Citation: | ZOU Yaru, MEI Dong, ZHANG Xiaoyan, WANG Xiaoling, ZHAO Libo, YANG Changqing. Research progress of nanomedicine in pediatric lung diseases[J]. Journal of China Pharmaceutical University, 2020, 51(2): 130-137. DOI: 10.11665/j.issn.1000-5048.20200202 |
[1] |
Siracusa CM,Brewington JJ,Brockbank JC,et al.Update in pediatric lung disease 2014[J].Am J Resp Crit Care,2015,192(8):918-923.
|
[2] |
Machado MC,Cheng D,Tarquinio KM,et al.Nanotechnology:pediatric applications[J].Pediatr Res,2010,67(5):500-504.
|
[3] |
Tian Y,Chen J,Zahtabi F,et al.Nanomedicine as an innovative therapeutic strategy for pediatric lung diseases[J].Pediatr Pulm,2013,48(11):1098-1111.
|
[4] |
Lahiri T,Hempstead SE,Brady C,et al.Clinical practice guidelines from the cystic fibrosis foundation for preschoolers with cystic fibrosis[J].Pediatrics,2016,137(4):e20151784.
|
[5] |
Leeder JS, Kearns GL, Spielberg SP, et al. Understanding the relative roles of pharmacogenetics and ontogeny in pediatric drug development and regulatory science[J].J Clin Pharmacol,2010,50(12):1377-1387.
|
[6] |
McClements DJ.Encapsulation,protection,and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems:a review[J].Adv Colloid Interface Sci,2018,253:1-22.
|
[7] |
Ravindran S, Suthar JK, Rokade R, et al. Pharmacokinetics,metabolism,distribution and permeability of nanomedicine[J].Curr Drug Metab,2018,19(4):327-334.
|
[8] |
Belfiore L,Saunders DN,Ranson M,et al.Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy:challenges and opportunities[J].J Control Release,2018,277:1-13.
|
[9] |
Mura S,Nicolas J,Couvreur P.Stimuli-responsive nanocarriers for drug delivery[J].Nat Mater,2013,12(11):991-1003.
|
[10] |
Hall CB,Weinberg GA,Iwane MK,et al.The burden of respiratory syncytial virus infection in young children[J].N Engl J Med,2009,360(6):588-598.
|
[11] |
Mazur NI,Martinon-Torres F,Baraldi E,et al.Lower respiratory tract infection caused by respiratory syncytial virus:current management and new therapeutics[J].Lancet Respir Med,2015,3(11):888-900.
|
[12] |
Anderson LJ.Respiratory syncytial virus vaccine development[J].Semin Immunol,2013,25(2):160-171.
|
[13] |
Meng J,Stobart CC,Hotard AL,et al.An overview of respiratory syncytial virus[J].PLoS Pathog,2014,10(4):e1004016.
|
[14] |
Anderson LJ,Dormitzer PR,Nokes DJ,et al.Strategic priorities for respiratory syncytial virus(RSV)vaccine development[J].Vaccine,2013,31(Suppl 2):B209-B215.
|
[15] |
Esposito S,Pietro GD.Respiratory syncytial virus vaccines:an update on those in the immediate pipeline[J].Future Microbiol,2016,11:1479-1490.
|
[16] |
Hajj HI,Chams N,Chams S,et al.Vaccines through centuries:major cornerstones of global health[J].Front Public Health,2015,3:269.
|
[17] |
Neuzil KM.Progress toward a respiratory syncytial virus vaccine[J].Clin Vaccine Immunol,2016,23(3):186-188.
|
[18] |
Pachioni-Vasconcelos JA,Lopes AM,Apolinario AC,et al.Nanostructures for protein drug delivery[J].Biomater Sci,2016,4(2):205-218.
|
[19] |
Fredriksen BN,Grip J.PLGA/PLA micro- and nanoparticle formulations serve as antigen depots and induce elevated humoral responses after immunization of atlantic salmon(salmo salarl.)[J].Vaccine,2012,30(3):656-667.
|
[20] |
Mamo T,Poland GA.Nanovaccinology:the next generation of vaccines meets 21st century materials science and engineering[J].Vaccine,2012,30(47):6609-6611.
|
[21] |
Rivera CA,Gomez RS,Diaz RA,et al.Novel therapies and vaccines against the human respiratory syncytial virus[J].Expert Opin Investig Drugs,2015,24(12):1613-1630.
