Citation: | LIU Yanhong, ZHOU Jianping, HUO Meirong. Advances in the tumor microenvironment-responsive smart drug delivery nanosystem[J]. Journal of China Pharmaceutical University, 2016, 47(2): 125-133. DOI: 10.11665/j.issn.1000-5048.20160201 |
[1] |
Wicki A,Witzigmann D,Balasubramanian V,et al.Nanomedicine in cancer therapy:challenges,opportunities,and clinical applications[J].J Control Release,2015,200:138-157.
|
[2] |
Markman JL,Rekechenetskiy A,Holler E,et al.Nanomedicine therapeutic approaches to overcome cancer drug resistance[J].Adv Drug Deliv Rev,2013,65(13/14):1866-1879.
|
[3] |
Shapira A,Livney YD,Broxterman HJ,et al.Nanomedicine for targeted cancer therapy:towards the overcoming of drug resistance[J].Drug Resist Updat,2011,14(3):150-163.
|
[4] |
Yin TJ,Wang L,Yin LF,et al.Co-delivery of hydrophobic paclitaxel and hydrophilic AURKA specific siRNA by redox-sensitive micelles for effective treatment of breast cancer[J].Biomaterials,2015,61:10-25.
|
[5] |
Cheng R,Meng F,Deng C,et al.Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy[J].Nano Today,2015,10(5):656-670.
|
[6] |
Gribble FM,Loussouarn G,Tucker SJ,et al.A novel method for measurement of submembrane ATP concentration[J].J Biol Chem,2000,275(39):30046-30049.
|
[7] |
Gorman MW,Feigl EO,Buffington CW.Human plasma ATP concentration[J].Clin Chem,2007,53(2):318-325.
|
[8] |
Liu J,Huang Y,Kumar A,et al.pH-Sensitive nano-systems for drug delivery in cancer therapy[J].Biotechnol Adv,2014,32(4):693-710.
|
[9] |
Koren E,Apte A,Jani A,et al.Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity[J]. J Control Release,2012,160(2):264-273.
|
[10] |
Guan XW,Li Y,Jiao ZX,et al.A pH-sensitive charge-conversion system for doxorubicin delivery[J].Acta Biomater,2013,9(8):7672-7678.
|
[11] |
Hu J,Miura S,Na K,et al.pH-responsive and charge shielded cationic micelle of poly( l -histidine)- block -short branched PEI for acidic cancer treatment[J].J Control Release,2013,172(1):69-76.
|
[12] |
Pourjavadi A,Tehrani ZM.Mesoporous silica nanoparticles with bilayer coating of poly(acrylic acid-co-itaconic acid)and human serum albumin(HSA):a pH-sensitive carrier for gemcitabine delivery[J].Mater Sci Eng C Mater Biol Appl,2016,61:782-790.
|
[13] |
Nakase I,Futaki S.Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes[J].Sci Rep,2015,5:10112.
|
[14] |
de la Rica R,Aili D,Stevens MM.Enzyme-responsive nanoparticles for drug release and diagnostics[J].Adv Drug Deliv Rev,2012,64(11):967-978.
|
[15] |
Veiman KL,Künnapuu K,Lehto T,et al.PEG shielded MMP sensitive CPPs for efficient and tumor specific gene delivery in vivo[J].J Control Release,2015,209:238-247.
|
[16] |
Liu JJ,Zhang BL,Luo Z,et al.Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo[J].Nanoscale,2015,7(8):3614-3626.
|
[17] |
Wong C,Stylianopoulos T,Cui J,et al.Multistage nanoparticle delivery system for deep penetration into tumor tissue[J].Proc Natl Acad Sci U S A,2011,108(6):2426-2431.
|
[18] |
Zhu L,Perche F,Wang T,et al.Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs[J].Biomaterials,2014,35(13):4213-4222.
|
[19] |
Jiang YY,Hu LQ.Peptide conjugates of 4-aminocyclophosphamide as prodrugs of phosphoramide mustard for selective activation by prostate-specific antigen(PSA)[J].Bioorg Med Chem,2013,21(23):7507-7514.
|
[20] |
Kavosi B,Salimi A,Hallaj R,et al.A highly sensitive prostate-specific antigen immunosensor based on gold nanoparticles/PAMAM dendrimer loaded on MWCNTS/chitosan/ionic liquid nanocomposite[J].Biosens Bioelectron,2014,52:20-28.
|
[21] |
Cheng YJ,Luo GF,Zhu JY,et al.Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles[J].ACS Appl Mater Interfaces,2015,7(17):9078-9087.
|
[22] |
Tian JW,Ding L,Wang QB,et al.Folate receptor-targeted and cathepsin B-activatable nanoprobe for in situ therapeutic monitoring of photosensitive cell death[J].Anal Chem,2015,87(7):3841-3848.
|
[23] |
Arouri A,Mouritsen OG.Phospholipase A(2)-susceptible liposomes of anticancer double lipid-prodrugs[J].Eur J Pharm Sci,2012,45(4):408-420.
|
[24] |
Aili D,Mager M,Roche D,et al.Hybrid nanoparticle-liposome detection of phospholipase activity[J].Nano Lett,2011,11(4):1401-1405.
