摘要
肝脏胆固醇代谢紊乱在非酒精性脂肪性肝病(NAFLD)的发生发展中具有重要作用。为揭示饱和脂肪酸诱导肝细胞胆固醇稳态失衡的分子机制,采用棕榈酸诱导HepG2细胞,通过油红O染色、试剂盒测定细胞内甘油三酯(TG)和胆固醇(TC)含量评估脂质累积;采用RT-qPCR和Western blot检测与胆固醇稳态相关基因和蛋白表达水平;LC-MS/MS检测细胞胆汁酸和线粒体氧甾醇水平。结果发现,棕榈酸处理后,细胞内脂滴明显累积且TG与TC含量显著升高(P < 0.000 1);胆固醇合成和摄取相关基因表达无明显变化,但ABCG5和LXRα蛋白表达显著下调,表明胆固醇外排减少;负责胆汁酸替代合成的限速酶STARD1和CYP7B1基因表达显著增强,线粒体中胆固醇、27-羟基胆固醇(27-OHC)以及细胞中鹅去氧胆酸(CDCA)水平明显升高。本研究结果表明,棕榈酸刺激后可能通过抑制胆固醇外排和促进胆汁酸合成扰乱胆固醇稳态。
关键词
非酒精性脂肪肝病(non-alcoholic fatty liver disease,NAFLD)是一种与2型糖尿病、肥胖和心血管疾病密切相关的代谢综合征。它包含一系列肝脏病理特征,从以肝脏总胆固醇和甘油三酯水平升高为主要特征的单纯脂肪变性,到更为严重的伴随继发性炎症和线粒体功能障碍的非酒精性脂肪性肝炎(non-alcoholic steatohepatitis,NASH),最后发展为不可逆转的肝硬化甚至肝细胞
肝脏是胆固醇生物合成的主要部位,胆固醇可转化为胆汁酸(bile acids, BAs)、维生素和类固醇,也可酯化生成胆固醇酯后以脂滴的形式储存,以维持细胞内的胆固醇稳
有文献报道棕榈酸(palmitic acid,PA)诱导的L02脂肪变性细胞模型中胆固醇水平升高,并发现胆固醇生物合成相关的基因表达显著增
棕榈酸钠、二甲基亚砜(DMSO)(美国Sigma-Aldrich公司);CCK-8(上海百赛生物技术有限公司);DMEM高糖培养基、胰蛋白酶和PBS(美国Gibco公司);胎牛血清(FBS,以色列Biological Industries公司);牛血清白蛋白(free-fatty acid,BSA,索莱宝生物科技有限公司);甘油三酯和总胆固醇测定试剂盒(南京建成生物工程研究所);Trizol、HiScrip Ⅲ qRTSuperMix和AceQ qPCR SYBR Green Master Mix(南京诺唯赞医疗科技有限公司);RIPA裂解液、PMSF、Triton X-100、油红O染色试剂盒、增强型BCA蛋白检测试剂盒、SDS-PAGE制备试剂盒(碧云天生物技术有限公司);CHOP和GRP78一抗(美国Affinity公司);STARD1、LXRα、ABCG5和β-actin一抗(武汉爱博泰克公司);丁基羟基甲苯(BHT,上海阿拉丁生化科技股份有限公司);(2, 2, 4, 4-d4)-胆酸(CA-d4)(美国Cambridge Isotope Laboratories公司);(2, 2, 4, 4-d4)-石胆酸(LCA,美国Glpbio公司);其他试剂均为市售分析纯。
Infinite 200Pro多功能酶标仪(瑞士Tecan有限公司);Light Cycler96实时荧光定量PCR仪(美国罗氏公司);化学发光成像系统(上海Tanon公司);JY92-IIN超声波细胞粉碎机(宁波新芝生物科技公司);UPLC-MS/MS 8040液质联用色谱仪(日本Shimadzu公司),包含LC-30AD泵、SIL-30AD自动进样器、CTO-20A柱温箱、DGU-20A5R脱气机、CMB-20A系统控制器、MS-8040三重四极杆质谱检测器;Finniga
称取一定量的棕榈酸钠,加入适量纯水,于70 ℃下加热至完全溶解,配制成100 mmol/L棕榈酸溶液。然后用含2% BSA的DMEM(含1% FBS)溶液稀释,配成浓度为1.5 mmol/L的PA-BSA储备
HepG2细胞用含10% FBS的高糖DMEM完全培养基,于5% CO2、37℃培养箱中培养,显微镜下观察细胞状态及密度,融合至80% ~ 90%时,采用胰蛋白酶消化,按1∶2/1∶3进行传代。
选择处于对数生长期的HepG2细胞,以每孔8 × 1
取生长状态良好的HepG2细胞接种于6孔培养板中,完全培养基培养12 h后,饥饿12 h,弃去培养基,用0.3 mmol/L PA处理72 h,对照组加入相同体积的2% BSA。处理结束后,按照改良油红O染色试剂盒说明书操作,并在倒置显微镜下观察细胞内脂质累积情况。
将HepG2细胞接种于6孔板中,同方法“2.4”项下分组且对应处理72 h,每组设置6个复孔。处理结束后,收集细胞,加入适量1% Triton X-100于冰上裂解40 min,按照试剂盒说明书操作测定细胞内TC和TG含量,测定结束后,于4 ℃,14 000 r/min,离心20 min,用BCA法测定上清液中的蛋白质含量(mg/mL),以对数据进行归一化处理。
采用Trizol试剂提取培养细胞的总RNA,按照逆转录试剂盒说明书操作去除基因组DNA,并在37 ℃,15 min、85 ℃,5 s的条件下合成cDNA。由SYBR Green master mix 5 μL、引物(0.5 mmol/L)1 μL、cDNA 2.5 μL和ddH2O 1.5 μL组成10 μL体系进行PCR反应。以GAPDH为内参对照,用
Gene | Forward primer | Reverse primer |
---|---|---|
hCYP7A1 | GAGAAGGCAAACGGGTGAAC | GGATTGGCACCAAATTGCAGA |
hCYP8B1 | GAAGCGCATGAGGACCAAG | TTGCATATTGCCCAAAGTCTAGT |
hCYP27A1 | CGGCAACGGAGCTTAGAGG | GGCATAGCCTTGAACGAACAG |
hCYP7B1 | AAAGGTTGGCTTCCTTATCTTGG | GCAACTGACTGATGCTAAATGCT |
hSTARD1 | GGGAGTGGAACCCCAATGTC | CCAGCTCGTGAGTAATGAATGT |
hABCG5 | TGGACCAGGCAGATCCTCAAA | CCGTTCACATACACCTCCCC |