|
[22] |
Lopez-Sagaseta J,Malito E,Rappuoli R,et al.Self-assembling protein nanoparticles in the design of vaccines[J].Comput Struct Biotechnol J,2016,14:58-68.
|
[23] |
Ko EJ,Kwon YM,Lee JS,et al.Virus-like nanoparticle and DNA vaccination confers protection against respiratory syncytial virus by modulating innate and adaptive immune cells[J].Nanomedicine-UK,2015,11(1):99-108.
|
[24] |
Resch B.Product review on the monoclonal antibody palivizumab for prevention of respiratory syncytial virus infection[J].Hum Vaccin Immunother,2017,13(9):2138-2149.
|
[25] |
Roux X,Dubuquoy C,Durand G,et al.Sub-nucleocapsid nanoparticles:a nasal vaccine against respiratory syncytial virus[J].PLoS One,2008,3(3):e1766.
|
[26] |
Riffault S,Meyer G,Deplanche M,et al.A new subunit vaccine based on nucleoprotein nanoparticles confers partial clinical and virological protection in calves against bovine respiratory syncytial virus[J].Vaccine,2010,28(21):3722-3734.
|
[27] |
Blodorn K,Hagglund S,Fix J,et al.Vaccine safety and efficacy evaluation of a recombinant bovine respiratory syncytial virus(BRSV)with deletion of the SH gene and subunit vaccines based on recombinant human RSV proteins:N-nanorings,P and M2-1,in calves with maternal antibodies[J].PLoS One,2014,9(6):e100392.
|
[28] |
Herve PL,Deloizy C,Descamps D,et al.RSV N-nanorings fused to palivizumab-targeted neutralizing epitope as a nanoparticle RSV vaccine[J].Nanomedicine(Lond),2017,13(2):411-420.
|
[29] |
Gilbert BE,Patel N,Lu H,et al.Respiratory syncytial virus fusion nanoparticle vaccine immune responses target multiple neutralizing epitopes that contribute to protection against wild-type and palivizumab-resistant mutant virus challenge[J].Vaccine,2018,36(52):8069-8078.
|
[30] |
Francica JR,Lynn GM,Laga R,et al.Thermoresponsive polymer nanoparticles co-deliver RSV F trimers with a TLR-7/8 adjuvant[J].Bioconjug Chem,2016,27(10):2372-2385.
|
[31] |
Bawage SS,Tiwari PM,Singh A,et al.Gold nanorods inhibit respiratory syncytial virus by stimulating the innate immune response[J].Nanomedicine-UK,2016,12(8):2299-2310.
|
[32] |
Al-Halifa S,Gauthier L,Arpin D,et al.Nanoparticle-based vaccines against respiratory viruses[J].Front Immunol,2019,10:22.
|
[33] |
Mazur NI,Higgins D,Nunes MC,et al.The respiratory syncytial virus vaccine landscape:lessons from the graveyard and promising candidates[J].Lancet Infect Dis,2018,18(10):e295-e311.
|
[34] |
Liu F,Zhang Z,Levit A,et al.Structural identification of a hotspot on CFTR for potentiation[J].Science,2019,364(6446):1184-1188.
|
[35] |
Rafeeq MM,Murad H.Cystic fibrosis:current therapeutic targets and future approaches[J].J Transl Med,2017,15(1):84.
|
[36] |
Boucher RC.Evidence for airway surface dehydration as the initiating event in CF airway disease[J].J Intern Med,2007,261(1):5-16.
|
[37] |
Ong V,Mei V,Cao L,et al.Nanomedicine for cystic fibrosis[J].Slas Technol,2019,24(2):169-180.
|
[38] |
Forier K,Messiaen AS,Raemdonck K,et al.Transport of nanoparticles in cystic fibrosis sputum and bacterial biofilms by single-particle tracking microscopy[J].Nanomedicine(Lond),2013,8(6):935-949.
|
[39] |
Porsio B,Craparo EF,Mauro N,et al.Mucus and cell-penetrating nanoparticles embedded in nano-into-micro formulations for pulmonary delivery of ivacaftor in patients with cystic fibrosis[J].ACS Appl Mater Interfaces,2018,10(1):165-181.
