• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
ZOU Yaru, MEI Dong, ZHANG Xiaoyan, WANG Xiaoling, ZHAO Libo, YANG Changqing. Research progress of nanomedicine in pediatric lung diseases[J]. Journal of China Pharmaceutical University, 2020, 51(2): 130-137. DOI: 10.11665/j.issn.1000-5048.20200202
Citation: ZOU Yaru, MEI Dong, ZHANG Xiaoyan, WANG Xiaoling, ZHAO Libo, YANG Changqing. Research progress of nanomedicine in pediatric lung diseases[J]. Journal of China Pharmaceutical University, 2020, 51(2): 130-137. DOI: 10.11665/j.issn.1000-5048.20200202

Research progress of nanomedicine in pediatric lung diseases

More Information
  • Nanomedicine is charactered with a high specific surface area, diversified structure and function, and charged surface. It can realize the targeted therap by functional modification of surface or introducing the stimuli-responsive unit. Therefore, nanomedicine is increasingly being concerned. Because nanomedicine can accumulate efficiently in the lungs, drug delivery systems based on nanotechnology have broad prospects in the field of the diagnosis, prevention, and treatment in pediatric lung diseases. Herein, we reviewed the research progress of nanomedicine in pediatric lung diseases, especially in respiratory syncytial virus infection and cystic fibrosis.
  • [1]
    Siracusa CM,Brewington JJ,Brockbank JC,et al.Update in pediatric lung disease 2014[J].Am J Resp Crit Care,2015,192(8):918-923.
    [2]
    Machado MC,Cheng D,Tarquinio KM,et al.Nanotechnology:pediatric applications[J].Pediatr Res,2010,67(5):500-504.
    [3]
    Tian Y,Chen J,Zahtabi F,et al.Nanomedicine as an innovative therapeutic strategy for pediatric lung diseases[J].Pediatr Pulm,2013,48(11):1098-1111.
    [4]
    Lahiri T,Hempstead SE,Brady C,et al.Clinical practice guidelines from the cystic fibrosis foundation for preschoolers with cystic fibrosis[J].Pediatrics,2016,137(4):e20151784.
    [5]
    Leeder JS, Kearns GL, Spielberg SP, et al. Understanding the relative roles of pharmacogenetics and ontogeny in pediatric drug development and regulatory science[J].J Clin Pharmacol,2010,50(12):1377-1387.
    [6]
    McClements DJ.Encapsulation,protection,and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems:a review[J].Adv Colloid Interface Sci,2018,253:1-22.
    [7]
    Ravindran S, Suthar JK, Rokade R, et al. Pharmacokinetics,metabolism,distribution and permeability of nanomedicine[J].Curr Drug Metab,2018,19(4):327-334.
    [8]
    Belfiore L,Saunders DN,Ranson M,et al.Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy:challenges and opportunities[J].J Control Release,2018,277:1-13.
    [9]
    Mura S,Nicolas J,Couvreur P.Stimuli-responsive nanocarriers for drug delivery[J].Nat Mater,2013,12(11):991-1003.
    [10]
    Hall CB,Weinberg GA,Iwane MK,et al.The burden of respiratory syncytial virus infection in young children[J].N Engl J Med,2009,360(6):588-598.
    [11]
    Mazur NI,Martinon-Torres F,Baraldi E,et al.Lower respiratory tract infection caused by respiratory syncytial virus:current management and new therapeutics[J].Lancet Respir Med,2015,3(11):888-900.
    [12]
    Anderson LJ.Respiratory syncytial virus vaccine development[J].Semin Immunol,2013,25(2):160-171.
    [13]
    Meng J,Stobart CC,Hotard AL,et al.An overview of respiratory syncytial virus[J].PLoS Pathog,2014,10(4):e1004016.
    [14]
    Anderson LJ,Dormitzer PR,Nokes DJ,et al.Strategic priorities for respiratory syncytial virus(RSV)vaccine development[J].Vaccine,2013,31(Suppl 2):B209-B215.
    [15]
    Esposito S,Pietro GD.Respiratory syncytial virus vaccines:an update on those in the immediate pipeline[J].Future Microbiol,2016,11:1479-1490.
    [16]
    Hajj HI,Chams N,Chams S,et al.Vaccines through centuries:major cornerstones of global health[J].Front Public Health,2015,3:269.
    [17]
    Neuzil KM.Progress toward a respiratory syncytial virus vaccine[J].Clin Vaccine Immunol,2016,23(3):186-188.
