摘要
大黄素作为一种羟基蒽醌类活性成分,在大黄、虎杖及何首乌等中药中含量丰富。现代药理研究表明,大黄素具有广泛药理活性,包括抗肿瘤、抗炎和免疫调节、抗菌和抗病毒、心肌保护、神经保护、肾脏保护、骨保护、抗纤维化等作用,药用价值高,具有广阔的应用前景。本文旨在总结近5年来发表于国内外期刊有关大黄素的药理活性和作用机制研究进展,重点介绍并总结大黄素在发挥药理作用过程中涉及的潜在靶点及重要分子信号通路,为大黄素的进一步开发和临床应用提供参考依据与线索。
大黄素,又称泻素,其化学名为1, 3, 8-三羟基-6-甲基蒽醌(化学结构如

图1 大黄素(1, 3, 8-三羟基-6-甲基蒽醌)的化学结构
据报道,肿瘤已成为世界上继心血管疾病的第二大死因,患者数逐年增
细胞增殖或细胞死亡的失调是癌症的决定性特征。所有肿瘤病灶的特征是无限的细胞增殖,而细胞凋亡引起的细胞死亡是肿瘤病灶的重要抑制机
此外,研究表明大黄素15 ~ 60 μmol/L处理48 h后,可通过抑制磷脂酰肌醇3-激酶(phosphoinositide 3-kinase, PI3K)/蛋白激酶B(protein kinase B, Akt)抑制细胞增殖,诱导S期和G2/M细胞周期停滞,促进HepG2细胞凋
上皮-间质转化(epithelial-mesenchymal transition, EMT)是上皮细胞获得间质特征的过程,是原发肿瘤侵袭的起始步骤之一。同时,EMT与癌症干细胞样细胞(cancer stem-like cells, CSC)自噬过程被认为是促进肿瘤细胞转移的主要因
另据报道,长链脂酰辅酶A合成酶(long-chain acyl-CoA synthetase, ACSL)在结肠癌组织中高表达,ACSL4下调可降低细胞增殖和侵袭,而ACSL4与血管内皮生长因子(vascular endothelial growth factor, VEGF)及其受体VEGFR1、VEGFR2水平呈正相关,并与结肠癌患者的生存时间较短有关。分子对接模拟和微量热泳动(microscale thermophoresis, MST)分析证实,大黄素可直接与ACSL4蛋白结合形成2个氢键,且解离常数为20 μmol/L。而在过表达ACSL4的结肠癌细胞中,大黄素20 μmol/L处理48 h后,对人结肠癌细胞HCT116增殖和侵袭的抑制作用明显减弱甚至被抵消。此外,大黄素25, 50 mg/kg灌胃给药8周,可以抑制VEGF分泌、ACSL4和VEGFR的表达,从而抑制体内结肠癌的发生。上述研究证实大黄素通过靶向ACSL4来减少VEGF分泌以及VEGFR1和VEGFR2的表达,从而抑制结肠癌细胞的增殖和侵袭,降低小鼠的死亡率和肿瘤发
血管生成是肿瘤发生的关键和早期步骤,被认为是实体瘤的标志和肿瘤复发的关键特
炎症是免疫系统保护生物体免受有害因素影响的生物反应,过度和不受控制的炎症与多种破坏性慢性疾病有
免疫失调可导致多种疾病,其特征是过度炎症反应和免疫抑
研究表明,大黄素能通过抑制ERK1/2的磷酸化和抑制F-肌动蛋白聚合来抑制细菌入
心血管疾病在全球有高发病率高病死率。多项研究表明,大黄素具有抑制心肌细胞死亡、抗心肌肥大等活性,为临床治疗心血管疾病提供实验依
ERK通路参与调节心肌细胞凋亡,激活后造成心肌损
调节细胞焦亡可在一定程度上缓解心肌缺血再灌注损
心肌肥大特征是左心室肥厚,射血分数保留或增加,会引发心力衰竭和心源性猝死等疾
神经系统疾病发病机制复杂,研究表明大黄素具有神经保护活性,可以通过抑制神经细胞死亡和保护血脑屏障对多种神经退行性疾病、脑缺血等神经系统疾病起到潜在的治疗作用。
抑制氧化应激诱导线粒体功能障碍和过多的ROS积累导致的细胞凋亡,是缓解神经元细胞死亡的重要机制。大黄素20 μmol/L 处理人神经母细胞瘤细胞后,可以通过提高细胞ATP水平,抑制AMPK信号通路及内质网应激,降低ERK1/2磷酸化,减少ROS和保护线粒体功能来减少细胞凋亡,治疗过量Z
大黄素可通过调节circ_0000064/miR-30c-5p/大型多功能肽酶7(large multifunctional peptidase 7, Lmp7)轴减轻高葡萄糖诱导的小鼠肾小球系膜细胞中的氧化应激、炎症和细胞外基质积累,达到肾脏保护作
骨质疏松症是一种骨骼疾病,其特征是骨强度受损,增加人骨折的风
肝纤维化的典型特征是细胞外基质合成与降解失衡,大黄素可激活p53并通过p53/ERK/p38轴诱导肝星状细胞凋亡,并通过调节MMP-1、MMP-9重塑细胞外基质以改善肝纤维
心肌纤维化会导致心室结构改变,是心室功能障碍和心力衰竭的常见征
大黄素可通过调节c-MYC原癌基因/miR-182-5p/ZEB蛋白2(zinc finger E-box binding homeobox 2, ZEB2)轴来减轻肺纤维化和上皮间质转
大黄素可通过胰岛素受体底物1(insulin receptor substrate, IRS1)/PI3K/Akt/叉头框蛋白O1(recombinant forkhead box protein O1, FoxO1)途
目前大黄素已被证明具有抗肿瘤、抗炎和抗氧化、抗菌和抗病毒、心肌保护、神经保护等多种药理活性,具有广阔的应用前景。大黄素的抗肿瘤作用是国内外学者的研究重点之一,体内外研究表明,大黄素对肝癌、结肠癌、非小细胞肺癌、胰腺癌等多种癌症具有较好的治疗作用,主要通过调节PI3K/Akt、IKKβ/NF-κB、MAPKs、Wnt/β-catenin等信号通路,重点影响Bcl-2、caspase-3、N-cadherin、E-cadherin、MMP-7等相关因子表达,发挥促进细胞凋亡,抑制上皮-间质转变、细胞迁移和抗血管生成等活性(如

图2 大黄素抗肿瘤作用机制示意图

图3 大黄素其他药理作用及调节信号途径总结