hABCG8 | AGCCTCCTTGCTAGATGTGAT | GTCTCTCGCACAGTCAAGTTG |
hABCA1 | ACCCACCCTATGAACAACATGA | GAGTCGGGTAACGGAAACAGG |
hSREBF-2 | CTGCAACAACAGACGGTAATGA | CCATTGGCCGTTTGTGTCAG |
hHMGCR | TGATTGACCTTTCCAGAGCAAG | CTAAAATTGCCATTCCACGAGC |
hNPC1L1 | CTTCTACCAGCATAGCTTTGCC | AGAGCCATACACGCCACAC |
hLXRα | CCTTCAGAACCCACAGAGATCC | ACGCTGCATAGCTCGTTCC |
hGAPDH | GGAGCGAGATCCCTCCAAAAT | GGCTGTTGTCATACTTCTCATGG |
根据各孔细胞密度加入适量RIPA(含PMSF)裂解液,4 ℃裂解20 min,细胞刮收集细胞,4 ℃,14 000 r/min,离心20 min,采用BCA法测定上清液中蛋白浓度,按每孔20 μg折算上样量。上样并进行SDS-PAGE电泳(电泳时间:80 V、30 min;110 V、60 min),随后将凝胶上的蛋白质转移到PVDF膜上。用5%脱脂牛奶阻断非特异性结合,并在4 ℃与STARD1、ABCG5、LXRα一抗(1∶1 000)孵育过夜。TBST清洗膜3次后,与二抗(1∶8 000)在室温下孵育1 h,TBST清洗膜3次后,通过ECL化学发光法显色。以β-actin为内参对照,用ImageJ软件分析各蛋白相对表达量。
选取状态较好的HepG2细胞接种于100 mm培养皿中,同 “2.4”项下分组且对应处理72 h,每组设置7个重复,同时设置一皿无细胞但含相同培养液,以扣除外源干扰。精密吸取培养液上清液200 μL,加入甲醇(含胆汁酸内标CA-d4 0.1μg/mL和LCA-d4 0.05 μg/mL)1.2 mL,涡旋5 min以沉淀蛋白,4 ℃,14 000 r/min,离心10 min。取上清液1.2 mL,氮吹干燥后待用。用冰冷的PBS洗涤细胞3次,加入80%甲醇(含胆汁酸内标CA-d4 0.1 μg/mL和LCA-d4 0.05 μg/mL)3 mL,在-80℃冰箱中淬灭20 min(淬灭的目的是使细胞中的酶失活,终止细胞代谢),细胞刮收集细胞,冰浴超声破碎,4 ℃,14 000 r/min,离心20 min。将上清液转移并氮气干燥。干燥后的样本均用甲醇80 μL复溶,供LC-MS/MS分析。每组各随机选取一皿用BCA法测定其蛋白质含量(mg/mL),用于胆汁酸含量归一
分析条件:Zorbax Bonus-RP色谱柱(2.1 mm × 150 mm,3.5 μm);流动相:含0.01%甲酸和5 mmol/L醋酸铵的水溶液(A相)和甲醇溶液(B相);梯度洗脱程序设置如下:0 ~ 10 min,55% B ~ 60% B; 10 ~ 60 min,60% B;60 ~ 65 min,60% B ~ 80% B; 65 ~ 75 min,80% B;75 ~ 85 min,80% B ~ 90% B;85.01 ~ 88 min,100% B;88.01 ~ 93 min,55% B;柱温:42 ℃,进样量:5 μL,流速为0.3 mL/min。各胆汁酸对照品及其对应内标的离子对与碰撞能等详细信息见
No. | Compound | Abbreviation | MRM transitions | CE/eV |
---|---|---|---|---|
1 | Cholic acid | CA | 407.1→407.1 | -20 |
2 | α-Muricholic acid | α-MCA | 407.1→407.1 | -20 |
3 | β-Muricholic acid | β-MCA | 407.1→407.1 | -20 |
4 | Ursodeoxycholic acid | UDCA | 391.1→391.1 | -20 |
5 | Chenodeoxycholic acid | CDCA | 391.1→391.1 | -20 |
6 | Hyodeoxycholic acid | HDCA | 391.1→391.1 | -20 |
7 | Lithocholic acid | LCA | 375.1→375.1 | -20 |
8 | Dehydrocholic acid | DHCA | 401.1→401.1 | -20 |
9 | Tauro-cholic acid | TCA | 514.1→79.8 | -70 |
10 | Tauro-α-muricholic acid | T-MCA | 514.1→79.8 | -70 |
11 | Tauro-ursodeoxycholic acid | TUDCA | 498.1→79.8 | -70 |
12 | Tauro-chenodeoxycholic acid | TCDCA | 498.1→79.8 | -70 |
13 | Tauro-dehydrocholic acid | TDCA | 498.1→79.8 | -70 |
14 | Tauro-hyodeoxycholic acid | THDCA | 498.1→79.8 | -70 |
15 | Tauro-lithocholic acid | TLCA | 482.1→79.8 | -70 |
16 | Tauro-dehydrocholic acid | TDHCA | 508.1→79.8 | -70 |
17 | Glyco-cholic acid | GCA | 464.1→73.9 | -70 |
18 | Glyco-ursodeoxycholic acid | GUDCA | 448.1→73.9 | -40 |
19 | Glyco-chenodeoxycholic acid | GCDCA | 448.1→73.9 | -40 |
20 | Glyco-deoxycholic acid | GDCA | 448.1→73.9 | -40 |
