• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
LIU Yanhong, ZHOU Jianping, HUO Meirong. Advances in the tumor microenvironment-responsive smart drug delivery nanosystem[J]. Journal of China Pharmaceutical University, 2016, 47(2): 125-133. DOI: 10.11665/j.issn.1000-5048.20160201
Citation: LIU Yanhong, ZHOU Jianping, HUO Meirong. Advances in the tumor microenvironment-responsive smart drug delivery nanosystem[J]. Journal of China Pharmaceutical University, 2016, 47(2): 125-133. DOI: 10.11665/j.issn.1000-5048.20160201

Advances in the tumor microenvironment-responsive smart drug delivery nanosystem

More Information
  • With the rapid development of nanotechnology and in-depth understanding of tumor microenvironment, stimuli-responsive smart drug delivery nanosystem based on tumor microenvironment(TME)has received extensive attention. TME-responsive smart delivery nanosystem can transport antitumor drug in circulation stably, after arriving in tumor tissue or targeted cells, the structure of nanocarriers changes under the stimuli of TME. Improved drug concentrations in targeted site significantly increase the antitumor efficiency and reduce the side effects of drugs. The stimulating factors in the TME include pH, redox potential, enzyme, reactive oxygen species(ROS), adenosine-5′-triphosphate(ATP)and so on. This review mainly gives a comprehensive overview in the latest research and new development in TME-responsive smart drug delivery nanosystems for efficient tumor therapy, mainly based on pH response type, enzyme response, reduction response, ROS response, and ATP response smart drug delivery nanosystems. Moreover, research directions in the future are pointed out in this review.
  • [1]
    Wicki A,Witzigmann D,Balasubramanian V,et al.Nanomedicine in cancer therapy:challenges,opportunities,and clinical applications[J].J Control Release,2015,200:138-157.
    [2]
    Markman JL,Rekechenetskiy A,Holler E,et al.Nanomedicine therapeutic approaches to overcome cancer drug resistance[J].Adv Drug Deliv Rev,2013,65(13/14):1866-1879.
    [3]
    Shapira A,Livney YD,Broxterman HJ,et al.Nanomedicine for targeted cancer therapy:towards the overcoming of drug resistance[J].Drug Resist Updat,2011,14(3):150-163.
    [4]
    Yin TJ,Wang L,Yin LF,et al.Co-delivery of hydrophobic paclitaxel and hydrophilic AURKA specific siRNA by redox-sensitive micelles for effective treatment of breast cancer[J].Biomaterials,2015,61:10-25.
    [5]
    Cheng R,Meng F,Deng C,et al.Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy[J].Nano Today,2015,10(5):656-670.
    [6]
    Gribble FM,Loussouarn G,Tucker SJ,et al.A novel method for measurement of submembrane ATP concentration[J].J Biol Chem,2000,275(39):30046-30049.
    [7]
    Gorman MW,Feigl EO,Buffington CW.Human plasma ATP concentration[J].Clin Chem,2007,53(2):318-325.
    [8]
    Liu J,Huang Y,Kumar A,et al.pH-Sensitive nano-systems for drug delivery in cancer therapy[J].Biotechnol Adv,2014,32(4):693-710.
    [9]
    Koren E,Apte A,Jani A,et al.Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity[J]. J Control Release,2012,160(2):264-273.
    [10]
    Guan XW,Li Y,Jiao ZX,et al.A pH-sensitive charge-conversion system for doxorubicin delivery[J].Acta Biomater,2013,9(8):7672-7678.
    [11]
    Hu J,Miura S,Na K,et al.pH-responsive and charge shielded cationic micelle of poly( l -histidine)- block -short branched PEI for acidic cancer treatment[J].J Control Release,2013,172(1):69-76.
    [12]
    Pourjavadi A,Tehrani ZM.Mesoporous silica nanoparticles with bilayer coating of poly(acrylic acid-co-itaconic acid)and human serum albumin(HSA):a pH-sensitive carrier for gemcitabine delivery[J].Mater Sci Eng C Mater Biol Appl,2016,61:782-790.