然而大黄素的研究过程中仍存在一些需要进一步探讨和阐释的问题。首先,大黄素抗肿瘤活性的基础研究近5年主要集中于细胞水平,在动物模型上的研究较少,缺乏体内实验数据。同时,在现有报道中,大黄素的相关作用机制涉及的关键靶点研究主要集中于抗肿瘤方面,目前识别的大黄素直接作用靶点ACSL4,通过分子对接以及MST测试了大黄素与ACSL4结合性能,并采用ACSL4过表实验进行了验证,结论相对较为全面、可靠。而其他有关靶点与大黄素的结合情况目前尚缺乏充足的技术手段验证,不足以证实大黄素直接作用于该靶点发挥抗肿瘤活性。如大黄素与sPLA2-IIA的分子对接结果表明,大黄素与sPLA2-IIA的残基GLY29、GLY31和ASP48形成氢键,结合能为-(5.84 ± 0.25) kcal/mol(1 kcal = 4.184 kJ),但仅为计算机虚拟结果;大黄素与NCOR2的对接结果显示,大黄素可以与NCOR2的残基Tyr39、Lys10形成氢键,体外下拉实验进一步提示,二者在体外条件下之间存在相互作用,但并未验证在生理条件下两者的结合能力。今后可进一步考虑以大黄素为分子探针,综合应用系列亲和色谱技术、生物素标记等多种方法识别大黄素的结合蛋白,并应用表面等离子共振技术、MST等方法测定其结合能力,再应用结合蛋白的干扰或过表达质粒或制备敲除动物进一步加以确证。另据报道,大黄素高剂量和长期使用有肝毒性和肾毒
References
Mitra S, Anjum J, Muni M, et al. Exploring the journey of emodin as a potential neuroprotective agent: novel therapeutic insights with molecular mechanism of action[J]. Biomed Pharmacother, 2022, 149: 112877. [百度学术]
HaoShang, Jia XH, Liu HM, et al. A comprehensive review of emodin in fibrosis treatment[J]. Fitoterapia, 2023, 165: 105358. [百度学术]
Xing XY, Wang XC, He W. Advances in research on tumor immunotherapy and its drug development[J]. J China Pharm Univ (中国药科大学学报), 2021, 52(1): 10-19. [百度学术]
Forma E, Bryś M. Anticancer activity of Propolis and its compounds[J]. Nutrients, 2021, 13(8): 2594. [百度学术]
Saunders IT, Mir H, Kapur N, et al. Emodin inhibits colon cancer by altering BCL-2 family proteins and cell survival pathways[J]. Cancer Cell Int, 2019, 19: 98. [百度学术]
Zhang N, Wang JW, Sheng AM, et al. Emodin inhibits the proliferation of MCF-7 human breast cancer cells through activation of aryl hydrocarbon receptor (AhR)[J]. Front Pharmacol, 2020, 11: 622046. [百度学术]
Li MZ, Jin SB, Cao Y, et al. Emodin regulates cell cycle of non-small lung cancer (NSCLC) cells through hyaluronan synthase 2 (HA2)-HA-CD44/receptor for hyaluronic acid-mediated moti-lity (RHAMM) interaction-dependent signaling pathway[J]. Cancer Cell Int, 2021, 21(1): 19. [百度学术]
Tong HF, Huang Z, Chen H, et al. Emodin reverses gemcitabine resistance of pancreatic cancer cell lines through inhibition of IKKβ/NF-κB signaling pathway[J]. Onco Targets Ther, 2020, 13: 9839-9848. [百度学术]
Zhang FY, Li RZ, Xu C, et al. Emodin induces apoptosis and suppresses non-small-cell lung cancer growth via downregulation of sPLA2-IIa[J]. Phytomedicine, 2022, 95: 153786. [百度学术]
Qin BY, Zeng ZL, Xu JL, et al. Emodin inhibits invasion and migration of hepatocellular carcinoma cells via regulating autophagy-mediated degradation of snail and β-catenin[J]. BMC Cancer, 2022, 22(1): 671. [百度学术]
Ponnusamy L, Kothandan G, Manoharan R. Berberine and Emodin abrogates breast cancer growth and facilitates apoptosis through inactivation of SIK3-induced mTOR and Akt signaling pathway[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(11): 165897. [百度学术]
