• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
ZHANG Xueling, LI Na, CHEN Li. Progress of research on celastrol derivatives as anti-tumor agents[J]. J China Pharm Univ, 2024, 55(6): 826 − 836. DOI: 10.11665/j.issn.1000-5048.2023041802
Citation: ZHANG Xueling, LI Na, CHEN Li. Progress of research on celastrol derivatives as anti-tumor agents[J]. J China Pharm Univ, 2024, 55(6): 826 − 836. DOI: 10.11665/j.issn.1000-5048.2023041802

Progress of research on celastrol derivatives as anti-tumor agents

Funds: This study was supported by the National Natural Science Foundation of China (No.82104027);and the Natural Science Foundation of Jiangsu Province (BK20221523)
More Information
  • Received Date: April 17, 2023
  • Celastrol, a pentacyclic triterpenoid compound derived from the root of Chinese herb Tripterygium wilfordii Hook.f.,can inhibit the growth of various types of malignant tumors. However, it still has some limitations, including high toxicity, poor water solubility, and low targeting efficiency. Therefore, structural modification of celastrol has become a research hotspot in recent years. The structural modifications of celstrol reported have focused on C-20-COOH and C-2, C-3, C-6 or multiple sites of AB ring. This review provides an overview of the research progress of anti-tumor celastrol derivatives in recent years according to different structural modification sites and purposes, such as enhancing the inhibitory effect on the Hsp90-Cdc37 protein-protein interaction, and modification methods, including principles of parallelism and targeting specific sites. In addition, it briefly discusses the antitumor activity, mechanism of action, and structure-activity relationship of these derivatives, aiming to provide theoretical guidance for the discovery of new celastrol derivatives with high efficiency, low toxicity, and strong selectivity.

  • [1]
    Xu XM, Kang D, Zhu XY, et al. Effect of celastrol based on IRAK4/ERK/p38 signaling pathway on proliferation and apoptosis of multiple myeloma cells[J]. J Exp Hematol (中国实验血液学杂志), 2022, 30(1): 175-182.
    [2]
    Zhong YL, Xu GJ, Huang S, et al. Celastrol induce apoptosis of human multiple myeloma cells involving inhibition of proteasome activity[J]. Eur J Pharmacol, 2019, 853: 184-192. doi: 10.1016/j.ejphar.2019.03.036
    [3]
    Zhang XL, Li AP, Huan F, et al. Effects of celastrol on the proliferation and apoptosis of human leukemia cells HL-60 and Jurkat[J]. J China Pharm Univ (中国药科大学学报), 2015, 46(1): 89-93.
    [4]
    Wang X, Liu Q, Wu SS, et al. Identifying the effect of celastrol against ovarian cancer with network pharmacology and in vitro experiments[J]. Front Pharmacol, 2022, 13: 739478. doi: 10.3389/fphar.2022.739478
    [5]
    Arisan ED, Rencuzogullari O, Coban M, et al. The role of the PI3K/AKT/mTOR signaling axis in the decision of the celastrol-induced cell death mechanism related to the lipid regulatory pathway in prostate cancer cells[J]. Phytochem Lett, 2020, 39: 73-83. doi: 10.1016/j.phytol.2020.06.007
    [6]
    Tan QL, Liu ZQ, Gao XB, et al. Celastrol recruits UBE3A to recognize and degrade the DNA binding domain of steroid receptors[J]. Oncogene, 2022, 41(42): 4754-4767. doi: 10.1038/s41388-022-02467-8
    [7]
    Zhan DM, Ni TY, Wang HB, et al. Celastrol inhibits the proliferation and decreases drug resistance of cisplatin- resistant gastric cancer SGC7901/DDP cells[J]. Anticancer Agents Med Chem, 2022, 22(2): 270-279. doi: 10.2174/1871520621666210528144006
    [8]
