Citation: | WANG Songkai, ZOU Yuchen, SUN Shipeng, YAN Zhiye, TANG Weiwei, LI Ping, LI Bin. Recent advances in mass spectrometry imaging and its application in drug research[J]. Journal of China Pharmaceutical University, 2023, 54(6): 653-661. DOI: 10.11665/j.issn.1000-5048.2023091901 |
[1] |
Refaat A, Yap ML, Pietersz G, et al. In vivo fluorescence imaging: success in preclinical imaging paves the way for clinical applications[J]. J Nanobiotechnology, 2022, 20(1): 450.
|
[2] |
Kenry, Duan YK, Liu B. Recent advances of optical imaging in the second near-infrared window[J]. Adv Mater, 2018, 30(47):
|
[3] |
Siddhanta S, Kuzmin AN, Pliss A, et al. Advances in Raman spectroscopy and imaging for biomedical research[J]. Adv Opt Photon, 2023, 15(2): 318-384.
|
[4] |
Angel PM, Baldwin HS, Sen DG, et al. Advances in MALDI imaging mass spectrometry of proteins in cardiac tissue, including the heart valve[J]. Biochim Biophys Acta Proteins Proteom, 2017, 1865(7): 927-935.
|
[5] |
Li KN, Guo S, Tang WW, et al. Characterizing the spatial distribution of dipeptides in rodent tissue using MALDI MS imaging with on-tissue derivatization[J]. Chem Commun, 2021, 57(93): 12460-12463.
|
[6] |
Dufresne M, Fincher JA, Patterson NH, et al. α-cyano-4-hydroxycinnamic acid and tri-potassium citrate salt pre-coated silicon nanopost array provides enhanced lipid detection for high spatial resolution MALDI imaging mass spectrometry[J]. Anal Chem, 2021, 93(36): 12243-12249.
|
[7] |
Wang XN, Li B. Monolithic gold nanoparticles/thiol-β-cyclodextrin- functionalized TiO2 nanowires for enhanced SALDI MS detection and imaging of natural products[J]. Anal Chem, 2022, 94(2): 952-959.
|
[8] |
Bryant RN, Jones C, Raven MR, et al. Sulfur isotope analysis of microcrystalline iron sulfides using secondary ion mass spectrometry imaging: extracting local paleo-environmental information from modern and ancient sediments[J]. Rapid Commun Mass Spectrom, 2019, 33(5): 491-502.
|
[9] |
Dunham SJB, Ellis JF, Baig NF, et al. Quantitative SIMS imaging of agar-based microbial communities[J]. Anal Chem, 2018, 90(9): 5654-5663.
|
[10] |
Yan X, Zhao XA, Zhou ZP, et al. Cell-type-specific metabolic profiling achieved by combining desorption electrospray ionization mass spectrometry imaging and immunofluorescence staining[J]. Anal Chem, 2020, 92(19): 13281-13289.
|
[11] |
Castellanos A, Ramirez CE, Michalkova V, et al. Three dimensional secondary ion mass spectrometry imaging (3D-SIMS) of Aedes aegypti ovarian follicles[J]. J Anal At Spectrom, 2019, 34(5): 874-883.
|
[12] |
Passarelli MK, Pirkl A, Moellers R, et al. The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power[J]. Nat Methods, 2017, 14(12): 1175-1183.
|
[13] |
Bredeh?ft J, Bhandari DR, Pflieger FJ, et al. Visualizing and profiling lipids in the OVLT of fat-1 and wild type mouse brains during LPS-induced systemic inflammation using AP-SMALDI MSI[J]. ACS Chem Neurosci, 2019, 10(10): 4394-4406.
|
[14] |
Li B, Sun RY, Gordon A, et al. 3-aminophthalhydrazide (luminol) As a matrix for dual-polarity MALDI MS imaging[J]. Anal Chem, 2019, 91(13): 8221-8228.
|
[15] |
Tang WW, Gordon A, Wang F, et al. Hydralazine as a versatile and universal matrix for high-molecular coverage and dual-polarity matrix-assisted laser desorption/ionization mass spectrometry imaging[J]. Anal Chem, 2021, 93(26): 9083-9093.
|
[16] |
Shariatgorji M, Nilsson A, Fridjonsdottir E, et al. Comprehensive mapping of neurotransmitter networks by MALDI-MS imaging[J]. Nat Methods, 2019, 16(10): 1021-1028.