|
[40] |
Nafee N,Forier K,Braeckmans K,et al.Mucus-penetrating solid lipid nanoparticles for the treatment of cystic fibrosis:proof of concept,challenges and pitfalls[J].Eur J Pharm Biopharm,2018,124:125-137.
|
[41] |
Burney TJ,Davies JC.Gene therapy for the treatment of cystic fibrosis[J].Appl Clin Genet,2012,5:29-36.
|
[42] |
McKiernan PJ, Cunningham O, Greene CM, et al. Targeting miRNA-based medicines to cystic fibrosis airway epithelial cells using nanotechnology[J].Int J Nanomedicine,2013,8:3907-3915.
|
[43] |
Suk JS,Kim AJ,Trehan K,et al.Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier[J].J Control Release,2014,178:8-17.
|
[44] |
Osman G,Rodriguez J,Chan SY,et al.PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy[J].J Control Release,2018,285:35-45.
|
[45] |
Pastor M,Moreno-Sastre M,Esquisabel A,et al.Sodium colistimethate loaded lipid nanocarriers for the treatment of pseudomonas aeruginosa infections associated with cystic fibrosis[J].Int J Pharm,2014,477(1/2):485-494.
|
[46] |
Deacon J,Abdelghany SM,Quinn DJ,et al.Antimicrobial efficacy of tobramycin polymeric nanoparticles for pseudomonas aeruginosa infections in cystic fibrosis:formulation,characterisation and functionalisation with dornase alfa(DNase)[J].J Control Release,2015,198:55-61.
|
[47] |
Moreno-Sastre M,Pastor M,Esquisabel A,et al.Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for pseudomonas aeruginosa infections associated with cystic fibrosis[J].Int J Pharm,2016,498(1/2):263-273.
|
[48] |
Craparo EF,Porsio B,Schillaci D,et al.Polyanion-tobramycin nanocomplexes into functional microparticles for the treatment of pseudomonas aeruginosa infections in cystic fibrosis[J].Nanomedicine(Lond),2017,12(1):25-42.
|
[49] |
Alton E,Armstrong DK,Ashby D,et al.Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis:a randomised,double-blind,placebo-controlled,phase 2b trial[J].Lancet Respir Med,2015,3(9):684-691.
|
[50] |
Clancy JP,Dupont L,Konstan MW,et al.Phase II studies of nebulised arikace in CF patients with pseudomonas aeruginosa infection[J].Thorax,2013,68(9):818-825.
|
[51] |
Doroudian M,MacLoughlin R,Poynton F,et al.Nanotechnology based therapeutics for lung disease[J].Thorax,2019,74(10):965-976.
|
[52] |
Tarquinio KM,Kothurkar NK,Goswami DY,et al.Bactericidal effects of silver plus titanium dioxide-coated endotracheal tubes on Pseudomonas aeruginosa and Staphylococcus aureus[J].Int J Nanomedicine,2010,5:177-183.
|
[53] |
Machado MC,Webster TJ.Decreased pseudomonas aeruginosa biofilm formation on nanomodified endotracheal tubes:a dynamic lung model[J].Int J Nanomedicine,2016,11:3825-3831.
|
[54] |
Seguin RM,Ferrari N.Emerging oligonucleotide therapies for asthma and chronic obstructive pulmonary disease[J].Expert Opin Investig Drugs,2009,18(10):1505-1517.
|
[55] |
Wang L,Feng M,Li Q,et al.Advances in nanotechnology and asthma[J].Ann Transl Med,2019,7(8):180.
|
[56] |
Chowdhury N.Regulation of nanomedicines in the EU:distilling lessons from the pediatric and the advanced therapy medicinal products approaches[J].Nanomedicine(Lond),2010,5(1):135-142.
|
[57] |
Etheridge ML,Campbell SA,Erdman AG,et al.The big picture on nanomedicine:the state of investigational and approved nanomedicine products[J].Nanomedicine-UK,2013,9(1):1-14.
|
[58] |
Sosnik A,Seremeta KP,Imperiale JC,et al.Novel formulation and drug delivery strategies for the treatment of pediatric poverty-related diseases[J].Expert Opin Drug Deliv,2012,9(3):303-323.
|
[59] |
Kearns GL,Abdel-Rahman SM,Alander SW,et al.Developmental pharmacology-drug disposition,action,and therapy in infants and children[J].N Engl J Med,2003,349(12):1157-1167.
