摘要
乙酰基二肽-1鲸蜡酯(acetyl dipeptide-1 cetyl ester,AD-1)是乙酸和十六烷基醇与精氨酸和酪氨酸组成的人工合成肽,具有一定的抗炎和提高皮肤屏障功能的作用,已被用于敏感肌化妆品中。该成分虽然也被用于抗衰老化妆品中,但缺乏公开的系统科学研究。本研究通过评价AD-1的体外抗氧化和抗糖基化作用、建立UVA反复照射真皮原代成纤维细胞的光老化模型,探讨其在光老化细胞中的抗衰老活性。采用MTT法测定AD-1对细胞活力的影响;RT-qPCR法检测AD-1和UVA对衰老相关p21、p53、MMPs、IL6、Col1、Col3以及自噬相关p62、ATG5、ATG7 mRNA表达的影响;Western blot法检测AD-1和UVA对衰老及自噬相关p16、p21、p53、Col1、LC3B、p62蛋白水平的影响;β-半乳糖苷酶染色和MDC染色评价细胞衰老损伤,并通过荧光探针DCFH-DA检测细胞内活性氧水平。实验结果显示,AD-1干预可以减少UVA诱导的细胞损伤和mRNA表达异常,改善p16、p21、p53、Col1、LC3B、p62蛋白水平异常。结果表明,AD-1具有一定的体外抗氧化、抗糖基化能力,同时可能通过激活自噬保护UVA诱导的光老化细胞,具有较好的抗衰老活性。
关键词
衰老表现为细胞和组织的功能随着时间依赖性下
紫外线中长波紫外线(UVA)的穿透力较强可到达真皮层,引起真皮结缔组织的改
乙酰基二肽-1鲸蜡酯(acetyl dipeptide-1 cetyl ester,AD-1)是二肽Tyr-Arg的衍生物,有减轻和收缩肌肉纤维的特
因此,本研究着重探讨了AD-1对UVA照射的大鼠原代皮肤成纤维细胞(rat dermal fibroblasts,RDFs)的自噬指标、ROS含量及胶原合成的影响。结果表明,AD-1可能通过激活细胞自噬、降低ROS含量和促进胶原合成来缓解UVA诱导的光老化。
胎牛血清(北京全式金生物技术有限公司);DMEM培养基、胰蛋白酶(浙江美森生物科技有限公司);二苯基四氮唑溴盐(methyl thiazolyl tetrazolium,MTT)、ROS检测试剂盒、β-半乳糖苷酶活性检测试剂盒(北京索莱宝科技有限公司);RIPA细胞裂解液、BCA蛋白浓度检测试剂盒、一抗二抗稀释液、HRP标记的山羊抗兔IgG(上海碧云天生物技术有限公司);RNA-easy Isolation Reagent、4 × Hi ScriptⅡq RT Super MixⅡ、5 × Hi ScriptⅡq RT Super MixⅡ、2 × Cham Q Universal SYBR qPCR Master Mix(南京诺唯赞生物技术有限公司);4 × 蛋白上样缓冲液、Biostep™ 预染蛋白Marker、蛋白酶和磷酸酶抑制剂、ECL试剂盒(上海天能科技有限公司);β-actin抗体、LC3B抗体、p62抗体(美国Santa Cruz公司)、Col1抗体、p21抗体(英国Abcam公司)、p53抗体(美国Cell Signaling Technology公司)、p16抗体(美国Thermo公司);HRP标记的山羊抗鼠IgG(安徽Biosharp公司);细胞自噬染色检测试剂盒(上海源叶生物科技有限公司);AD-1(山东济肽生物科技有限公司);其余试剂均为市售分析纯。
二氧化碳细胞培养箱、高速冷冻离心机(美国Thermo公司);UVA灯管(荷兰Philips公司);酶标仪(美国Molecular Devices公司);电泳仪、转膜仪、多功能凝胶成像系统(上海天能科技有限公司);实时荧光定量PCR分析仪(杭州博日科技股份有限公司);倒置荧光显微镜(广州明美光电技术有限公司);流式细胞仪(美国Beckman公司)。
通过建立PTIO反应体系评价AD-1的体外抗氧化活性。使用PBS溶液将AD-1配制成不同质量浓度的待测溶液。随后各取不同浓度待测溶液100 μL和500 μg/mL PTIO溶液100 μL于96孔微孔板中混匀,37 ℃避光处静置2 h,使用酶标仪检测560 nm处吸光度。每组实验重复3次,以50 μg/mL 抗坏血酸(VC)为对照品,抗氧化活性测定结果以PTIO自由基清除活性表示,计算公式如下:PTIO自由基清除活性(%) = [1-(Asample-Ablank)/(Acontrol-Ablank)] × 100。
通过建立牛血清白蛋白(BSA)-果糖模拟反应体系评价AD-1对非酶糖基化终末产物(AGEs)的抑制作用。将不同浓度待测溶液70 μL分别与果糖溶液70 μL混合,37 ℃孵育2 h后加入BSA溶液70 μL混匀,置于37 ℃培养箱孵育6 d,反应结束后在激发波长370 nm和发射波长440 nm条件下测定待测样品的荧光强度。每组实验重复3次,以氨基胍盐酸盐(AG)为阳性对照,抗糖基化活性以糖基清除率表示,计算公式如下:糖基抑制率(%) = [1-(FA-F0)/FB] × 100,式中FA为待测样品组荧光强度、FB为空白组的荧光强度、F0为样品对照组的荧光强度。
参考文献方
细胞内活性氧含量采用ROS检测试剂盒测定。实验前使用PBS洗涤细胞1次,按1∶1 000稀释DCFH-DA至终浓度为10 μmol/L,每孔加入稀释好的DCFH-DA 1 mL,37 ℃孵育30 min后,用无血清培养液洗涤3次,收集细胞,D-PBS重悬后采用流式细胞仪检测(λEx = 488 nm;λEm = 530 nm)细胞内的活性氧。
取70% ~ 80%汇合度的RDFs,以每毫升8 × 1
Target Gene | Sequence (5′→3′) |
---|---|