|
[17] |
Ferreira MS, de Oliveira DN, Mesquita CC, et al. MALDI-MSI: a fast and reliable method for direct melatonin quantification in biological fluids[J]. J Anal Sci Technol, 2016, 7: 1-6.
|
[18] |
Heijs B, Potthoff A, Soltwisch J, et al. MALDI-2 for the enhanced analysis of N-linked glycans by mass spectrometry imaging[J]. Anal Chem, 2020, 92(20): 13904-13911.
|
[19] |
Chingin K, Gamez G, Chen HW, et al. Rapid classification of perfumes by extractive electrospray ionization mass spectrometry (EESI-MS)[J]. Rapid Commun Mass Spectrom, 2008, 22(13): 2009-2014.
|
[20] |
Chen HW, Wortmann A, Zhang WH, et al. Rapid in vivo fingerprinting of nonvolatile compounds in breath by extractive electrospray ionization quadrupole time-of-flight mass spectrometry[J]. Angew Chem Int Ed Engl, 2007, 46(4): 580-583.
|
[21] |
Harper JD, Charipar NA, Mulligan CC, et al. Low-temperature plasma probe for ambient desorption ionization[J]. Anal Chem, 2008, 80(23): 9097-9104.
|
[22] |
Luo ZG, He JM, Chen Y, et al. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions[J]. Anal Chem, 2013, 85(5): 2977-2982.
|
[23] |
Liu CY, Qi KK, Yao L, et al. Imaging of polar and nonpolar species using compact desorption electrospray ionization/postphotoionization mass spectrometry[J]. Anal Chem, 2019, 91(10): 6616-6623.
|
[24] |
Sikora KN, Hardie JM, Castellanos-García LJ, et al. Dual mass spectrometric tissue imaging of nanocarrier distributions and their biochemical effects[J]. Anal Chem, 2020, 92(2): 2011-2018.
|
[25] |
Chen YW, Hu DJ, Zhao LS, et al. Unraveling metabolic alterations in transgenic mouse model of Alzheimer’s disease using MALDI MS imaging with 4-aminocinnoline-3-carboxamide matrix[J]. Anal Chim Acta, 2022, 1192: 339337.
|
[26] |
Nilsson A, Goodwin RJA, Shariatgorji M, et al. Mass spectrometry imaging in drug development[J]. Anal Chem, 2015, 87(3): 1437-1455.
|
[27] |
Guo S, Li KN, Chen YW, et al. Unraveling the drug distribution in brain enabled by MALDI MS imaging with laser-assisted chemical transfer[J]. Acta Pharm Sin B, 2022, 12(4): 2120-2126.
|
[28] |
Meng YF, Gao CH, Lu Q, et al. Single-cell mass spectrometry imaging of multiple drugs and nanomaterials at organelle level[J]. ACS Nano, 2021, 15(8): 13220-13229.
|
[29] |
Yin ZB, Cheng XL, Liu R, et al. Chemical and topographical single-cell imaging by near-field desorption mass spectrometry[J]. Angew Chem Int Ed Engl, 2019, 58(14): 4541-4546.
|
[30] |
Caprioli RM. Imaging mass spectrometry: molecular microscopy for the new age of biology and medicine[J]. Proteomics, 2016, 16(11/12): 1607-1612.
|
[31] |
Haque MIU, Mukherjee D, Stopka SA, et al. Deep learning on multimodal chemical and whole slide imaging data for predicting prostate cancer directly from tissue images[J]. J Am Soc Mass Spectrom, 2023, 34(2): 227-235.
|
[32] |
Unsihuay D, Yin RC, Sanchez DM, et al. High-resolution imaging and identification of biomolecules using Nano-DESI coupled to ion mobility spectrometry[J]. Anal Chim Acta, 2021, 1186: 339085.
|
[33] |
Xie CY, Chen YY, Wang XX, et al. Chiral derivatization-enabled discrimination and on-tissue detection of proteinogenic amino acids by ion mobility mass spectrometry[J]. Chem Sci, 2022, 13(47): 14114-14123.
|
[34] |
Ellis SR, Paine MRL, Eijkel GB, et al. Automated, parallel mass spectrometry imaging and structural identification of lipids[J]. Nat Methods, 2018, 15(7): 515-518.