    Chen GE, Zhu XY, Li JQ, et al. Celastrol inhibits lung cancer growth by triggering histone acetylation and acting synergically with HDAC inhibitors[J]. Pharmacol Res, 2022, 185: 106487. doi: 10.1016/j.phrs.2022.106487
    [9]
    Zhang WX, Wu ZM, Qi HJ, et al. Celastrol upregulated ATG7 triggers autophagy via targeting Nur77 in colorectal cancer[J]. Phytomedicine, 2022, 104: 154280. doi: 10.1016/j.phymed.2022.154280
    [10]
    Dai CH, Zhu LR, Wang Y, et al. Celastrol acts synergistically with afatinib to suppress non-small cell lung cancer cell proliferation by inducing paraptosis[J]. J Cell Physiol, 2021, 236(6): 4538-4554. doi: 10.1002/jcp.30172
    [11]
    Liu M, Fan YM, Li DY, et al. Ferroptosis inducer erastin sensitizes NSCLC cells to celastrol through activation of the ROS-mitochondrial fission-mitophagy axis[J]. Mol Oncol, 2021, 15(8): 2084-2105. doi: 10.1002/1878-0261.12936
    [12]
    Zhao ZC, Wang YM, Gong YY, et al. Celastrol elicits antitumor effects by inhibiting the STAT3 pathway through ROS accumulation in non-small cell lung cancer[J]. J Transl Med, 2022, 20(1): 525. doi: 10.1186/s12967-022-03741-9
    [13]
    Lim HY, Ong PS, Wang LZ, et al. Celastrol in cancer therapy: recent developments, challenges and prospects[J]. Cancer Lett, 2021, 521: 252-267. doi: 10.1016/j.canlet.2021.08.030
    [14]
    Lu Y, Liu Y, Zhou JW, et al. Biosynthesis, total synthesis, structural modifications, bioactivity, and mechanism of action of the quinone-methide triterpenoid celastrol[J]. Med Res Rev, 2021, 41(2): 1022-1060. doi: 10.1002/med.21751
    [15]
    Sreeramulu S, Gande SL, Göbel M, et al. Molecular mechanism of inhibition of the human protein complex Hsp90-Cdc37, a kinome chaperone-cochaperone, by triterpene celastrol[J]. Angew Chem Int Ed, 2009, 48(32): 5853-5855. doi: 10.1002/anie.200900929
    [16]
    Zhang T, Hamza A, Cao XH, et al. A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells[J]. Mol Cancer Ther, 2008, 7(1): 162-170. doi: 10.1158/1535-7163.MCT-07-0484
    [17]
    Xu MY, Li N, Zhao ZH, et al. Design, synthesis and antitumor evaluation of novel celastrol derivatives[J]. Eur J Med Chem, 2019, 174: 265-276. doi: 10.1016/j.ejmech.2019.04.050
    [18]
    Li N, Xu MY, Wang B, et al. Discovery of novel celastrol derivatives as Hsp90-Cdc37 interaction disruptors with antitumor activity[J]. J Med Chem, 2019, 62(23): 10798-10815. doi: 10.1021/acs.jmedchem.9b01290
    [19]
    Li N, Chen C, Zhu HT, et al. Discovery of novel celastrol-triazole derivatives with Hsp90-Cdc37 disruption to induce tumor cell apoptosis[J]. Bioorg Chem, 2021, 111: 104867. doi: 10.1016/j.bioorg.2021.104867
    [20]
    Li N, Xu MY, Zhang LL, et al. Discovery of novel celastrol-imidazole derivatives with anticancer activity in vitro and in vivo[J]. J Med Chem, 2022, 65(6): 4578-4589. doi: 10.1021/acs.jmedchem.1c01293
    [21]
    Jiang F, Wang HJ, Bao QC, et al. Optimization and biological evaluation of celastrol derivatives as Hsp90-Cdc37 interaction disruptors with improved druglike properties[J]. Bioorg Med Chem, 2016, 24(21): 5431-5439. doi: 10.1016/j.bmc.2016.08.070
    [22]
    Hu XL, He QW, Long H, et al. Synthesis and biological evaluation of celastrol derivatives with improved cytotoxic selectivity and antitumor activities[J]. J Nat Prod, 2021, 84(7): 1954-1966. doi: 10.1021/acs.jnatprod.1c00262
    [23]
    Fei Y, Zhang YH, Huang ZJ. Advance in selective/targeted nitric oxide releasing strategies[J]. Prog Pharm Sci(药学进展), 2019, 43(11): 804-816.
