• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
XU Liu, XU Shan, XIANG Tangyong, SHA Zhengzhou, ZHANG Jian, CHEN Zhipeng. Advances in self-assembled peptide hydrogels for bone regeneration[J]. Journal of China Pharmaceutical University, 2022, 53(3): 356-364. DOI: 10.11665/j.issn.1000-5048.20220314
Citation: XU Liu, XU Shan, XIANG Tangyong, SHA Zhengzhou, ZHANG Jian, CHEN Zhipeng. Advances in self-assembled peptide hydrogels for bone regeneration[J]. Journal of China Pharmaceutical University, 2022, 53(3): 356-364. DOI: 10.11665/j.issn.1000-5048.20220314

Advances in self-assembled peptide hydrogels for bone regeneration

Funds: This study was supported by the National Natural Science Foundation of China (No. 82173992) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No.KYCX_201491)
More Information
  • Received Date: February 06, 2022
  • Revised Date: May 04, 2022
  • The development of osteoinductive bone-filling biomaterials for bone regeneration is of great significance.Self-assembled peptide hydrogels with high biomimetic extracellular matrix structure, low immunogenicity, easy synthesis and modification, and flexible loading capacity provide a highly efficient therapeutic platform for bone tissue repair.Herein, we discuss the design principles of self-assembled peptide hydrogels, report the structural characteristics and assembly mechanisms of self-assembled peptides, and highlight recent advances in self-assembled peptide hydrogels for bone regeneration, including delivery to cells , bone morphogenetic proteins, active factors and small molecular substances.Finally, the bottleneck and development direction of self-assembled peptide hydrogels are pointed out, aiming to provide guidance for the construction of hydrogel delivery systems with high osteogenic properties.
  • [1]
    . Biomaterials,2020,235:119821.
    [2]
    Zhang K,Wang SP,Zhou CC,et al. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration[J]. Bone Res,2018,6:31.
    [3]
    Lei PF,Hu RY,Hu YH. Bone defects in revision total knee arthroplasty and management[J]. Orthop Surg,2019,11(1):15-24.
    [4]
    Artas G,Gul M,Acikan I,et al. A comparison of different bone graft materials in peri-implant guided bone regeneration[J]. Braz Oral Res,2018,32:e59.
    [5]
    Zhang H,Yang L,Yang XG,et al. Demineralized bone matrix carriers and their clinical applications:an overview[J]. Orthop Surg,2019,11(5):725-737.
    [6]
    Zheng X,Liu Y,Liu YX,et al. Novel three-dimensional bioglass functionalized gelatin nanofibrous scaffolds for bone regeneration[J]. J Biomed Mater Res B Appl Biomater,2021,109(4):517-526.
    [7]
    Tan SL,Wang YF,du YY,et al. Injectable bone cement with magnesium-containing microspheres enhances osteogenesis via anti-inflammatory immunoregulation[J]. Bioact Mater,2021,6(10):3411-3423.
    [8]
    Brink O. The choice between allograft or demineralized bone matrix is not unambiguous in trauma surgery[J]. Injury,2021,52(Suppl 2):S23-S28.
    [9]
    Gaihre B,Liu XF,Li LL,et al. Bifunctional hydrogel for potential vascularized bone tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl,2021,124:112075.
    [10]
    Ding X,Zhao HM,Li YZ,et al. Synthetic peptide hydrogels as 3D scaffolds for tissue engineering[J]. Adv Drug Deliv Rev,2020,160:78-104.
    [11]
    Nallusamy J,Das RK. Hydrogels and their role in bone tissue engineering:an overview[J]. J Pharm Bioallied Sci,2021,13(Suppl 2):S908-S912.
    [12]
    Ranganathan S,Balagangadharan K,Selvamurugan N. Chitosan and gelatin-based electrospun fibers for bone tissue engineering[J]. Int J Biol Macromol,2019,133:354-364.
    [13]
    Hernández-González AC,Téllez-Jurado L,Rodríguez-Lorenzo LM. Alginate hydrogels for bone tissue engineering,from injectables to bioprinting:a review[J]. Carbohydr Polym,2020,229:115514.
    [14]
    Zhai PS,Peng XX,Li BQ,et al. The application of hyaluronic acid in bone regeneration[J]. Int J Biol Macromol,2020,151:1224-1239.