Jiang J, Zhou NY, Ying P, et al. Emodin promotes apoptosis of human endometrial cancer through regulating the MAPK and PI3K/AKT pathways[J]. Open Life Sci, 2018, 13: 489-496. [百度学术]
Babaei G, Aziz SG, Jaghi NZZ. EMT, cancer stem cells and autophagy; The three main axes of metastasis[J]. Biomedecine Pharmacother, 2021, 133: 110909. [百度学术]
Li N, Wang CL, Zhang P, et al. Emodin inhibits pancreatic cancer EMT and invasion by up‑regulating microRNA‑1271[J]. Mol Med Rep, 2018, 18(3): 3366-3374. [百度学术]
Liu Q, Hodge J, Wang JF, et al. Emodin reduces breast cancer lung metastasis by suppressing macrophage-induced breast cancer cell epithelial-mesenchymal transition and cancer stem cell formation[J]. Theranostics, 2020, 10(18): 8365-8381. [百度学术]
Gu J, Cui CF, Yang L, et al. Emodin inhibits colon cancer cell invasion and migration by suppressing epithelial-mesenchymal transition via the Wnt/β-catenin pathway[J]. Oncol Res, 2019, 27(2): 193-202. [百度学术]
Yin J, Zhao XS, Chen XJ, et al. Emodin suppresses hepatocellular carcinoma growth by regulating macrophage polarization via microRNA-26a/transforming growth factor beta 1/protein kinase B[J]. Bioengineered, 2022, 13(4): 9548-9563. [百度学术]
Dai GL, Wang D, Ma ST, et al. ACSL4 promotes colorectal cancer and is a potential therapeutic target of emodin[J]. Phytomedicine, 2022, 102: 154149. [百度学术]
Majidpoor J, Mortezaee K. Angiogenesis as a hallmark of solid tumors - clinical perspectives[J]. Cell Oncol, 2021, 44(4): 715-737. [百度学术]
Zou GY, Zhang XT, Wang L, et al. Herb-sourced emodin inhibits angiogenesis of breast cancer by targeting VEGFA transcription[J]. Theranostics, 2020, 10(15): 6839-6853. [百度学术]
Shi GH, Zhou L. Emodin suppresses angiogenesis and metastasis in anaplastic thyroid cancer by affecting TRAF6‑mediated pathways in vivo and in vitro[J]. Mol Med Rep, 2018, 18(6): 5191-5197. [百度学术]
Deng ZY, Liu SY. Inflammation-responsive delivery systems for the treatment of chronic inflammatory diseases[J]. Drug Deliv Transl Res, 2021, 11(4): 1475-1497. [百度学术]
Mei HX, Tao Y, Zhang TH, et al. Emodin alleviates LPS-induced inflammatory response in lung injury rat by affecting the function of granulocytes[J]. J Inflamm, 2020, 17: 26. [百度学术]
Xie P, Yan LJ, Zhou HL, et al. Emodin protects against lipopolysaccharide-induced acute lung injury via the JNK/Nur77/c-Jun signaling pathway[J]. Front Pharmacol, 2022, 13: 717271. [百度学术]
Li XQ, Shan C, Wu ZH, et al. Emodin alleviated pulmonary inflammation in rats with LPS-induced acute lung injury through inhibiting the mTOR/HIF-1α/VEGF signaling pathway[J]. Inflamm Res, 2020, 69(4): 365-373. [百度学术]