    [24]
    Li N, Xu MY, Bao N, et al. Discovery of novel NO-releasing celastrol derivatives with Hsp90 inhibition and cytotoxic activities[J]. Eur J Med Chem, 2018, 160: 1-8. doi: 10.1016/j.ejmech.2018.10.013
    [25]
    Huang W, Zhang J, Luo L, et al. Nitric oxide and tumors: from small-molecule donor to combination therapy[J]. ACS Biomater Sci Eng, 2023, 9(1): 139-152. doi: 10.1021/acsbiomaterials.2c01247
    [26]
    Fu XF, Mao Q, Zhang B, et al. Thiazolidinedione-based structure modification of celastrol provides thiazolidinedione-conjugated derivatives as potent agents against non-small-cell lung cancer cells through a mitochondria-mediated apoptotic pathway[J]. J Nat Prod, 2022, 85(4): 1147-1156. doi: 10.1021/acs.jnatprod.2c00104
    [27]
    Huang LL, Zhang ZF, Zhang S, et al. Inhibitory action of celastrol on hypoxia-mediated angiogenesis and metastasis via the HIF-1α pathway[J]. Int J Mol Med, 2011, 27(3): 407-415.
    [28]
    Shang FF, Wang JY, Xu Q, et al. Design, synthesis of novel celastrol derivatives and study on their antitumor growth through HIF-1α pathway[J]. Eur J Med Chem, 2021, 220: 113474. doi: 10.1016/j.ejmech.2021.113474
    [29]
    Li XJ, Wang HM, Ding J, et al. Celastrol strongly inhibits proliferation, migration and cancer stem cell properties through suppression of Pin1 in ovarian cancer cells[J]. Eur J Pharmacol, 2019, 842: 146-156. doi: 10.1016/j.ejphar.2018.10.043
    [30]
    Li XJ, Ding J, Li N, et al. Synthesis and biological evaluation of celastrol derivatives as anti-ovarian cancer stem cell agents[J]. Eur J Med Chem, 2019, 179: 667-679. doi: 10.1016/j.ejmech.2019.06.086
    [31]
    Chen X, Zhao Y, Luo W, et al. Celastrol induces ROS-mediated apoptosis via directly targeting peroxiredoxin-2 in gastric cancer cells[J]. Theranostics, 2020, 10(22): 10290-10308. doi: 10.7150/thno.46728
    [32]
    Lei ZC, Li N, Yu NR, et al. Design and synthesis of novel celastrol derivatives as potential anticancer agents against gastric cancer cells[J]. J Nat Prod, 2022, 85(5): 1282-1293. doi: 10.1021/acs.jnatprod.1c01236
    [33]
    Xu SW, Law BYK, Qu SLQ, et al. SERCA and P-glycoprotein inhibition and ATP depletion are necessary for celastrol-induced autophagic cell death and collateral sensitivity in multidrug-resistant tumor cells[J]. Pharmacol Res, 2020, 153: 104660. doi: 10.1016/j.phrs.2020.104660
    [34]
    Coghi P, Ng JPL, Kadioglu O, et al. Synthesis, computational docking and biological evaluation of celastrol derivatives as dual inhibitors of SERCA and P-glycoprotein in cancer therapy[J]. Eur J Med Chem, 2021, 224: 113676. doi: 10.1016/j.ejmech.2021.113676
    [35]
    Xu H, Zhao HF, Ding CY, et al. Celastrol suppresses colorectal cancer via covalent targeting peroxiredoxin 1[J]. Signal Transduct Target Ther, 2023, 8(1): 51. doi: 10.1038/s41392-022-01231-4
    [36]
    Feng Y, Wang WB, Zhang Y, et al. Synthesis and biological evaluation of celastrol derivatives as potential anti-glioma agents by activating RIP1/RIP3/MLKL pathway to induce necroptosis[J]. Eur J Med Chem, 2022, 229: 114070. doi: 10.1016/j.ejmech.2021.114070
    [37]
    Figueiredo SAC, Salvador JAR, Cortés R, et al. Novel celastrol derivatives with improved selectivity and enhanced antitumour activity: design, synthesis and biological evaluation[J]. Eur J Med Chem, 2017, 138: 422-437. doi: 10.1016/j.ejmech.2017.06.029