21 | Glyco-hyodeoxycholic acid | GHDCA | 448.1→73.9 | -40 |
22 | Glyco-lithocholic acid | GLCA | 432.1→73.9 | -40 |
23 | Glyco-dehydrocholic acid | GDHCA | 458.1→73.9 | -40 |
24 | 7α-Hydroxy-4-cholesterene-3-one | C4 | 401.4→177.2 | -40 |
25 (IS) | (2, 2, 4, 4-d4)- Cholic acid | CA-d4 | 411.1→411.1 | -20 |
26 (IS) | (2, 2, 4, 4-d4)- Lithocholic acid | LCA-d4 | 379.1→379.1 | -20 |
将HepG2细胞以每皿1 × 1
根据已有报
No. | Compound | Abbreviations | MRM transitions | CE/eV |
---|---|---|---|---|
1 | 7α, 25-Dihydroxycholesterol | 7α, 25-diOHC | 383.30→365.15 | -11 |
2 | 7β, 25-Dihydroxycholesterol | 7β, 25-diOHC | 383.30→365.25 | -13 |
3 | 7α, 27-Dihydroxycholesterol | 7α, 27-diOHC | 401.30→383.10 | -15 |
4 | 7β, 27-Dihydroxycholesterol | 7β, 27-diOHC | 383.30→81.20 | -38 |
5 | 5α, 6α-Epoxycholestanol | 5α, 6α-Epox | 385.30→367.35 | -16 |
6 | 5β, 6β-Epoxycholestanol | 5β, 6β-Epox | 385.20→367.20 | -15 |
7 | 7-Ketocholesterol | 7-KC | 401.30→95.05 | -40 |
8 | Cholestane-3β, 5α, 6β-triol | Triol | 385.30→367.35 | -15 |
9 | 4β-Hydroxycholesterol | 4β-OHC | 385.30→367.50 | -14 |
10 | 7-Hydroxycholesterol | 7-OHC | 385.20→367.20 | -14 |
11 | 20α-Hydroxycholesterol | 20α-OHC | 385.20→367.25 | -10 |
12 | 22(R)-Hydroxycholesterol | 22(R)-OHC | 385.20→367.20 | -12 |
13 | 25-Hydroxycholesterol | 25-OHC | 385.20→367.20 | -13 |
14 | 27-Hydroxycholesterol | 27-OHC | 385.30→161.10 | -18 |
15 | Cholesterol | Chol | 369.20→147.0 | -27 |
16 (IS) | d7-5α, 6α-Epoxycholestanol | d7-5α, 6α-Epox | 392.30→374.30 | -15 |
17 (IS) | d6-27-Hydroxycholesterol | d6-27-OHC | 391.20→149.20 | -21 |
通过CCK-8实验评估不同浓度PA处理不同时长对HepG2细胞的毒性。结果如

Figure 1 Effects of palmitic acid (PA) induced cytotoxicity in HepG2 cells. HepG2 cells were exposed to various concentrations of PA (0, 0.075, 0.15, 0.3 mmol/L) for 24, 48, and 72 h, and cell viability was subsequently determined by CCK-8 assay ()
**P < 0.01,
TG与TC含量测定结果如

Figure 2 Induction of lipid accumulation by PA in HepG2 cellsA: HepG2 cells were treated with 0.3 mmol/L PA for 72 h, and then intracellular TG and TC levels were analyzed by enzymatic assay
如

Figure 3 HepG2 cells were exposed to various concentrations of PA (0, 0.075, 0.15, 0.3 mmol/L) for 24, 48 and 72 h. The mRNA levels of cholesterol synthesis, including SREBF-2 and HMGCR (A-B), and NPC1L1, forcholesterol uptake (C), and the key genes of bile acids synthesis, including STARD1, CYP27A1, CYP7B1, CYP7A1 and CYP8B1 (D-H), and cholesterol efflux, including LXRα, ABCG5, ABCG8 and ABCA1 (I-L).The relative mRNA expression levels were determined by normalizing to GAPDH ()
*P < 0.05,

Figure 4 Effects of PA on the bile acids alternative synthesis pathway and cholesterol efflux, measured by blot.Time- (A) and dose-dependent (B) effect of PA on STARD1, LXRα, ABCG5 protein content; (C, D) Protein expression levels are normalized with β-actin ()