    [15]
    Ma FB,Li SJ,Ruiz-Ortega LI,et al. Effects of alginate/chondroitin sulfate-based hydrogels on bone defects healing[J]. Mater Sci Eng C Mater Biol Appl,2020,116:111217.
    [16]
    Yang YC,Feng YT,Qu RM,et al. Synthesis of aligned porous polyethylene glycol/silk fibroin/hydroxyapatite scaffolds for osteoinduction in bone tissue engineering[J]. Stem Cell Res Ther,2020,11(1):522.
    [17]
    Parivatphun T,Sangkert S,Meesane J,et al. Constructed microbubble porous scaffolds of polyvinyl alcohol for subchondral bone formation for osteoarthritis surgery[J]. Biomed Mater,2020,15(5):055029.
    [18]
    Fu K,Wu HG,Su ZQ. Self-assembling peptide-based hydrogels:fabrication,properties,and applications[J]. Biotechnol Adv,2021,49:107752.
    [19]
    Gong CC,Sun SW,Zhang YJ,et al. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications[J]. Nanoscale,2019,11(10):4147-4182.
    [20]
    Zhang CY,Li X,Qian H,et al. Self-assembled peptide:insights and biomedicine applications[J]. J China Pharm Univ(中国药科大学学报),2015,46(2):250-256.
    [21]
    Chen J,Zou XN. Self-assemble peptide biomaterials and their biomedical applications[J]. Bioact Mater,2019,4:120-131.
    [22]
    Ren H,Wu LF,Tan LN,et al. Self-assembly of amino acids toward functional biomaterials[J]. Beilstein J Nanotechnol,2021,12:1140-1150.
    [23]
    Dong L,Chen H,Liu T,et al. Poly(l-cysteine) peptide amphiphile derivatives containing disulfide bonds:synthesis,self-assembly-induced β-sheet nanostructures,pH/reduction dual response,and drug release[J]. Biomacromolecules,2021,22(12):5374-5381.
    [24]
    Zhu J,Avakyan N,Kakkis A,et al. Protein assembly by design[J]. Chem Rev,2021,121(22):13701-13796.
    [25]
    Costantini S,Colonna G,Facchiano AM. Amino acid propensities for secondary structures are influenced by the protein structural class[J]. Biochem Biophys Res Commun,2006,342(2):441-451.
    [26]
    Zhao CQ,Chen HY,Wang FS,et al. Amphiphilic self-assembly peptides:rational strategies to design and delivery for drugs in biomedical applications[J]. Colloids Surf B Biointerfaces,2021,208:112040.
    [27]
    Ghosh G,Kartha KK,Fernández G. Tuning the mechanistic pathways of peptide self-assembly by aromatic interactions[J]. Chem Commun (Camb),2021,57(13):1603-1606.
    [28]
    ?krbi? T,Hoang TX,Maritan A,et al. Local symmetry determines the phases of linear chains:a simple model for the self-assembly of peptides[J]. Soft Matter,2019,15(28):5596-5613.
    [29]
    Huang CC,Ravindran S,Kang MY,et al. Engineering a self-assembling leucine zipper hydrogel system with function-specific motifs for tissue regeneration[J]. ACS Biomater Sci Eng,2020,6(5):2913-2928.
    [30]
    Kisiday J,Jin M,Kurz B,et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division:implications for cartilage tissue repair[J]. Proc Natl Acad Sci U S A,2002,99(15):9996-10001.
    [31]
    Zanotto G,Liebesny P,Barrett M,et al. Trypsin pre-treatment combined with growth factor functionalized self-assembling peptide hydrogel improves cartilage repair in rabbit model[J]. J Orthop Res,2019,37(11):2307-2315.
    [32]
    Gelain F,Luo ZL,Zhang SG. Self-assembling peptide EAK16 and RADA16 nanofiber scaffold hydrogel[J]. Chem Rev,2020,120(24):13434-13460.
    [33]
    Zuo YP,Xiong QC,Li QW,et al. Osteogenic growth peptide (OGP)-loaded amphiphilic peptide (NapFFY) supramolecular hydrogel promotes osteogenesis and bone tissue reconstruction[J]. Int J Biol Macromol,2022,195:558-564.
    [34]
    Ghosh M,Halperin-Sternfeld M,Grinberg I,et al. Injectable alginate-peptide composite hydrogel as a scaffold for bone tissue regeneration[J]. Nanomaterials (Basel),2019,9(4):E497.