Col1 | F:CCTGGCAGAACGGAGATGAT |
R:ACCACAGCACCATCGTTACC | |
Col3 | F:TGGCCAACCAGGAGAAAGG |
R:ATCCGTCTCGACGGGCTGA | |
MMP3 | F:TTTGGCCGTCTCTTCCATCC |
R:GCATCGATCTTCTGGACGGT | |
MMP9 | F:GCTGGCAGAGGATTACCTGT |
R:TGGCCTTTAGTGTCTCGCTG | |
p16 | F:CCGAGAGGAAGGCGAACTC |
R:GCTGCCCTGGCTAGTCTATCTG | |
p21 | F:GAGCAGCTGAGCCGCGA |
R:CTGGTCTGCCGCCGTTTTC | |
p53 | F:CCCAGGGAGTGCAAAGAGAG |
R:TCTCGGAACATCTCGAAGCG | |
LC3B | F:CGGGTTGAGGAGACACACAA |
R:TCTTTGTTCGAAGCTCCGGC | |
p62 | F:GCTCATCTTTCCCAACCCCT |
R:CTGATGGAGCAGAAGCCGAC | |
ATG5 | F:ATGCAGTTGAGGCTCACTTT |
R:TGAGTTTCCGGTTGATGGTC | |
ATG7 | F:GCGGGTTCAACATGAGCATC |
R:TACTCCTGAGCTGTGGTTGC | |
IL-6 | F: ATATGTTCTCAGGGAGATCTTGGAA |
R: GTGCATCATCGCTGTTCATACA | |
β-actin | F:GTCCACCTTCCAGCAGATG |
R:CTCAGTAACAGTCCGCCTAG |
在6孔板中最后一次UVA照射结束给药24 h后,PBS清洗2次,每孔加RIPA裂解液90 μL置于冰上裂解30 min,收集蛋白裂解液,4 ℃、12 000 r/min离心15 min后收集上清液,采用BCA法检测蛋白浓度。将同浓度的蛋白样品中加入4 × 蛋白上样缓冲液,95 ℃水浴10 min制备蛋白上样液。在12% SDS-PAGE胶中上样,80 V预电泳至目标条带分开时,调至120 V恒压电泳至溴酚兰刚跑出即可终止电泳。在200 mA恒流下湿法转膜2 h,封闭,TBS缓冲液洗膜。分别4 ℃过夜孵育β-actin、LC3B、p62、Col1、p21、p53、p16,次日用TBST缓冲液洗2次,随后按抗体来源分别孵育HRP标记的山羊抗鼠IgG、HRP标记的山羊抗兔Ig G 1 h,TBST清洗过后,加ECL发光液在天能显影仪上曝光。
SA-β-gal染色按照说明书进行。在6孔板中造模给药24 h后,用PBS洗2遍,加入β-半乳糖苷酶固定液1 mL,室温固定15 min,PBS洗3遍,每次3 min,每孔加入染色工作液1 mL,37 ℃孵育过夜,用封口膜封住防止蒸发,倒置显微镜下观察。
MDC是一种嗜酸性的荧光色素,通常被用于检测自噬囊泡形成的特异性标记染色剂。细胞接种在96孔板中,造模给药24 h后,各孔加入MDC Stain (10 × ) 10 μL和染色缓冲液90 μL,37 ℃ 5% CO2条件下避光孵育60 min。各孔加入洗涤液100 μL清洗3次,在荧光显微镜下观察。
基于自由基衰老学说,自由基过多会破坏细胞膜及其他重要成分,使蛋白质和酶变性,当自由基引起的损伤积累超出机体的修复能力时,会导致细胞分化状态的改变、甚至丧失,从而导致和加速衰

Figure 1 Free radical scavenging effect of acetyl dipeptide-1 cetyl ester (AD-1) ()
A: 2-Phenyl-4, 4,5, 5-tetramethylimidazoline-l-oxyl 3-oxide (PTIO) free radical scavenging activity of VC; B: PTIO free radical scavenging activity of AD-1
蛋白非酶糖基化(non-enzymatic glycation, NEG)反应是在还原糖的羰基和蛋白质上的游离氨基进行的非酶性缩合反应,所产生的糖基化终产物(AGEs)会使蛋白质产生褐色、荧光和交

Figure 2 Inhibitory activity of AD-1 ()
A: Advanced glycation end products (AGEs) inhibitory activity of AG; B: AGEs inhibitory activity of AD-
研究表明,持续暴露于紫外线照射造成的皮肤渐进性损伤,是引起皮肤光老化的主要诱发因

Figure 3 Cell viability of rat dermal fibroblasts ()
A: Cell viability of rat dermal fibroblasts (RDFs) treated with a series of concentrations of AD-1; B: Cell viability of RDFs treated with a series of concentrations of AD-1 on UV radiatio
ROS在自然老化和光老化中发挥着重要作用, 它通过对细胞成分的损伤作用来诱导皮肤衰

Figure 4 Effect of AD-1 on UVA-induced ROS formation ()