*P < 0.05,
为了进一步观察生物大分子功能改变是否会体现在代谢物水平上,本研究利用LC-MS/MS检测细胞及培养液中BAs水平。C4是胆汁酸合成过程中产生的一种稳定的中间体,可用于表征胆汁酸的合成速

Figure 5 Effects of PA treatment on endogenous bile acids (BAs) content. Total BAs are measured in the media and cells from cultures treated with 0.3 mmol/L PA for 72 h and in corresponding untreated control using LC-MS/MS. Data are normalized relative to the amount of proteins in each condition
(A) Extracted ion chromatograms of m/z 407→m/z 407, m/z 391→m/z 391 and m/z 401→m/z 177 in (a) Blank solvent (MeOH); (b) CA, CDCA and C4 standard; Cells samples of control group (c) and model group (d); Culture media samples of control group (e) and model group (f).Determination of BAs content in HepG2 cells (B) and culture media (C) and total BAs content (media + cells) (D) (
为了更好地了解饱和脂肪酸对肝细胞亚细胞器的脂毒性机制,本实验采用差速离心法分离肝细胞线粒体,并利用LC-MS/MS测定线粒体中氧甾醇水平。结果如

Figure 6 LC-MS/MS analysis of oxysterols levels in mitochondria. Cells were treated with 0.3 mmol/L PA for 72 h. Mitochondria were separated by differential centrifugation after PA treatment. Lipids were extracted with chloroform/methanol (2∶1) mixture. Data are normalized relative to the amount of mitochondria proteins in each condition. Total ion chromatograms (TIC) of oxysterol mixture standards (A) and samples (B); (C) Determination of oxysterols content in mitochondria ()
*P < 0.05,
NAFLD通常分为非酒精性脂肪肝(NAFL)和NASH,NASH是NAFL的一种进行性形式,涉及炎症和肝细胞损
一项病例对照研究结果表明,PA和油酸(oleic acid,OA)是NAFLD患者血清中含量最丰富的FF
本研究首先评估了PA对HepG2细胞活力的影响,随着PA浓度与处理时间增加,对细胞毒性也明显增强。采用0.3 mmol/L PA处理72 h后,可见细胞脂滴明显累积,TG和TC含量也显著升高,这与文
为了进一步探讨细胞BAs水平是否发生了与基因和蛋白相应的变化,本研究采用LC-MS/MS测定了细胞内BAs的含量,结果发现细胞和培养液中CA、CDCA和C4含量均显著增加。与该结果一致的是Jiao
胆固醇在线粒体膜结构中起主要作用,可以调节线粒体膜的流动
综上所述,本研究详细描述了胆固醇代谢相关基因和蛋白质表达情况,并系统观察了细胞胆汁酸和线粒体氧甾醇水平变化。这些发现为NAFLD疾病中肝脏胆固醇代谢变化提供了更清晰的认识。更重要的是,在该研究中发现STARD1基因和蛋白表达均显著升高,这表明胆汁酸替代合成途径在NAFLD的发展中具有重要作用。另外,目前这些发现局限于外源诱导的细胞模型,而STARD1对NAFLD发展过程中胆汁酸替代合成途径的调节作用还须通过敲除或过表达等实验来进一步验证,从而部分支持STARD1作为NAFLD治疗靶点的潜力。
References
Haas JT, Francque S, Staels B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease[J]. Annu Rev Physiol, 2016, 78: 181-205. [百度学术]
Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84. [百度学术]
Deprince A, Haas JT, Staels B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease[J]. Mol Metab, 2020, 42: 101092. [百度学术]
Li H, Yu XH, Ou X, et al. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis[J]. Prog Lipid Res, 2021, 83: 101109. [百度学术]
Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(4): 223-238. [百度学术]
Jiao TY, Ma YD, Guo XZ, et al. Bile acid and receptors: biology and drug discovery for nonalcoholic fatty liver disease[J]. Acta Pharmacol Sin, 2022, 43(5): 1103-1119. [百度学术]
