktail probe substrates method[J]. Chem J Chin Univ (高等学校化学学报), 2013, 34(5): 1067-1071. [百度学术]
Mohutsky M, Hall SD. Irreversible enzyme inhibition kinetics and drug-drug interactions[J]. Methods Mol Biol, 2021, 2342: 51-88. [百度学术]
Gao J, Zhang YJ, Lei XQ, et al. Risk assessment of the inhibition of hydroxygenkwanin on human and rat cytochrome P450 by cocktail method[J]. Toxicol Vitro, 2022, 79: 105281. [百度学术]
Ramos CH, Rolim TS, de Souza TP, et al. Effect of food phenolic compounds on the activity of rat liver CYP2C subfamily enzymes evaluated by a newly validated method of high-performance liquid chromatography[J]. Rev Virtual Quim, 2019, 11(5): 1444-1456. [百度学术]
Lu J, Ding TG, Qin X, et al. In vitro and in vivo evaluation of cucurbitacin E on rat hepatic CYP2C11 expression and activity using LC-MS/MS[J]. Sci China Life Sci, 2017, 60(2): 215-224. [百度学术]
Guo YJ, Zheng SL. Effect of myricetin on cytochrome P450 isoforms CYP1A2, CYP2C9 and CYP3A4 in rats[J]. Pharmazie, 2014, 69(4): 306-310. [百度学术]
Liu ZX, Zhou L, Ju WZ, et al. Simultaneous determination of 5 major compositions in Huangkui capsules by HPLC[J]. China Pharm (中国药房), 2011, 22(12): 1129-1131. [百度学术]
Hou CS, Yang ZH, Sun XB. Simultaneous determination of tolbutamide and its metabolite 4-hydroxytolbutamide, chlorzoxazone in rat plasma by LC-MS-MS and application to pharmacokinetic study[J]. Chin J Exp Tradit Med Formulae (中国实验方剂学杂志), 2013, 19(12): 144-150. [百度学术]