    [13]
    Nakase I,Futaki S.Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes[J].Sci Rep,2015,5:10112.
    [14]
    de la Rica R,Aili D,Stevens MM.Enzyme-responsive nanoparticles for drug release and diagnostics[J].Adv Drug Deliv Rev,2012,64(11):967-978.
    [15]
    Veiman KL,Künnapuu K,Lehto T,et al.PEG shielded MMP sensitive CPPs for efficient and tumor specific gene delivery in vivo[J].J Control Release,2015,209:238-247.
    [16]
    Liu JJ,Zhang BL,Luo Z,et al.Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo[J].Nanoscale,2015,7(8):3614-3626.
    [17]
    Wong C,Stylianopoulos T,Cui J,et al.Multistage nanoparticle delivery system for deep penetration into tumor tissue[J].Proc Natl Acad Sci U S A,2011,108(6):2426-2431.
    [18]
    Zhu L,Perche F,Wang T,et al.Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs[J].Biomaterials,2014,35(13):4213-4222.
    [19]
    Jiang YY,Hu LQ.Peptide conjugates of 4-aminocyclophosphamide as prodrugs of phosphoramide mustard for selective activation by prostate-specific antigen(PSA)[J].Bioorg Med Chem,2013,21(23):7507-7514.
    [20]
    Kavosi B,Salimi A,Hallaj R,et al.A highly sensitive prostate-specific antigen immunosensor based on gold nanoparticles/PAMAM dendrimer loaded on MWCNTS/chitosan/ionic liquid nanocomposite[J].Biosens Bioelectron,2014,52:20-28.
    [21]
    Cheng YJ,Luo GF,Zhu JY,et al.Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles[J].ACS Appl Mater Interfaces,2015,7(17):9078-9087.
    [22]
    Tian JW,Ding L,Wang QB,et al.Folate receptor-targeted and cathepsin B-activatable nanoprobe for in situ therapeutic monitoring of photosensitive cell death[J].Anal Chem,2015,87(7):3841-3848.
    [23]
    Arouri A,Mouritsen OG.Phospholipase A(2)-susceptible liposomes of anticancer double lipid-prodrugs[J].Eur J Pharm Sci,2012,45(4):408-420.
    [24]
    Aili D,Mager M,Roche D,et al.Hybrid nanoparticle-liposome detection of phospholipase activity[J].Nano Lett,2011,11(4):1401-1405.
    [25]
    Mock JN,Costyn LJ,Wilding SL,et al.Evidence for distinct mechanisms of uptake and antitumor activity of secretory phospholipase A2 responsive liposome in prostate cancer[J].Integr Biol(Camb),2013,5(1):172-182.
    [26]
    Bernardos A, Mondragon L, Aznar E, et al. Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”[J].ACS Nano,2010,4(11):6353-6368.
    [27]
    Kanapathipillai M,Mammoto A,Mammoto T,et al.Inhibition of mammary tumor growth using lysyl oxidase-targeting nanoparticles to modify extracellular matrix[J].Nano Lett,2012,12(6):3213-3217.
    [28]
    Talelli M,Morita K,Rijcken CJ.Synthesis and characterization of biodegradable and thermosensitive polymeric micelles with covalently bound doxorubicin-glucuronide prodrug via click chemistry[J].Bioconjug Chem,2011,(22):2519-2530.
    [29]
    Huang SH,Fang R,Xu J,et al.Evaluation of the tumor targeting of a FAPα-based doxorubicin prodrug[J].J Drug Target,2011,19(7):487-496.
    [30]
    Zhang X,Gao XD.Tumor microenvironment:a novel target for antitumor activity of polysaccharides[J].J China Pharm Univ(中国药科大学学报),2010,41(1):1-10.