A: Analysis of ROS levels in RDFs by flow cytometry; B: Quantification of ROS level
β-半乳糖苷酶是细胞衰老的经典生物标志物,可与底物X-Gal结合生成深蓝色产物,常用于表征衰老细

Figure 5 AD-1 suppress UVA-induced collagen-I degradation and photoaging ()
A:SA-β-Gal staining of RDFs; B: Expression of p21, p53, MMP3, MMP9, IL-6, Col1, Col3 mRNA was detected by RT-qPCR; C-G: Protein level of p1
采用RT-qPCR法检测AD-1干预UVA诱导RDFs光老化后对衰老相关蛋白p21、p53、MMPs等的mRNA表达的影响。结果如
进一步采用Western blot在蛋白水平检测AD-1干预UVA诱导RDFs光老化后对衰老相关蛋白表达的影响。如
自噬作为细胞自身物质更新代谢的重要机制,在皮肤衰老进程中发挥着重要作用。自噬囊泡的积累是自噬发生时的标志物,可以通过MDC染色进行表征。本研究通过检测自噬相关基因和自噬底物p62蛋白的含量考察AD-1对UVA诱导RDFs光老化细胞中自噬水平的影响。如

Figure 6 UVA-inhibited autophagy could be reversed by AD-1 ()
A-B: Florescence microscopy analysis after MDC staining; C: Expression of p62, ATG5, ATG7 mRNA was detected by RT-qPCR; D-F: Protein level of p62, LC3B was detected by Western blo
日复一日的低剂量刺激导致的炎症、细胞衰老、皮肤屏障功能障碍等会加速皮肤老化进程,同时AGEs的形成和堆积,也是皮肤老化的重要标志。在活性成分的筛选中,常使用体外化学和细胞生物学相结合的方法进行快速、有效的评价。本研究采用PTIO自由基清除实验结合BSA-果糖模拟反应体系初步证实了AD-1具有良好的体外抗氧化和抗糖基化效果。
成纤维细胞作为真皮层的主要细胞类型,常用于皮肤衰老的研究。Nakyai
UVA重复照射会增加ROS水平,使ROS与抗氧化防御水平之间的平衡失调,导致DNA和蛋白质损伤,促进基质金属蛋白酶MMPs表达,诱导胶原蛋白降解,最终导致胶原蛋白减少和结缔组织损
自噬是真核细胞在自噬相关基因的调控下利用溶酶体降解自身细胞质蛋白和受损细胞器的过
本研究考察了AD-1的体外抗氧化和抗糖基化作用,并通过构建UVA诱导的RDFs光老化模型,从细胞自噬的角度阐明了AD-1能通过激活细胞自噬、增加自噬相关蛋白的水平,从而起到延缓皮肤光老化的作用。由此可见,AD-1具有良好的抗衰老功效,作为抗衰老化妆品的活性成分具有良好的应用前景。
致谢
感谢山东济肽生物科技有限公司提供的乙酰基二肽-1鲸蜡酯。
References
Leidal AM, Levine B, Debnath J. Autophagy and the cell biology of age-related disease[J]. Nat Cell Biol, 2018, 20(12): 1338-1348. [百度学术]
López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging[J]. Cell, 2013, 153(6): 1194-1217. [百度学术]
Zhang Y, Liu XY, Wang JP, et al. Analysis of multi-part phenotypic changes in skin to characterize the trajectory of skin aging in Chinese women[J]. Clin Cosmet Investig Dermatol, 2022, 15: 631-642. [百度学术]
Lee H, Hong YJ, Kim M. Structural and functional changes and possible molecular mechanisms in aged skin[J]. Int J Mol Sci, 2021, 22(22): 12489. [百度学术]
Rittié L, Fisher GJ. Natural and sun-induced aging of human skin[J]. Cold Spring Harb Perspect Med, 2015, 5(1): a015370. [百度学术]
Tobin DJ. Introduction to skin aging[J]. J Tissue Viability, 2017, 26(1): 37-46. [百度学术]
Yang XX, Zhao MM, He YF, et al. Facial skin aging stages in Chinese females[J]. Front Med (Lausanne), 2022, 9: 870926. [百度学术]
Kovács M, Podda M. Hautalterung und dermatologische pathologien[J]. J Für Ästhetische Chir, 2021, 14(2): 68-73. [百度学术]