    [38]
    Li N, Li CB, Zhang J, et al. Discovery of semisynthetic celastrol derivatives exhibiting potent anti-ovarian cancer stem cell activity and STAT3 inhibition[J]. Chem Biol Interact, 2022, 366: 110172. doi: 10.1016/j.cbi.2022.110172
    [39]
    Feng Y, Zhang B, Lv JL, et al. Scaffold hopping of celastrol provides derivatives containing pepper ring, pyrazine and oxazole substructures as potent autophagy inducers against breast cancer cell line MCF-7[J]. Eur J Med Chem, 2022, 234: 114254. doi: 10.1016/j.ejmech.2022.114254
  • Related Articles

    [1]XIA Yuan, JIANG Qingling, WANG Xiaoting, LI Minjing, ZHENG Qiusheng, LI Defang. Norcantharidin induces apoptosis through autophagosome accumulation in breast cancer MDA-MB-231 cells[J]. Journal of China Pharmaceutical University, 2023, 54(6): 757-768. DOI: 10.11665/j.issn.1000-5048.2023033004
    [2]WANG Yan, PING Fengfeng, ZHOU Danli, CHEN Yanhua, LING Jingjing. Masitinib alleviated cerebral ischemia/reperfusion injury by inhibiting autophagy and apoptosis[J]. Journal of China Pharmaceutical University, 2021, 52(2): 227-235. DOI: 10.11665/j.issn.1000-5048.20210212
    [3]LI Jing, LUO Fuling, WU Shengwang, WAN Jingyuan, ZHAO Hengguang. Hair regeneration in mice was promoted by 3-methyladenine through inhibiting autophagy flux[J]. Journal of China Pharmaceutical University, 2019, 50(4): 468-474. DOI: 10.11665/j.issn.1000-5048.20190412
    [4]WANG Jingjing, TIAN Chenguang, ZHANG Jinying, ZHANG Jijia, WU Zhaoke. Oroxylin A ameliorates isoproterenol-induced heart failure model in rats through promoting myocardial autophagy[J]. Journal of China Pharmaceutical University, 2018, 49(6): 731-738. DOI: 10.11665/j.issn.1000-5048.20180615
    [5]MA Jingfan, ZHANG Yan, YE Ganping, WEI Qiliang, QIU Longxin. Seneciphylline induced the autophagy of cervical cancer cells via MEK/ERK1/2 regulation[J]. Journal of China Pharmaceutical University, 2018, 49(5): 616-623. DOI: 10.11665/j.issn.1000-5048.20180515
    [6]YANG Rui, ZHU Yi, WANG Yin, MA Wenqi, WANG Xin, HAN Xiqiong, LIU Naifeng. Recent progress in autophagy and vascular calcification[J]. Journal of China Pharmaceutical University, 2018, 49(4): 401-406. DOI: 10.11665/j.issn.1000-5048.20180403
    [7]WEI Yanming, REN Jinhong, LUAN Zhihua, WANG Yonghui. Effects of various autophagy modulators on the expression of autophagic markers LC3II and p62[J]. Journal of China Pharmaceutical University, 2018, 49(3): 341-347. DOI: 10.11665/j.issn.1000-5048.20180313
    [8]WANG Xue, ZHANG Pinghu. Advances in research on the modulation of autophagy by Ras/Raf/MEK/ERK signaling pathway[J]. Journal of China Pharmaceutical University, 2017, 48(1): 110-116. DOI: 10.11665/j.issn.1000-5048.20170117
    [9]ZHAO Hengguang, LUO Fuling. Rapamycin reverse lipopolysaccharide-induced acute lung injury through activating autophagy flux[J]. Journal of China Pharmaceutical University, 2015, 46(5): 605-609. DOI: 10.11665/j.issn.1000-5048.20150515
    [10]REN Jie, NIU Xiao-shu, XIONG Jing, BAI Li, FANG Wei-rong, LI Yun-man. Effects of 1-(cinnamoyl)-4-(phenylethylamine acetyl) piperazine maleate on platelet aggregation and thrombosis[J]. Journal of China Pharmaceutical University, 2011, 42(5): 458-461.

Catalog

    Article views (60) PDF downloads (17) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return