|
[25] |
Mock JN,Costyn LJ,Wilding SL,et al.Evidence for distinct mechanisms of uptake and antitumor activity of secretory phospholipase A2 responsive liposome in prostate cancer[J].Integr Biol(Camb),2013,5(1):172-182.
|
[26] |
Bernardos A, Mondragon L, Aznar E, et al. Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”[J].ACS Nano,2010,4(11):6353-6368.
|
[27] |
Kanapathipillai M,Mammoto A,Mammoto T,et al.Inhibition of mammary tumor growth using lysyl oxidase-targeting nanoparticles to modify extracellular matrix[J].Nano Lett,2012,12(6):3213-3217.
|
[28] |
Talelli M,Morita K,Rijcken CJ.Synthesis and characterization of biodegradable and thermosensitive polymeric micelles with covalently bound doxorubicin-glucuronide prodrug via click chemistry[J].Bioconjug Chem,2011,(22):2519-2530.
|
[29] |
Huang SH,Fang R,Xu J,et al.Evaluation of the tumor targeting of a FAPα-based doxorubicin prodrug[J].J Drug Target,2011,19(7):487-496.
|
[30] |
Zhang X,Gao XD.Tumor microenvironment:a novel target for antitumor activity of polysaccharides[J].J China Pharm Univ(中国药科大学学报),2010,41(1):1-10.
|
[31] |
Meng FH,Hennink WE,Zhong ZY.Reduction-sensitive polymers and bioconjugates for biomedical applications[J].Biomaterials,2009,30(12):2180-2198.
|
[32] |
Ma N,Li Y,Xu HP,et al.Dual redox responsive assemblies formed from diselenide block copolymers[J].J Am Chem Soc,2010,132(2):442-443.
|
[33] |
Zeng XL,Zhou XY,Li MY,et al.Redox poly(ethylene glycol)-b-poly(L-lactide)micelles containing diselenide bonds for effective drug delivery[J].J Mater Sci Mater Med,2015,26(9):234.
|
[34] |
Baldwin AD,Kiick KL.Reversible maleimide-thiol adducts yield glutathione-sensitive poly(ethylene glycol)-heparin hydrogels[J].Polym Chem,2013,4(1):133-143.
|
[35] |
Li J,Huo M,Wang J,et al.Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel[J].Biomaterials,2012,33(7):2310-2320.
|
[36] |
Wang Z,Liu H,Shu X,et al.A reduction-degradable polymer prodrug for cisplatin delivery:preparation,in vitro and in vivo evaluation[J].Colloids Surf B Biointerfaces,2015,136:160-167.
|
[37] |
Lin D,Jiang Q,Cheng Q,et al.Polycation-detachable nanoparticles self-assembled from mPEG-PCL-g-SS-PDMAEMA for in vitro and in vivo siRNA delivery[J].Acta Biomater,2013,9(8):7746-7757.
|
[38] |
Zhang A,Zhang Z,Shi F,et al.Redox-sensitive shell-crosslinked polypeptide-block-polysaccharide micelles for efficient intracellular anticancer drug delivery[J].Macromol Biosci,2013,13(9):1249-1258.
|
[39] |
Huang Y,Sun R,Luo QJ,et al.In situ fabrication of paclitaxel-loaded core-crosslinked micelles via thiol-ene “click” chemistry for reduction-responsive drug release[J].J Polym Sci Part A:Polym Chem,2016,54(1):99-107.
|
[40] |
Chen W,Zheng M,Meng FH,et al.In situ forming reduction-sensitive degradable nanogels for facile loading and triggered intracellular release of proteins[J].Biomacromolecules,2013,14(4):1214-1222.
|
[41] |
Ohshima H,Tatemichi M,Sawa T.Chemical basis of inflammation-induced carcinogenesis[J].Arch Biochem Biophys,2003,417(1):3-11.
|
[42] |
Gupta SC,Hevia D,Patchva S,et al.Upsides and downsides of reactive oxygen species for cancer:the roles of reactive oxygen species in tumorigenesis,prevention,and therapy[J].Antioxid Redox Signal,2012,16(11):1295-1322.
|
[43] |
Lee SH,Gupta MK,Bang JB,et al.Current progress in reactive oxygen species(ROS)-responsive materials for biomedical applications[J].Adv Healthc Mater,2013,2(6):908-915.
|
[44] |
Gupta MK, Meyer TA, Nelson CE, et al. Poly(PS-b-DMA)micelles for reactive oxygen species triggered drug release[J].J Control Release,2012,162(3):591-598.
|
[45] |
Cheng X,Jin Y,Sun T,et al.An injectable,dual pH and oxidation-responsive supramolecular hydrogel for controlled dual drug delivery[J].Colloids Surf B Biointerfaces,2016,141:44-52.
|
[46] |
Song CC, Ji R, Du FS, et al. Oxidation-responsive poly(amino ester)s containing arylboronic ester and self-immolative motif:synthesis and degradation study[J].Macromolecules,2013,46(21):8416-8425.
|
[47] |
He X,Zhao Y,He D,et al.ATP-responsive controlled release system using aptamer-functionalized mesoporous silica nanoparticles[J].Langmuir,2012,28(35):12909-12915.
|
[48] |
Mo R, Jiang T, Sun W, et al. ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery[J].Biomaterials,2015,50(1):67-74.
|