Citation: | PU Chengtao, GU Lingqian, CHEN Xingye, ZHANG Yanmin. Prediction of human intestinal absorption properties based on artificial intelligence[J]. Journal of China Pharmaceutical University, 2023, 54(3): 355-362. DOI: 10.11665/j.issn.1000-5048.2023032102 |
[1] |
Pillai N, Dasgupta A, Sudsakorn S, et al. Machine Learning guided early drug discovery of small molecules[J]. Drug Discov Today, 2022, 27(8): 2209-2215.
|
[2] |
Basant N, Gupta S, Singh KP. Predicting human intestinal absorption of diverse chemicals using ensemble learning based QSAR modeling approaches[J]. Comput Biol Chem, 2016, 61: 178-196.
|
[3] |
Hou TJ, Wang JM, Li YY. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine[J]. J Chem Inf Model, 2007, 47(6): 2408-2415.
|
[4] |
Kumar R, Sharma A, Siddiqui MH, et al. Prediction of human intestinal absorption of compounds using artificial intelligence techniques[J]. Curr Drug Discov Technol, 2017, 14(4): 244-254.
|
[5] |
Fu MY, Zhu YY, Wu CY, et al. Prediction of plasma protein binding rate based on machine learning[J]. J China Pharm Univ (中国药科大学学报), 2021, 52(6): 699-706.
|
[6] |
Wang YC, Liu HC, Fan YR, et al. In silico prediction of human intravenous pharmacokinetic parameters with improved accuracy[J]. J Chem Inf Model, 2019, 59(9): 3968-3980.
|
[7] |
Yang M, Chen JL, Xu LW, et al. A novel adaptive ensemble classification framework for ADME prediction[J]. RSC Adv, 2018, 8(21): 11661-11683.
|
[8] |
Xing GM, Liang L, Deng CL, et al. Activity prediction of small molecule inhibitors for antirheumatoid arthritis targets based on artificial intelligence[J]. ACS Comb Sci, 2020, 22(12): 873-886.
|
[9] |
Jadhav SD, Channe HP.. Comparative study of K-NN, naive Bayes and decision tree classification techniques[J]. Int J Sci Res, 2016, 5(1): 1842-1845.
|
[10] |
Wang MWH, Goodman JM, Allen TEH. Machine learning in predictive toxicology: recent applications and future directions for classification models[J]. Chem Res Toxicol, 2021, 34(2): 217-239.
|
[11] |
Geurts P, Ernst D, Wehenkel L. Extremely randomized trees[J]. Mach Learn, 2006, 63(1): 3-42.
|
[12] |
Ke GL, Meng Q, Finley T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]//
|
[13] |
Chen TQ, Guestrin C. XGBoost: a scalable tree boosting system[C]//
|
[14] |
Dou LJ, Li XL, Zhang LC, et al. iGlu_AdaBoost: identification of lysine glutarylation using the AdaBoost classifier[J]. J Proteome Res, 2021, 20(1): 191-201.
|
[15] |
Ciregan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image classification[C]//
|
[16] |
Tharwat A. Classification assessment methods[J].Appl Comput Inform, 2018, 12(1): 1-13.
|
[17] |
Warr WA. Scientific workflow systems: pipeline pilot and KNIME[J]. J Comput Aided Mol Des, 2012, 26(7): 801-804.
|
[18] |
Tipping ME, Bishop CM. Probabilistic principal component analysis[J]. J R Stat Soc, 1999, 61(3): 611-622.
|
[19] |
Maaten L, Hinton GE. Visualizing data using t-SNE[J]. J Mach Learn Res, 2008, 9: 2579-2605.
|
[20] |
Rogers D, Hahn M. Extended-connectivity fingerprints[J].J Chem Inf Model, 2010, 50(5): 742-754.
|
[21] |
Carracedo-Reboredo P, Li?ares-Blanco J, Rodríguez-Fernández N, et al. A review on machine learning approaches and trends in drug discovery[J].Comput Struct Biotechnol J, 2021, 19: 4538-4558.
|
[1] | ZHANG Zhixing, DENG Hua, TANG Yun. Applications and challenges of artificial intelligence in the development of anticancer peptides[J]. Journal of China Pharmaceutical University, 2024, 55(3): 347-356. DOI: 10.11665/j.issn.1000-5048.2024040201 |
[2] | HU Zi’ang, GAO Liming, YU Wenying. Advances in the application of artificial intelligence in nucleic acid drug development[J]. Journal of China Pharmaceutical University, 2024, 55(3): 335-346. DOI: 10.11665/j.issn.1000-5048.2024033101 |
[3] | ZENG Hao, WU Guozhen, ZOU Wuxin, WANG Zhe, SONG Jianfei, SHI Hui, WANG Xiaojian, HOU Tingjun, DENG Yafeng. Optimization of Menin inhibitors based on artificial intelligence-driven molecular factory technology[J]. Journal of China Pharmaceutical University, 2024, 55(3): 326-334. DOI: 10.11665/j.issn.1000-5048.2024040904 |
[4] | TANG qian, CHEN Roufen, SHEN Zheyuan, CHI Xinglong, CHE Jinxin, DONG Xiaowu. Research progress of artificial intelligence-based small molecule generation models in drug discovery[J]. Journal of China Pharmaceutical University, 2024, 55(3): 295-305. DOI: 10.11665/j.issn.1000-5048.2024031501 |
[5] | XUE Feng, FENG Shuo, LI Jing. Application and prospect of artificial intelligence in antimicrobial peptides screening[J]. Journal of China Pharmaceutical University, 2023, 54(3): 314-322. DOI: 10.11665/j.issn.1000-5048.2023030901 |
[6] | GU Zhihao, GUO Wenhao, YAO Hequan, LI Xuanyi, LIN Kejiang. Research progress of the screening and generation of lead compounds based on artificial intelligence model[J]. Journal of China Pharmaceutical University, 2023, 54(3): 294-304. DOI: 10.11665/j.issn.1000-5048.2023042201 |
[7] | YU Zehao, ZHANG Leiming, ZHANG Mengna, DAI Zhiqi, PENG Chengbin, ZHENG Siming. Artificial intelligence-based drug development: current progress and future challenges[J]. Journal of China Pharmaceutical University, 2023, 54(3): 282-293. DOI: 10.11665/j.issn.1000-5048.2023041003 |
[8] | WANG Chao, XIAO Fu, LI Miaozhu, PAN Ying, DING Xiao, REN Feng, ZHAVORONKOV Alex, WANG Yazhou. Application progress of artificial intelligence in the screening and identification of drug targets[J]. Journal of China Pharmaceutical University, 2023, 54(3): 269-281. DOI: 10.11665/j.issn.1000-5048.2023041102 |
[9] | YAN Fangrong. Application and advance of artificial intelligence in biomedical field[J]. Journal of China Pharmaceutical University, 2023, 54(3): 263-268. DOI: 10.11665/j.issn.1000-5048.2023030304 |
[10] | Zhang Zunjian, Yu Shuqin, Xiang Bingren, An Dengkui. A New Artificial Neural Network Model:Combined Counter-Back Propagation and its Application[J]. Journal of China Pharmaceutical University, 1996, (11). |
1. |
赵倩,魏宇,郭凯敏,王文佳,周水平,孙鹤,方坚松,胡蕴慧. 人工智能结合生物网络对“养血清脑制剂”和“逍遥丸”组方的优化及验证. 中药药理与临床. 2024(04): 27-33 .
![]() |