    [31]
    Meng FH,Hennink WE,Zhong ZY.Reduction-sensitive polymers and bioconjugates for biomedical applications[J].Biomaterials,2009,30(12):2180-2198.
    [32]
    Ma N,Li Y,Xu HP,et al.Dual redox responsive assemblies formed from diselenide block copolymers[J].J Am Chem Soc,2010,132(2):442-443.
    [33]
    Zeng XL,Zhou XY,Li MY,et al.Redox poly(ethylene glycol)-b-poly(L-lactide)micelles containing diselenide bonds for effective drug delivery[J].J Mater Sci Mater Med,2015,26(9):234.
    [34]
    Baldwin AD,Kiick KL.Reversible maleimide-thiol adducts yield glutathione-sensitive poly(ethylene glycol)-heparin hydrogels[J].Polym Chem,2013,4(1):133-143.
    [35]
    Li J,Huo M,Wang J,et al.Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel[J].Biomaterials,2012,33(7):2310-2320.
    [36]
    Wang Z,Liu H,Shu X,et al.A reduction-degradable polymer prodrug for cisplatin delivery:preparation,in vitro and in vivo evaluation[J].Colloids Surf B Biointerfaces,2015,136:160-167.
    [37]
    Lin D,Jiang Q,Cheng Q,et al.Polycation-detachable nanoparticles self-assembled from mPEG-PCL-g-SS-PDMAEMA for in vitro and in vivo siRNA delivery[J].Acta Biomater,2013,9(8):7746-7757.
    [38]
    Zhang A,Zhang Z,Shi F,et al.Redox-sensitive shell-crosslinked polypeptide-block-polysaccharide micelles for efficient intracellular anticancer drug delivery[J].Macromol Biosci,2013,13(9):1249-1258.
    [39]
    Huang Y,Sun R,Luo QJ,et al.In situ fabrication of paclitaxel-loaded core-crosslinked micelles via thiol-ene “click” chemistry for reduction-responsive drug release[J].J Polym Sci Part A:Polym Chem,2016,54(1):99-107.
    [40]
    Chen W,Zheng M,Meng FH,et al.In situ forming reduction-sensitive degradable nanogels for facile loading and triggered intracellular release of proteins[J].Biomacromolecules,2013,14(4):1214-1222.
    [41]
    Ohshima H,Tatemichi M,Sawa T.Chemical basis of inflammation-induced carcinogenesis[J].Arch Biochem Biophys,2003,417(1):3-11.
    [42]
    Gupta SC,Hevia D,Patchva S,et al.Upsides and downsides of reactive oxygen species for cancer:the roles of reactive oxygen species in tumorigenesis,prevention,and therapy[J].Antioxid Redox Signal,2012,16(11):1295-1322.
    [43]
    Lee SH,Gupta MK,Bang JB,et al.Current progress in reactive oxygen species(ROS)-responsive materials for biomedical applications[J].Adv Healthc Mater,2013,2(6):908-915.
    [44]
    Gupta MK, Meyer TA, Nelson CE, et al. Poly(PS-b-DMA)micelles for reactive oxygen species triggered drug release[J].J Control Release,2012,162(3):591-598.
    [45]
    Cheng X,Jin Y,Sun T,et al.An injectable,dual pH and oxidation-responsive supramolecular hydrogel for controlled dual drug delivery[J].Colloids Surf B Biointerfaces,2016,141:44-52.
    [46]
    Song CC, Ji R, Du FS, et al. Oxidation-responsive poly(amino ester)s containing arylboronic ester and self-immolative motif:synthesis and degradation study[J].Macromolecules,2013,46(21):8416-8425.
    [47]
    He X,Zhao Y,He D,et al.ATP-responsive controlled release system using aptamer-functionalized mesoporous silica nanoparticles[J].Langmuir,2012,28(35):12909-12915.
    [48]
    Mo R, Jiang T, Sun W, et al. ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery[J].Biomaterials,2015,50(1):67-74.

Catalog

    Article views (2494) PDF downloads (9014) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return