    [35]
    Alcaide-Ruggiero L,Molina-Hernández V,Granados MM,et al. Main and minor types of collagens in the articular cartilage:the role of collagens in repair tissue evaluation in chondral defects[J]. Int J Mol Sci,2021,22(24):13329.
    [36]
    Sun M,Luo EY,Adams SM,et al. Collagen XI regulates the acquisition of collagen fibril structure,organization and functional properties in tendon[J]. Matrix Biol,2020,94:77-94.
    [37]
    Xu YJ,Kirchner M. Collagen mimetic peptides[J]. Bioengineering (Basel),2021,8(1):5.
    [38]
    Qin JY,Luo TZ,Kiick KL. Self-assembly of stable nanoscale platelets from designed elastin-like peptide-collagen-like peptide bioconjugates[J]. Biomacromolecules,2019,20(4):1514-1521.
    [39]
    Pires MM,Lee J,Ernenwein D,et al. Controlling the morphology of metal-promoted higher ordered assemblies of collagen peptides with varied core lengths[J]. Langmuir,2012,28(4):1993-1997.
    [40]
    Pal VK,Jain R,Roy S. Tuning the supramolecular structure and function of collagen mimetic ionic complementary peptides via electrostatic interactions[J]. Langmuir,2020,36(4):1003-1013.
    [41]
    Sun XX,He MM,Wang L,et al. Luminescent biofunctional collagen mimetic nanofibers[J]. ACS Omega,2019,4(15):16270-16279.
    [42]
    Brea RJ,Reiriz C,Granja JR. Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes[J]. Chem Soc Rev,2010,39(5):1448-1456.
    [43]
    He B,Yuan X,Jiang DM. Molecular self-assembly guides the fabrication of peptide nanofiber scaffolds for nerve repair[J]. RSC Adv,2014,4(45):23610-23621.
    [44]
    Li ZQ,Hou TY,Luo F,et al. Bone marrow enriched graft,modified by self-assembly peptide,repairs critically-sized femur defects in goats[J]. Int Orthop,2014,38(11):2391-2398.
    [45]
    Hu Y,Lin R,Zhang PC,et al. Electrostatic-driven lamination and untwisting of β-sheet assemblies[J]. ACS Nano,2016,10(1):880-888.
    [46]
    Tsonchev S,Schatz GC,Ratner MA. Electrostatically-directed self-assembly of cylindrical peptide amphiphile nanostructures[J]. J Phys Chem B,2004,108(26):8817-8822.
    [47]
    Mehta AK,Lu K,Childers WS,et al. Facial symmetry in protein self-assembly[J]. J Am Chem Soc,2008,130(30):9829-9835.
    [48]
    Behanna HA,Donners JJ,Gordon AC,et al. Coassembly of amphiphiles with opposite peptide polarities into nanofibers[J]. J Am Chem Soc,2005,127(4):1193-1200.
    [49]
    Rivas M,del Valle LJ,Alemán C,et al. Peptide self-assembly into hydrogels for biomedical applications related to hydroxyapatite[J]. Gels,2019,5(1):E14.
    [50]
    Cui HG,Webber MJ,Stupp SI. Self-assembly of peptide amphiphiles:from molecules to nanostructures to biomaterials[J]. Biopolymers,2010,94(1):1-18.
    [51]
    Koss KM,Unsworth LD. Neural tissue engineering:Bioresponsive nanoscaffolds using engineered self-assembling peptides[J]. Acta Biomater,2016,44:2-15.
    [52]
    de Groot NS,Parella T,Aviles FX,et al. Ile-phe dipeptide self-assembly:clues to amyloid formation[J]. Biophys J,2007,92(5):1732-1741.
    [53]
    Sahoo JK,Nazareth C,VandenBerg MA,et al. Self-assembly of amphiphilic tripeptides with sequence-dependent nanostructure[J]. Biomater Sci,2017,5(8):1526-1530.
    [54]
    Chen CH,Hsu EL,Stupp SI. Supramolecular self-assembling peptides to deliver bone morphogenetic proteins for skeletal regeneration[J]. Bone,2020,141:115565.
    [55]
    Sargeant TD,Aparicio C,Goldberger JE,et al. Mineralization of peptide amphiphile nanofibers and its effect on the differentiation of human mesenchymal stem cells[J]. Acta Biomater,2012,8(7):2456-2465.