Wu XJ, Yao JQ, Hu Q, et al. Emodin ameliorates acute pancreatitis-associated lung injury through inhibiting the alveolar macrophages pyroptosis[J]. Front Pharmacol, 2022, 13: 873053. [百度学术]
Zhang QK, Tao XF, Xia SL, et al. Emodin attenuated severe acute pancreatitis via the P2X ligand‑gated ion channel7/NOD‑like receptor protein3 signaling pathway[J]. Oncol Rep, 2019, 41(1): 270-278. [百度学术]
Lin J, Ma C, Lin H. Emodin alleviates viral myocarditis in BALB/c mice and underlying mechanisms[J]. Lat Am J Pharm, 2019, 38(10): 1979-1984. [百度学术]
Luo S, Deng XL, Liu Q, et al. Emodin ameliorates ulcerative colitis by the flagellin-TLR5 dependent pathway in mice[J]. Int Immunopharmacol, 2018, 59: 269-275. [百度学术]
Reijnders TDY, Saris A, Schultz MJ, et al. Immunomodulation by macrolides: therapeutic potential for critical care[J]. Lancet Respir Med, 2020, 8(6): 619-630. [百度学术]
Cui YR, Bu ZQ, Yu HY, et al. Emodin attenuates inflammation and demyelination in experimental autoimmune encephalomyelitis[J]. Neural Regen Res, 2023, 18(7): 1535-1541. [百度学术]
Zheng KN, Lv BJ, Wu LL, et al. Protecting effect of emodin in experimental autoimmune encephalomyelitis mice by inhibiting microglia activation and inflammation via Myd88/PI3K/Akt/NF-κB signalling pathway[J]. Bioengineered, 2022, 13(4): 9322-9344. [百度学术]
Ding Y, Xu J, Cheng LB, et al. Effect of emodin on coxsackievirus B3m-mediated encephalitis in hand, foot, and mouth disease by inhibiting toll-like receptor 3 pathway in vitro and in vivo[J]. J Infect Dis, 2020, 222(3): 443-455. [百度学术]
Mabwi HA, Lee HJ, Hitayezu E, et al. Emodin modulates gut microbial community and triggers intestinal immunity[J]. J Sci Food Agric, 2023, 103(3): 1273-1282. [百度学术]
Zhou Q, Xiang H, Liu H, et al. Emodin alleviates intestinal barrier dysfunction by inhibiting apoptosis and regulating the immune response in severe acute pancreatitis[J]. Pancreas, 2021, 50(8): 1202-1211. [百度学术]
Huy TXN, Reyes AWB, Hop HT, et al. Emodin successfully inhibited invasion of Brucella abortus via modulting adherence, microtubule dynamics and ERK signaling pathway in RAW 264.7 cells[J]. J Microbiol Biotechnol, 2018, 28(10): 1723-1729. [百度学术]
Gao RJ, Wang CJ, Han A, et al. Emodin improves intestinal health and immunity through modulation of gut microbiota in mice infected by pathogenic Escherichia coli O1[J]. Animals, 2021, 11(11): 3314. [百度学术]
Bei YF, Tia BY, Li YZ, et al. Anti-influenza A virus effects and mechanisms of emodin and its analogs via regulating PPARα/γ-AMPK-SIRT1 pathway and fatty acid metabolism[J]. Biomed Res Int, 2021, 2021: 9066938. [百度学术]