Luo J, Yang HY, Song BL. Mechanisms and regulation of cholesterol homeostasis[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 225-245. [百度学术]
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation[J]. Pharmacol Rev, 2010, 62(1): 1-96. [百度学术]
Peng KP, Mo ZN, Tian GX. Serum lipid abnormalities and nonalcoholic fatty liver disease in adult males[J]. Am J Med Sci, 2017, 353(3): 236-241. [百度学术]
Puri P, Baillie RA, Wiest MM, et al. A lipidomic analysis of nonalcoholic fatty liver disease[J]. Hepatology,2007,46(4): 1081-1090. [百度学术]
van Rooyen DM, Gan LT, Yeh MM, et al. Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome[J].J Hepatol,2013,59(1): 144-152. [百度学术]
Mendez-Sanchez N, Cruz-Ramon VC, Ramirez-Perez OL, et al. New aspects of lipotoxicity in nonalcoholic steatohepatitis[J]. Int J Mol Sci, 2018, 19(7): 2034. [百度学术]
Mota M, Banini BA, Cazanave SC, et al. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease[J]. Metabolism, 2016, 65(8): 1049-1061. [百度学术]
Arguello G, Balboa E, Arrese M, et al. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease[J]. Biochim Biophys Acta, 2015, 1852(9): 1765-1778. [百度学术]
Wang XH, Tian Y, Guo ZJ, et al. Cholesterol metabolism and expression of its relevant genes in cultured steatotic hepatocytes[J]. J Dig Dis, 2009, 10(4): 310-314. [百度学术]
Oliveira AF, Cunha DA, Ladriere L, et al. In vitro use of free fatty acids bound to albumin: a comparison of protocols[J]. Biotechniques, 2015, 58(5): 228-233. [百度学术]
Alseekh S, Aharoni A, Brotman Y, et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices[J]. Nat Methods, 2021, 18(7): 747-756. [百度学术]
Silva LP, Lorenzi PL, Purwaha P, et al. Measurement of DNA concentration as a normalization strategy for metabolomic data from adherent cell lines[J]. Anal Chem, 2013, 85(20): 9536-9542. [百度学术]
Minowa K, Rodriguez-Agudo D, Suzuki M, et al. Insulin dysregulation drives mitochondrial cholesterol metabolite accumulation: initiating hepatic toxicity in nonalcoholic fatty liver disease[J]. J Lipid Res, 2023, 64(5): 100363. [百度学术]
Borah K, Rickman OJ, Voutsina N, et al. A quantitative LC-MS/MS method for analysis of mitochondrial-specific oxysterol metabolism[J]. Redox Biol, 2020, 36: 101595. [百度学术]
Henkel AS, LeCuyer B, Olivares S, et al. Endoplasmic reticulum stress regulates hepatic bile acid metabolism in mice[J]. Cell Mol Gastroenterol Hepatol, 2017, 3(2): 261-271. [百度学术]
Brown GT, Kleiner DE. Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Metabolism, 2016, 65(8): 1080-1086. [百度学术]
Gambino R, Bugianesi E, Rosso C, et al. Different serum free fatty acid profiles in NAFLD subjects and healthy controls after oral fat load[J]. Int J Mol Sci, 2016, 17(4): 479. [百度学术]