    [56]
    Castelletto V,Edwards-Gayle CJC,Greco F,et al. Self-assembly,tunable hydrogel properties,and selective anti-cancer activity of a carnosine-derived lipidated peptide[J]. ACS Appl Mater Interfaces,2019,11(37):33573-33580.
    [57]
    Moradi F,Bahktiari M,Joghataei MT,et al. BD PuraMatrix peptide hydrogel as a culture system for human fetal Schwann cells in spinal cord regeneration[J]. J Neurosci Res,2012,90(12):2335-2348.
    [58]
    He B,Ou YS,Zhou A,et al. Functionalized d-form self-assembling peptide hydrogels for bone regeneration[J]. Drug Des Devel Ther,2016,10:1379-1388.
    [59]
    Kisiday JD,Colbath AC,Tangtrongsup S. Effect of culture duration on chondrogenic preconditioning of equine bone marrow mesenchymal stem cells in self-assembling peptide hydrogel[J]. J Orthop Res,2019,37(6):1368-1375.
    [60]
    Lv X,Sun CX,Hu BW,et al. Simultaneous recruitment of stem cells and chondrocytes induced by a functionalized self-assembling peptide hydrogel improves endogenous cartilage regeneration[J]. Front Cell Dev Biol,2020,8:864.
    [61]
    Vitale M,Ligorio C,McAvan B,et al. Hydroxyapatite-decorated Fmoc-hydrogel as a bone-mimicking substrate for osteoclast differentiation and culture[J]. Acta Biomater,2022,138:144-154.
    [62]
    Maia FR,Musson DS,Naot D,et al. Differentiation of osteoclast precursors on gellan gum-based spongy-like hydrogels for bone tissue engineering[J]. Biomed Mater,2018,13(3):035012.
    [63]
    Zehnder T,Boccaccini AR,Detsch R. Biofabrication of a co-culture system in an osteoid-like hydrogel matrix[J]. Biofabrication,2017,9(2):025016.
    [64]
    Hulley PA,Papadimitriou-Olivgeri I,Knowles HJ. Osteoblast-osteoclast coculture amplifies inhibitory effects of FG-4592 on human osteoclastogenesis and reduces bone resorption[J]. JBMR Plus,2020,4(7):e10370.
    [65]
    Collin-Osdoby P,Osdoby P. RANKL-mediated osteoclast formation from murine RAW 264.7 cells[J]. Methods Mol Biol,2012,816:187-202.
    [66]
    Aderibigbe B,Aderibigbe I,Popoola P. Design and biological evaluation of delivery systems containing bisphosphonates[J]. Pharmaceutics,2016,9(1):E2.
    [67]
    Vantucci CE,Krishan L,Cheng A,et al. BMP-2 delivery strategy modulates local bone regeneration and systemic immune responses to complex extremity trauma[J]. Biomater Sci,2021,9(5):1668-1682.
    [68]
    Zha Y,Li YW,Lin TY,et al. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects[J]. Theranostics,2021,11(1):397-409.
    [69]
    Onak G,G?kmen O,Yaral? ZB,et al. Enhanced osteogenesis of human mesenchymal stem cells by self-assembled peptide hydrogel functionalized with glutamic acid templated peptides[J]. J Tissue Eng Regen Med,2020,14(9):1236-1249.
    [70]
    Zhang RJ,Liu Y,Qi YQ,et al. Self-assembled peptide hydrogel scaffolds with VEGF and BMP-2 enhanced in vitro angiogenesis and osteogenesis[J]. Oral Dis,2022,28(3):723-733.
    [71]
    Zhao WK,Li YL,Zhou A,et al. Controlled release of basic fibroblast growth factor from a peptide biomaterial for bone regeneration[J]. R Soc Open Sci,2020,7(4):191830.
    [72]
    Panek M,Antunovi? M,Pribol?an L,et al. Bone tissue engineering in a perfusion bioreactor using dexamethasone-loaded peptide hydrogel[J]. Materials (Basel),2019,12(6):E919.