Xu ZC, Huang MY, Xia YB, et al. Emodin from Aloe inhibits Porcine reproductive and respiratory syndrome virus via Toll-like receptor 3 activation[J]. Viruses, 2021, 13(7): 1243. [百度学术]
Rolta R, Kumar V, Sourirajan A, et al. Bioassay guided fractionation of rhizome extract of Rheum emodi wall as bio-availability enhancer of antibiotics against bacterial and fungal pathogens[J]. J Ethnopharmacol, 2020, 257: 112867. [百度学术]
Batista MN, Braga ACS, Campos GRF, et al. Natural products isolated from oriental medicinal herbs inactivate zika virus[J]. Viruses, 2019, 11(1): 49. [百度学术]
Guo YY, Zhang RZ, Li WL. Emodin in cardiovascular disease: the role and therapeutic potential[J]. Front Pharmacol, 2022, 13: 1070567. [百度学术]
Wang XJ, Zhang L, Feng MW, et al. ELA-11 protects the heart against oxidative stress injury induced apoptosis through ERK/MAPK and PI3K/AKT signaling pathways[J]. Front Pharmacol, 2022, 13: 873614. [百度学术]
Liu JF, Ning L. Protective role of emodin in rats with post-myocardial infarction heart failure and influence on extracellular signal-regulated kinase pathway[J]. Bioengineered, 2021, 12(2): 10246-10253. [百度学术]
Zhang XZ, Qin QJ, Dai HY, et al. Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression[J]. Braz J Med Biol Res, 2019, 52(3): e7994. [百度学术]
Hou K, Tan HY, Liu J, et al. Advance of novel target strategies participating in myocardial ischemia reperfusion injury[J]. J China Pharm Univ (中国药科大学学报), 2022, 53(2): 164-170. [百度学术]
Ye BZ, Chen XD, Dai SS, et al. Emodin alleviates myocardial ischemia/reperfusion injury by inhibiting gasdermin D-mediated pyroptosis in cardiomyocytes[J]. Drug Des Devel Ther, 2019, 13: 975-990. [百度学术]
Zhang XZ, Qin QJ, Lv XH, et al. Natural emodin reduces myocardial ischemia/reperfusion injury by modulating the RUNX1/miR‑142‑3p/DRD2 pathway and attenuating inflammation[J]. Exp Ther Med, 2022, 24(6): 745. [百度学术]
Marian AJ. Molecular genetic basis of hypertrophic cardiomyopathy[J]. Circ Res, 2021, 128(10): 1533-1553. [百度学术]
Gao J, Zhang KL, Wang Y, et al. A machine learning-driven study indicates emodin improves cardiac hypertrophy by modulation of mitochondrial SIRT3 signaling[J]. Pharmacol Res, 2020, 155: 104739. [百度学术]
Evans LW, Bender A, Burnett L, et al. Emodin and emodin-rich rhubarb inhibits histone deacetylase (HDAC) activity and cardiac myocyte hypertrophy[J]. J Nutr Biochem, 2020, 79: 108339. [百度学术]
Evans L, Shen Y, Bender A, et al. Divergent and overlapping roles for selected phytochemicals in the regulation of pathological cardiac hypertrophy[J]. Molecules, 2021, 26(5): 1210. [百度学术]
Chen Q, Lai CC, Chen F, et al. Emodin protects SH-SY5Y cells against zinc-induced synaptic impairment and oxidative stress through the ERK1/2 pathway[J]. Front Pharmacol, 2022, 13: 821521. [百度学术]