    [18]
    Pachioni-Vasconcelos JA,Lopes AM,Apolinario AC,et al.Nanostructures for protein drug delivery[J].Biomater Sci,2016,4(2):205-218.
    [19]
    Fredriksen BN,Grip J.PLGA/PLA micro- and nanoparticle formulations serve as antigen depots and induce elevated humoral responses after immunization of atlantic salmon(salmo salarl.)[J].Vaccine,2012,30(3):656-667.
    [20]
    Mamo T,Poland GA.Nanovaccinology:the next generation of vaccines meets 21st century materials science and engineering[J].Vaccine,2012,30(47):6609-6611.
    [21]
    Rivera CA,Gomez RS,Diaz RA,et al.Novel therapies and vaccines against the human respiratory syncytial virus[J].Expert Opin Investig Drugs,2015,24(12):1613-1630.
    [22]
    Lopez-Sagaseta J,Malito E,Rappuoli R,et al.Self-assembling protein nanoparticles in the design of vaccines[J].Comput Struct Biotechnol J,2016,14:58-68.
    [23]
    Ko EJ,Kwon YM,Lee JS,et al.Virus-like nanoparticle and DNA vaccination confers protection against respiratory syncytial virus by modulating innate and adaptive immune cells[J].Nanomedicine-UK,2015,11(1):99-108.
    [24]
    Resch B.Product review on the monoclonal antibody palivizumab for prevention of respiratory syncytial virus infection[J].Hum Vaccin Immunother,2017,13(9):2138-2149.
    [25]
    Roux X,Dubuquoy C,Durand G,et al.Sub-nucleocapsid nanoparticles:a nasal vaccine against respiratory syncytial virus[J].PLoS One,2008,3(3):e1766.
    [26]
    Riffault S,Meyer G,Deplanche M,et al.A new subunit vaccine based on nucleoprotein nanoparticles confers partial clinical and virological protection in calves against bovine respiratory syncytial virus[J].Vaccine,2010,28(21):3722-3734.
    [27]
    Blodorn K,Hagglund S,Fix J,et al.Vaccine safety and efficacy evaluation of a recombinant bovine respiratory syncytial virus(BRSV)with deletion of the SH gene and subunit vaccines based on recombinant human RSV proteins:N-nanorings,P and M2-1,in calves with maternal antibodies[J].PLoS One,2014,9(6):e100392.
    [28]
    Herve PL,Deloizy C,Descamps D,et al.RSV N-nanorings fused to palivizumab-targeted neutralizing epitope as a nanoparticle RSV vaccine[J].Nanomedicine(Lond),2017,13(2):411-420.
    [29]
    Gilbert BE,Patel N,Lu H,et al.Respiratory syncytial virus fusion nanoparticle vaccine immune responses target multiple neutralizing epitopes that contribute to protection against wild-type and palivizumab-resistant mutant virus challenge[J].Vaccine,2018,36(52):8069-8078.
    [30]
    Francica JR,Lynn GM,Laga R,et al.Thermoresponsive polymer nanoparticles co-deliver RSV F trimers with a TLR-7/8 adjuvant[J].Bioconjug Chem,2016,27(10):2372-2385.
    [31]
    Bawage SS,Tiwari PM,Singh A,et al.Gold nanorods inhibit respiratory syncytial virus by stimulating the innate immune response[J].Nanomedicine-UK,2016,12(8):2299-2310.
    [32]
    Al-Halifa S,Gauthier L,Arpin D,et al.Nanoparticle-based vaccines against respiratory viruses[J].Front Immunol,2019,10:22.
    [33]
    Mazur NI,Higgins D,Nunes MC,et al.The respiratory syncytial virus vaccine landscape:lessons from the graveyard and promising candidates[J].Lancet Infect Dis,2018,18(10):e295-e311.
    [34]
    Liu F,Zhang Z,Levit A,et al.Structural identification of a hotspot on CFTR for potentiation[J].Science,2019,364(6446):1184-1188.
    [35]
    Rafeeq MM,Murad H.Cystic fibrosis:current therapeutic targets and future approaches[J].J Transl Med,2017,15(1):84.
    [36]
    Boucher RC.Evidence for airway surface dehydration as the initiating event in CF airway disease[J].J Intern Med,2007,261(1):5-16.
    [37]
    Ong V,Mei V,Cao L,et al.Nanomedicine for cystic fibrosis[J].Slas Technol,2019,24(2):169-180.
    [38]
    Forier K,Messiaen AS,Raemdonck K,et al.Transport of nanoparticles in cystic fibrosis sputum and bacterial biofilms by single-particle tracking microscopy[J].Nanomedicine(Lond),2013,8(6):935-949.