  • Related Articles

    [1]SU Haiying, WANG Yukun, LI Weisong, ZHOU Jianping, CHENG Hao. Advances in anti-Alzheimer’s disease nano drug delivery system based on pathogenic mechanism of ferroptosis[J]. Journal of China Pharmaceutical University, 2024, 55(5): 613-623. DOI: 10.11665/j.issn.1000-5048.2024040702
    [2]CHANG Yuan, MAGETA Mageta Samwel, LI Nibowen, TANG Yingqi, LI Huangjuan, QIAN Chenggen. Research advances in modulating microglia for intervening in Alzheimer’s disease[J]. Journal of China Pharmaceutical University, 2024, 55(5): 603-612. DOI: 10.11665/j.issn.1000-5048.2024030201
    [3]LAN Aili, LIU Gang, WU Chaoran, LIAO Hong. Research progress of integrated stress response in central nervous system diseases[J]. Journal of China Pharmaceutical University, 2024, 55(2): 194-201. DOI: 10.11665/j.issn.1000-5048.2023112302
    [4]ZHAO Mengqi, LIAO Hong. Researches progress of the relationship between neuro-inflammation and cognitive function[J]. Journal of China Pharmaceutical University, 2019, 50(4): 497-504. DOI: 10.11665/j.issn.1000-5048.20190416
    [5]CHEN Suting, CHEN Song, GAO Xiangdong. Construction, expression, purification and neuroprotective activity of TAT-FGF21 fusion protein[J]. Journal of China Pharmaceutical University, 2018, 49(4): 496-501. DOI: 10.11665/j.issn.1000-5048.20180417
    [6]YU Haiyang, CHEN Song, XU Zheng, GAO Xiangdong, YAO Wenbing. Protective effect of fibroin peptides on Aβ25-35-induced injury in SH-SY5Y cells and its mechanism[J]. Journal of China Pharmaceutical University, 2017, 48(5): 609-613. DOI: 10.11665/j.issn.1000-5048.20170517
    [7]YAN Ruizuo, GUO Baojian, YU Pei, ZHANG Zaijun. Effect of rasagiline on neuroprotection and behavior improvement in MPTP-induced acute mouse model of Parkinson′s disease[J]. Journal of China Pharmaceutical University, 2016, 47(5): 603-608. DOI: 10.11665/j.issn.1000-5048.20160517
    [8]NI Jie, LIU Gaoxiang, LIAO Hong. Expression of p75 neurotrophin receptor and its role in drug development[J]. Journal of China Pharmaceutical University, 2015, 46(6): 751-756. DOI: 10.11665/j.issn.1000-5048.20150620
    [9]CHEN Mengfei, FANG Lei, CHEN Li. Design, synthesis and anti-Alzheimer′s disease activity of 5-akylaminomethyl substituted carbazole derivatives[J]. Journal of China Pharmaceutical University, 2015, 46(6): 647-652. DOI: 10.11665/j.issn.1000-5048.20150602
    [10]SHEN Kai, KOU Junping, YU Boyang. Research advances in the mechanisms of active components in Chinese materia medica against oxidative stress-induced neuronal apoptosis[J]. Journal of China Pharmaceutical University, 2015, 46(5): 532-540. DOI: 10.11665/j.issn.1000-5048.20150503
  • Cited by

    Periodical cited type(6)

    1. 段盼盼,赵丽娟,吴姿,杨子妮,王燕清. 直接进样气相色谱法用于助悬剂中乙二醇二甘醇和三甘醇残留量测定方法研究. 实用医技杂志. 2024(04): 241-244 .
    2. 孔祥祥,李建兵,陈东,孙晨磊,王婷,孙云,臧金秋,宋蕾,梁野. 气相色谱法测定聚乙二醇200中乙二醇、二甘醇、三甘醇和四甘醇含量. 质量安全与检验检测. 2024(03): 6-9 .
    3. 黄丽梅,曹玉,戴震,仝立卿,张珂. GC法测定对乙酰氨基酚口服液体制剂辅料中乙二醇及二甘醇残留量. 云南化工. 2024(08): 124-127 .
    4. 杨军林,陈明学,田栋伟,尹艳艳,张二康,尤小龙,张健,程平言. GC-MS/MS法直接测定酱香型白酒中二乙二醇的含量. 食品科技. 2022(06): 303-309 .
    5. 郜淑晓,祝颂,赵恂,袁耀佐,宋敏,杭太俊,陆宇婷. 聚氧乙烯中乙二醇和二甘醇残留的HPLC和GC测定法比较研究. 药物分析杂志. 2020(10): 1820-1827 .
    6. 田嘉铭,于小红,王银月,王旭,王治宝,王金,卢金铭. 气相色谱法测定糖平煎复方中苍术酮含量. 神经药理学报. 2020(05): 14-17 .

    Other cited types(1)

Catalog

    Article views (575) PDF downloads (528) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return