Leung SW, Lai JH, Wu JCC, et al. Neuroprotective effects of emodin against ischemia/reperfusion injury through activating ERK-1/2 signaling pathway[J]. Int J Mol Sci, 2020, 21(8): 2899. [百度学术]
Du CW, Shi LN, Wang M, et al. Emodin attenuates Alzheimer’s disease by activating the protein kinase C signaling pathway[J]. Cell Mol Biol, 2019, 65(5): 32-37. [百度学术]
Li ZP, Bi H, Jiang HB, et al. Neuroprotective effect of emodin against Alzheimer’s disease via Nrf2 signaling in U251cells and APP/PS1 mice[J]. Mol Med Rep, 2021, 23(2): 108. [百度学术]
Zeng P, Shi Y, Wang XM, et al. Emodin rescued hyperhomocysteinemia-induced dementia and Alzheimer’s disease-like features in rats[J]. Int J Neuropsychopharmacol, 2019, 22(1): 57-70. [百度学术]
Simöes Da Gama C, Morin-Brureau M. Study of BBB dysregulation in neuropathogenicity using integrative human model of blood-brain barrier[J]. Front Cell Neurosci, 2022, 16: 863836. [百度学术]
Li Y, Xu QQ, Shan CS, et al. Combined use of emodin and ginsenoside Rb1 exerts synergistic neuroprotection in cerebral ischemia/reperfusion rats[J]. Front Pharmacol, 2018, 9: 943. [百度学术]
Lv BJ, Zheng KN, Sun YF, et al. Network pharmacology experiments show that emodin can exert a protective effect on MCAO rats by regulating Hif-1α/VEGF-A signaling[J]. ACS Omega, 2022, 7(26): 22577-22593. [百度学术]
Sun L, Han YQ, Shen CQ, et al. Emodin alleviates high glucose-induced oxidative stress, inflammation and extracellular matrix accumulation of mesangial cells by the circ_0000064/miR-30c-5p/Lmp7 axis[J]. J Recept Signal Transduct Res, 2022, 42(3): 302-312. [百度学术]
Fu SJ, Zhou YN, Hu C, et al. Network pharmacology and molecular docking technology-based predictive study of the active ingredients and potential targets of rhubarb for the treatment of diabetic nephropathy[J]. BMC Complement Med Ther, 2022, 22(1): 210. [百度学术]
Wang YQ, Liu Q, Cai JY, et al. Emodin prevents renal ischemia-reperfusion injury via suppression of CAMKII/DRP1-mediated mitochondrial fission[J]. Eur J Pharmacol, 2022, 916: 174603. [百度学术]
Liu Y, Li MQ, Teh L, et al. Emodin-mediated treatment of acute kidney injury[J]. Evid Based Complement Alternat Med, 2022, 2022: 5699615. [百度学术]
Aspray TJ, Hill TR. Osteoporosis and the ageing skeleton[J]. Subcell Biochem, 2019, 91: 453-476. [百度学术]
Luo JS, Zhao XH, Yang Y. Effects of emodin on inflammatory bowel disease-related osteoporosis[J]. Biosci Rep, 2020, 40(1): BSR20192317. [百度学术]
Ding QH, Ye CY, Chen EM, et al. Emodin ameliorates cartilage degradation in osteoarthritis by inhibiting NF-κB and Wnt/β-catenin signaling in-vitro and in-vivo[J]. Int Immunopharmacol, 2018, 61: 222-230. [百度学术]