    [39]
    Porsio B,Craparo EF,Mauro N,et al.Mucus and cell-penetrating nanoparticles embedded in nano-into-micro formulations for pulmonary delivery of ivacaftor in patients with cystic fibrosis[J].ACS Appl Mater Interfaces,2018,10(1):165-181.
    [40]
    Nafee N,Forier K,Braeckmans K,et al.Mucus-penetrating solid lipid nanoparticles for the treatment of cystic fibrosis:proof of concept,challenges and pitfalls[J].Eur J Pharm Biopharm,2018,124:125-137.
    [41]
    Burney TJ,Davies JC.Gene therapy for the treatment of cystic fibrosis[J].Appl Clin Genet,2012,5:29-36.
    [42]
    McKiernan PJ, Cunningham O, Greene CM, et al. Targeting miRNA-based medicines to cystic fibrosis airway epithelial cells using nanotechnology[J].Int J Nanomedicine,2013,8:3907-3915.
    [43]
    Suk JS,Kim AJ,Trehan K,et al.Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier[J].J Control Release,2014,178:8-17.
    [44]
    Osman G,Rodriguez J,Chan SY,et al.PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy[J].J Control Release,2018,285:35-45.
    [45]
    Pastor M,Moreno-Sastre M,Esquisabel A,et al.Sodium colistimethate loaded lipid nanocarriers for the treatment of pseudomonas aeruginosa infections associated with cystic fibrosis[J].Int J Pharm,2014,477(1/2):485-494.
    [46]
    Deacon J,Abdelghany SM,Quinn DJ,et al.Antimicrobial efficacy of tobramycin polymeric nanoparticles for pseudomonas aeruginosa infections in cystic fibrosis:formulation,characterisation and functionalisation with dornase alfa(DNase)[J].J Control Release,2015,198:55-61.
    [47]
    Moreno-Sastre M,Pastor M,Esquisabel A,et al.Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for pseudomonas aeruginosa infections associated with cystic fibrosis[J].Int J Pharm,2016,498(1/2):263-273.
    [48]
    Craparo EF,Porsio B,Schillaci D,et al.Polyanion-tobramycin nanocomplexes into functional microparticles for the treatment of pseudomonas aeruginosa infections in cystic fibrosis[J].Nanomedicine(Lond),2017,12(1):25-42.
    [49]
    Alton E,Armstrong DK,Ashby D,et al.Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis:a randomised,double-blind,placebo-controlled,phase 2b trial[J].Lancet Respir Med,2015,3(9):684-691.
    [50]
    Clancy JP,Dupont L,Konstan MW,et al.Phase II studies of nebulised arikace in CF patients with pseudomonas aeruginosa infection[J].Thorax,2013,68(9):818-825.
    [51]
    Doroudian M,MacLoughlin R,Poynton F,et al.Nanotechnology based therapeutics for lung disease[J].Thorax,2019,74(10):965-976.
    [52]
    Tarquinio KM,Kothurkar NK,Goswami DY,et al.Bactericidal effects of silver plus titanium dioxide-coated endotracheal tubes on Pseudomonas aeruginosa and Staphylococcus aureus[J].Int J Nanomedicine,2010,5:177-183.
    [53]
    Machado MC,Webster TJ.Decreased pseudomonas aeruginosa biofilm formation on nanomodified endotracheal tubes:a dynamic lung model[J].Int J Nanomedicine,2016,11:3825-3831.
    [54]
    Seguin RM,Ferrari N.Emerging oligonucleotide therapies for asthma and chronic obstructive pulmonary disease[J].Expert Opin Investig Drugs,2009,18(10):1505-1517.
    [55]
    Wang L,Feng M,Li Q,et al.Advances in nanotechnology and asthma[J].Ann Transl Med,2019,7(8):180.
    [56]
    Chowdhury N.Regulation of nanomedicines in the EU:distilling lessons from the pediatric and the advanced therapy medicinal products approaches[J].Nanomedicine(Lond),2010,5(1):135-142.
    [57]
    Etheridge ML,Campbell SA,Erdman AG,et al.The big picture on nanomedicine:the state of investigational and approved nanomedicine products[J].Nanomedicine-UK,2013,9(1):1-14.
    [58]
    Sosnik A,Seremeta KP,Imperiale JC,et al.Novel formulation and drug delivery strategies for the treatment of pediatric poverty-related diseases[J].Expert Opin Drug Deliv,2012,9(3):303-323.