Pedić L, Pondeljak N, Šitum M. Recent information on photoaging mechanisms and the preventive role of topical sunscreen products[J]. Acta Dermatovenerol Alp Pannonica Adriat, 2020, 29(4): 201-207. [百度学术]
Wang YJ, Wang L, Wen X, et al.NF-κB signaling in skin aging[J]. Mech Ageing Dev, 2019, 184: 111160. [百度学术]
Kohl E, Steinbauer J, Landthaler M, et al.Skin ageing[J]. J Eur Acad Dermatol Venereol, 2011, 25(8): 873-884. [百度学术]
Rubinsztein D, Mariño G, Kroemer G. Autophagy and aging[J]. Cell, 2011, 146(5): 682-695. [百度学术]
Martins de Andrade V, Bardají E, Heras M, et al. Antifungal and anti-biofilm activity of designed derivatives from kyotorphin[J]. Fungal Biol, 2020, 124(5): 316-326. [百度学术]
Sulzberger M, Worthmann AC, Holtzmann U, et al. Effective treatment for sensitive skin: 4-t-butylcyclohexanol and licochalcone A[J]. J Eur Acad Dermatol Venereol, 2016, 30: 9-17. [百度学术]
Resende DISP, Ferreira MS, Sousa-Lobo JM, et al. Usage of synthetic peptides in cosmetics for sensitive skin[J]. Pharmaceuticals (Basel), 2021, 14(8): 702. [百度学术]
Ferreira MS, Sousa Lobo JM, Almeida IF. Sensitive skin: active ingredients on the spotlight[J]. Int J Cosmetic Sci, 2022, 44(1): 56-73. [百度学术]
Nakyai W, Saraphanchotiwitthaya A, Viennet C, et al. An in vitro model for fibroblast photoaging comparing single and repeated UVA irradiations[J]. Photochem Photobiol, 2017, 93(6): 1462-1471. [百度学术]
Endo K, Katsuyama Y, Taira N, et al. Impairment of the autophagy system in repetitively UVA-irradiated fibroblasts[J]. Photodermatol Photoimmunol Photomed, 2020, 36(2): 111-117. [百度学术]
Wen WJ, Chen JW, Ding LG, et al. Astragaloside exerts anti-photoaging effects in UVB-induced premature senescence of rat dermal fibroblasts through enhanced autophagy[J]. Arch Biochem Biophys, 2018, 657: 31-40. [百度学术]
Zhang M, Zhang T, Tang YN, et al. Concentrated growth factor inhibits UVA-induced photoaging in human dermal fibroblasts via the MAPK/AP-1 pathway[J]. Biosci Rep, 2020, 40(7): BSR20193566. [百度学术]
Harman D. Aging: a theory based on free radical and radiation chemistry[J]. J Gerontol, 1956, 11(3): 298-300. [百度学术]
Zheng WG, Li HJ, Go Y, et al. Research advances on the damage mechanism of skin glycation and related inhibitors[J]. Nutrients, 2022, 14(21): 4588. [百度学术]
Kaeberlein M, Tyler JK. A new era for research into aging[J]. eLife, 2021, 10: e65286. [百度学术]