Liu ZF, Lang Y, Li L, et al. Effect of emodin on chondrocyte viability in an in vitro model of osteoarthritis[J]. Exp Ther Med, 2018, 16(6): 5384-5389. [百度学术]
Liang BY, Gao LY, Wang FX, et al. The mechanism research on the anti-liver fibrosis of emodin based on network pharmacology[J]. IUBMB Life, 2021, 73(9): 1166-1179. [百度学术]
Yao H, He QM, Huang C, et al. Panaxatriol saponin ameliorates myocardial infarction-induced cardiac fibrosis by targeting Keap1/Nrf2 to regulate oxidative stress and inhibit cardiac-fibroblast activation and proliferation[J]. Free Radic Biol Med, 2022, 190: 264-275. [百度学术]
Carver W, Fix E, Fix C, et al. Effects of emodin, a plant-derived anthraquinone, on TGF-β1-induced cardiac fibroblast activation and function[J]. J Cell Physiol, 2021, 236(11): 7440-7449. [百度学术]
Xiao D, Zhang Y, Wang R, et al. Emodin alleviates cardiac fibrosis by suppressing activation of cardiac fibroblasts via upregulating metastasis associated protein 3[J]. Acta Pharm Sin B, 2019, 9(4): 724-733. [百度学术]
Yang J, Jiang GD, Ni KW, et al. Emodin inhibiting epithelial-mesenchymal transition in pulmonary fibrosis through the c-MYC/miR-182-5p/ZEB2 axis[J]. Phytother Res, 2023, 37(3): 926-934. [百度学术]
Pang XR, Shao LL, Nie XJ, et al. Emodin attenuates silica-induced lung injury by inhibition of inflammation, apoptosis and epithelial-mesenchymal transition[J]. Int Immunopharmacol, 2021, 91: 107277. [百度学术]
Zhou LS, Gao RD, Hong HH, et al. Emodin inhibiting neutrophil elastase-induced epithelial-mesenchymal transition through Notch1 signalling in alveolar epithelial cells[J]. J Cell Mol Med, 2020, 24(20): 11998-12007. [百度学术]
Liu XZ, Song B, Zhang HQ, et al. The effects of emodin on insulin resistance in KKAy mice with diabetes mellitus[J]. Pharmacogn Mag, 2018, 14(56): 344. [百度学术]
Xiao D, Hu YY, Fu YJ, et al. Emodin improves glucose metabolism by targeting microRNA-20b in insulin-resistant skeletal muscle[J]. Phytomedicine, 2019, 59: 152758. [百度学术]
Xiong XL, Ding Y, Chen ZL, et al. Emodin rescues intrahepatic cholestasis via stimulating FXR/BSEP pathway in promoting the canalicular export of accumulated bile[J]. Front Pharmacol, 2019, 10: 522. [百度学术]
Wang SX, Kong X, Chen N, et al. Hepatotoxic metabolites in Polygoni multiflori radix- comparative toxicology in mice[J]. Front Pharmacol, 2022, 13: 1007284. [百度学术]
Sun J, Xu ZS, Hou Y, et al. Hierarchically structured microcapsules for oral delivery of emodin and tanshinone IIA to treat renal fibrosis[J]. Int J Pharm, 2022, 616: 121490. [百度学术]