    [59]
    Kearns GL,Abdel-Rahman SM,Alander SW,et al.Developmental pharmacology-drug disposition,action,and therapy in infants and children[J].N Engl J Med,2003,349(12):1157-1167.
    [60]
    Bowles A,Keane J,Ernest T,et al.Specific aspects of gastro-intestinal transit in children for drug delivery design[J].Int J Pharm,2010,395(1/2):37-43.
    [61]
    Pui CH,Gajjar AJ,Kane JR,et al.Challenging issues in pediatric oncology[J].Nat Rev Clin Oncol,2011,8(9):540-549.
    [62]
    Sly PD,Schuepp K.Nanoparticles and children′s lungs:is there a need for caution[J]?Paediatr Respir Rev,2012,13(2):71-72.
    [63]
    Verschraegen CF,Gilbert BE,Loyer E,et al.Clinical evaluation of the delivery and safety of aerosolized liposomal 9-nitro-20(S)-camptothecin in patients with advanced pulmonary malignancies[J].Clin Cancer Res,2004,10(7):2319-2326.
    [64]
    Okusanya OO,Bhavnani SM,Hammel J,et al.Pharmacokinetic and pharmacodynamic evaluation of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infection[J].Antimicrob Agents Chemother,2009,53(9):3847-3854.
  • Related Articles

    [1]YAO Lei, QU Linlin, FAN Daidi. Effects of rare ginsenoside on idiopathic pulmonary fibrosis[J]. Journal of China Pharmaceutical University, 2023, 54(5): 607-613. DOI: 10.11665/j.issn.1000-5048.2023042002
    [2]QIAN Xiuhui, SUN Jing, FU San, TANG Xiaoyan, XU Xianghong, ZHANG Mian. Effect of intratracheal instillation of PM2.5 suspensionon pulmonary fibrosis in mice and the intervention of neotuberostemonine[J]. Journal of China Pharmaceutical University, 2021, 52(4): 455-462. DOI: 10.11665/j.issn.1000-5048.20210408
    [3]LI Xiaoshi, WU Xunxun, ZHENG Zuguo, YANG Hua, LI Ping. Advances of long noncoding RNAs in myocardial fibrosis[J]. Journal of China Pharmaceutical University, 2020, 51(6): 646-654. DOI: 10.11665/j.issn.1000-5048.20200602
    [4]CAI Yanfei, WAN Aini, CHEN Yun, JIN Jian. Anti-liver fibrosis activities of the extracellular domain of transforming growth factor beta type II receptor fusion protein in vivo[J]. Journal of China Pharmaceutical University, 2019, 50(2): 246-252. DOI: 10.11665/j.issn.1000-5048.20190217
    [5]XIE Weina, DING Qi, SUN Jing, ZHANG Chaofeng, ZHANG Mian, XU Xianghong. Protective effects of Baibu Tang on bleomycin-induced pulmonary fibrosis in mice[J]. Journal of China Pharmaceutical University, 2018, 49(4): 483-489. DOI: 10.11665/j.issn.1000-5048.20180415
    [6]FAN Qianqian, XING Lei, QIAO Jianbin, ZHANG Chenglu, JIANG Hulin. Advances in drug delivery systems for the treatment of liver fibrosis[J]. Journal of China Pharmaceutical University, 2018, 49(3): 263-271. DOI: 10.11665/j.issn.1000-5048.20180302
    [7]ZHAO Limeng, WANG Shuzhen. Therapeutic applications of small molecule kinase inhibitors in liver fibrosis[J]. Journal of China Pharmaceutical University, 2018, 49(2): 147-157. DOI: 10.11665/j.issn.1000-5048.20180203
    [8]XIANG Juan, YU Ping, LI Mingdan, ZHANG Chaofeng, XU Xianghong, ZHANG Mian. Protective effects of stemona alkaloids on mice with bleomycin-induced pulmonary fibrosis[J]. Journal of China Pharmaceutical University, 2017, 48(1): 76-81. DOI: 10.11665/j.issn.1000-5048.20170112
    [9]DAI Li, ZHANG Lu, JI Hui, KONG Xiang-wen. Therapeutic effects of ZK14,a novel nitric oxide donating biphenyldicarboxylate derivative,on hepatic fibrosis in rats[J]. Journal of China Pharmaceutical University, 2009, 40(3): 254-257.
    [10]Danshen Inhibiting Isoproterenol Induced Cardiac Hypertrophy and Fibrosis in Mice and its Mechanisms[J]. Journal of China Pharmaceutical University, 2003, (6): 84-87.

Catalog

    Article views (621) PDF downloads (1262) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return