Gómez-Lechón MJ, Donato MT, Martínez-Romero A, et al. A human hepatocellular in vitro model to investigate steatosis[J]. Chem Biol Interact, 2007, 165(2): 106-116. [百度学术]
Moravcová A, Červinková Z, Kučera O, et al. The effect of oleic and palmitic acid on induction of steatosis and cytotoxicity on rat hepatocytes in primary culture[J]. Physiol Res, 2015, 64(Suppl 5): S627-S636. [百度学术]
Zhao MG, Yang HM, Jiang CH, et al. Intervention effects of the triterpenoids from Cyclocaryapaliurus on free fatty acids-induced steatosis in HepG2 cells[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(3): 333-340. [百度学术]
van Rooyen DM, Larter CZ, Haigh WG, et al. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis[J]. Gastroenterology, 2011, 141(4): 1393-1403. [百度学术]
Aguilar-Olivos NE, Carrillo-Córdova D, Oria-Hernández J, et al. The nuclear receptor FXR, but not LXR, up-regulates bile acid transporter expression in non-alcoholic fatty liver disease[J]. Ann Hepatol, 2015, 14(4): 487-493. [百度学术]
Buccitelli C, Selbach M. mRNAs, proteins and the emerging principles of gene expression control[J]. Nat Rev Genet, 2020, 21(10): 630-644. [百度学术]
Jiao N, Baker SS, Chapa-Rodriguez A, et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD[J]. Gut, 2018, 67(10): 1881-1891. [百度学术]
Conde de la Rosa L, Garcia-Ruiz C, Vallejo C, et al. STARD1 promotes NASH-driven HCC by sustaining the generation of bile acids through the alternative mitochondrial pathway[J]. J Hepatol, 2021, 74(6): 1429-1441. [百度学术]
Mouzaki M, Wang AY, Bandsma R, et al. Bile acids and dysbiosis in non-alcoholic fatty liver disease[J]. PLoS One, 2016, 11(5): e0151829. [百度学术]
Miyake JH, Wang SL, Davis RA. Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7alpha-hydroxylase[J]. J Biol Chem, 2000, 275(29): 21805-21808. [百度学术]
Montero J, Mari M, Colell A, et al. Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death[J]. Biochim Biophys Acta, 2010, 1797(6/7): 1217-1224. [百度学术]
Garenc C, Julien P, Levy E. Oxysterols in biological systems: the gastrointestinal tract, liver, vascular wall and central nervous system[J]. Free Radic Res, 2010, 44(1): 47-73. [百度学术]
Kakiyama G, Minowa K, Rodriguez-Agudo D, et al. Coffee modulates insulin-hepatocyte nuclear factor-4α-Cyp7b1 pathway and reduces oxysterol-driven liver toxicity in a nonalcoholic fatty liver disease mouse model[J]. Am J Physiol Gastrointest Liver Physiol, 2022, 323(5): G488-G500. [百度学术]
Bieghs V, Hendrikx T, van Gorp PJ, et al. The cholesterol derivative 27-hydroxycholesterol reduces steatohepatitis in mice[J]. Gastroenterology, 2013, 144(1): 167-178. [百度学术]