|
[60] |
Bowles A,Keane J,Ernest T,et al.Specific aspects of gastro-intestinal transit in children for drug delivery design[J].Int J Pharm,2010,395(1/2):37-43.
|
[61] |
Pui CH,Gajjar AJ,Kane JR,et al.Challenging issues in pediatric oncology[J].Nat Rev Clin Oncol,2011,8(9):540-549.
|
[62] |
Sly PD,Schuepp K.Nanoparticles and children′s lungs:is there a need for caution[J]?Paediatr Respir Rev,2012,13(2):71-72.
|
[63] |
Verschraegen CF,Gilbert BE,Loyer E,et al.Clinical evaluation of the delivery and safety of aerosolized liposomal 9-nitro-20(S)-camptothecin in patients with advanced pulmonary malignancies[J].Clin Cancer Res,2004,10(7):2319-2326.
|
[64] |
Okusanya OO,Bhavnani SM,Hammel J,et al.Pharmacokinetic and pharmacodynamic evaluation of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infection[J].Antimicrob Agents Chemother,2009,53(9):3847-3854.
|
[1] | YAO Lei, QU Linlin, FAN Daidi. Effects of rare ginsenoside on idiopathic pulmonary fibrosis[J]. Journal of China Pharmaceutical University, 2023, 54(5): 607-613. DOI: 10.11665/j.issn.1000-5048.2023042002 |
[2] | QIAN Xiuhui, SUN Jing, FU San, TANG Xiaoyan, XU Xianghong, ZHANG Mian. Effect of intratracheal instillation of PM2.5 suspensionon pulmonary fibrosis in mice and the intervention of neotuberostemonine[J]. Journal of China Pharmaceutical University, 2021, 52(4): 455-462. DOI: 10.11665/j.issn.1000-5048.20210408 |
[3] | LI Xiaoshi, WU Xunxun, ZHENG Zuguo, YANG Hua, LI Ping. Advances of long noncoding RNAs in myocardial fibrosis[J]. Journal of China Pharmaceutical University, 2020, 51(6): 646-654. DOI: 10.11665/j.issn.1000-5048.20200602 |
[4] | CAI Yanfei, WAN Aini, CHEN Yun, JIN Jian. Anti-liver fibrosis activities of the extracellular domain of transforming growth factor beta type II receptor fusion protein in vivo[J]. Journal of China Pharmaceutical University, 2019, 50(2): 246-252. DOI: 10.11665/j.issn.1000-5048.20190217 |
[5] | XIE Weina, DING Qi, SUN Jing, ZHANG Chaofeng, ZHANG Mian, XU Xianghong. Protective effects of Baibu Tang on bleomycin-induced pulmonary fibrosis in mice[J]. Journal of China Pharmaceutical University, 2018, 49(4): 483-489. DOI: 10.11665/j.issn.1000-5048.20180415 |
[6] | FAN Qianqian, XING Lei, QIAO Jianbin, ZHANG Chenglu, JIANG Hulin. Advances in drug delivery systems for the treatment of liver fibrosis[J]. Journal of China Pharmaceutical University, 2018, 49(3): 263-271. DOI: 10.11665/j.issn.1000-5048.20180302 |
[7] | ZHAO Limeng, WANG Shuzhen. Therapeutic applications of small molecule kinase inhibitors in liver fibrosis[J]. Journal of China Pharmaceutical University, 2018, 49(2): 147-157. DOI: 10.11665/j.issn.1000-5048.20180203 |
[8] | XIANG Juan, YU Ping, LI Mingdan, ZHANG Chaofeng, XU Xianghong, ZHANG Mian. Protective effects of stemona alkaloids on mice with bleomycin-induced pulmonary fibrosis[J]. Journal of China Pharmaceutical University, 2017, 48(1): 76-81. DOI: 10.11665/j.issn.1000-5048.20170112 |
[9] | DAI Li, ZHANG Lu, JI Hui, KONG Xiang-wen. Therapeutic effects of ZK14,a novel nitric oxide donating biphenyldicarboxylate derivative,on hepatic fibrosis in rats[J]. Journal of China Pharmaceutical University, 2009, 40(3): 254-257. |
[10] | Danshen Inhibiting Isoproterenol Induced Cardiac Hypertrophy and Fibrosis in Mice and its Mechanisms[J]. Journal of China Pharmaceutical University, 2003, (6): 84-87. |