Szychowski KA, Skóra B. Review of the relationship between reactive oxygen species (ROS) and elastin-derived peptides (EDPs)[J]. Appl Sci (Basel), 2021, 11(18):8732. [百度学术]
Fitsiou E, Pulido T, Campisi J, et al. Cellular senescence and the senescence associated secretory phenotype as drivers of skin photoaging[J]. J Investig Dermatol, 2021, 141(4): 1119-1126. [百度学术]
Bernerd F, Passeron T, Castiel I, et al. The damaging effects of long UVA (UVA1) rays: a major challenge to preserve skin health and integrity[J]. Int J Mol Sci, 2022, 23(15): 8243. [百度学术]
Qin DK, Ren RJ, Jia CL, et al. Rapamycin protects skin fibroblasts from ultraviolet B-induced photoaging by suppressing the production of reactive oxygen species[J]. Cell Physiol Biochem, 2018, 46(5): 1849-1860. [百度学术]
Salminen A, Kaarniranta K, Kauppinen A. Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin[J]. Inflamm Res, 2022, 71(7): 817-831. [百度学术]
Cole MA, Quan TH, Voorhees JJ, et al.Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging[J]. J Cell Commun Signal, 2018, 12(1): 35-43. [百度学术]
Gu YP, Han JX, Jiang CP, et al. Biomarkers, oxidative stress and autophagy in skin aging[J]. Ageing Res Rev, 2020, 59: 101036. [百度学术]
Kaushik S, Tasset I, Arias E, et al. Autophagy and the hallmarks of aging[J]. Ageing Res Rev, 2021, 72: 101468. [百度学术]
Li TZ, Zhang HL, Wang ZC, et al. The regulation of autophagy by the miR-199a-5p/p62 axis was a potential mechanism of small cell lung cancer cisplatin resistance[J]. Cancer Cell Int, 2022, 22(1): 120. [百度学术]
Jeong D, Qomaladewi NP, Lee J, et al. The role of autophagy in skin fibroblasts, keratinocytes, melanocytes, and epidermal stem cells[J]. J Investig Dermatol, 2020, 140(9): 1691-1697. [百度学术]
Ma JW, Teng Y, Huang YM, et al. Autophagy plays an essential role in ultraviolet radiation-driven skin photoaging[J]. Front Pharmacol, 2022, 13: 864331. [百度学术]
Xie H, Zhou L, Liu F, et al. Autophagy induction regulates aquaporin 3-mediated skin fibroblast ageing[J]. Br J Dermatol, 2022, 186(2): 318-333. [百度学术]
Lim GE, Park JE, Cho YH, et al. Alpha-neoendorphin can reduce UVB-induced skin photoaging by activating cellular autophagy[J]. Arch Biochem Biophys, 2020, 689: 108437. [百度学术]
Khmaladze I, Österlund C, Smiljanic S, et al. A novel multifunctional skin care formulation with a unique blend of antipollution, brightening and antiaging active complexes[J]. J Cosmet Dermatol, 2020, 19(6): 1415-1425. [百度学术]