|
[35] |
Guo XY, Cao WB, Fan XM, et al. Tandem mass spectrometry imaging enables high definition for mapping lipids in tissues[J]. Angew Chem Int Ed Engl, 2023, 62(9):
|
[36] |
Han YH, Zhao YS, Chen PP, et al. On-tissue derivatization for isomer-specific mass spectrometry imaging and relative quantification of monosaccharides in biological tissues[J]. Anal Chim Acta, 2022, 1225: 340241.
|
[37] |
Wu Q. A review on quantitation-related factors and quantitation strategies in mass spectrometry imaging of small biomolecules[J]. Anal Methods, 2022, 14(40): 3932-3943.
|
[38] |
Unsihuay D, Mesa Sanchez D, Laskin J. Quantitative mass spectrometry imaging of biological systems[J]. Annu Rev Phys Chem, 2021, 72: 307-329.
|
[39] |
Schulz S, Becker M, Groseclose MR, et al. Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development[J]. Curr Opin Biotechnol, 2019, 55: 51-59.
|
[40] |
Takai N, Tanaka Y, Watanabe A, et al. Quantitative imaging of a therapeutic peptide in biological tissue sections by MALDI MS[J]. Bioanalysis, 2013, 5(5): 603-612.
|
[41] |
Torok S, Rezeli M, Kelemen O, et al. Limited tumor tissue drug penetration contributes to primary resistance against angiogenesis inhibitors[J]. Theranostics, 2017, 7(2): 400-412.
|
[42] |
Munteanu B, Meyer B, von Reitzenstein C, et al. Label-free in situ monitoring of histone deacetylase drug target engagement by matrix-assisted laser desorption ionization-mass spectrometry biotyping and imaging[J]. Anal Chem, 2014, 86(10): 4642-4647.
|
[43] |
Mittal P, Price ZK, Lokman NA, et al. Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) for monitoring of drug response in primary cancer spheroids[J]. Proteomics, 2019, 19, 1900146.
|
[44] |
Jaeschke H, Knight TR, Bajt ML. The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity[J]. Toxicol Lett, 2003, 144(3): 279-288.
|
[45] |
Sezgin S, Hassan R, Zühlke S, et al. Spatio-temporal visualization of the distribution of acetaminophen as well as its metabolites and adducts in mouse livers by MALDI MSI[J]. Arch Toxicol, 2018, 92(9): 2963-2977.
|
[46] |
Li LM, Zang QC, Li XZ, et al. Spatiotemporal pharmacometabolomics based on ambient mass spectrometry imaging to evaluate the metabolism and hepatotoxicity of amiodarone in HepG2 spheroids[J]. J Pharm Anal, 2023, 13(5): 483-493.
|
[47] |
Wang ZH, He BS, Liu YQ, et al. In situ metabolomics in nephrotoxicity of aristolochic acids based on air flow-assisted desorption electrospray ionization mass spectrometry imaging[J]. Acta Pharm Sin B, 2020, 10(6): 1083-1093.
|
[48] |
Nilsson A, Forngren B, Bjurstr?m S, et al. In situ mass spectrometry imaging and ex vivo characterization of renal crystalline deposits induced in multiple preclinical drug toxicology studies[J]. PLoS One, 2012, 7(10):
|
[49] |
Barrette AM, Roberts JK, Chapin C, et al. Antiinflammatory effects of budesonide in human fetal lung[J]. Am J Respir Cell Mol Biol, 2016, 55(5): 623-632.
|
[50] |
Zecchi R, Franceschi P, Tigli L, et al. Surfactant-assisted distal pulmonary distribution of budesonide revealed by mass spectrometry imaging[J]. Pharmaceutics, 2021, 13(6): 868.
|
[51] |
Tannock IF, Lee CM, Tunggal JK, et al. Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy[J]. Clin Cancer Res, 2002, 8(3): 878-884.
|
[52] |
Tanaka Y, Hirata M, Shinonome S, et al. Distribution analysis of epertinib in brain metastasis of HER2-positive breast cancer by imaging mass spectrometry and prospect for antitumor activity[J]. Sci Rep, 2018, 8(1): 343.
|
[53] |
Tang WW, Zhang YJ, Li P, et al. Evaluation of intestinal drug absorption and interaction using quadruple single-pass intestinal perfusion coupled with mass spectrometry imaging[J]. Anal Chem, 2023, 95(6): 3218-3227.
|
[54] |
Aikawa H, Hayashi M, Ryu S, et al. Visualizing spatial distribution of alectinib in murine brain using quantitative mass spectrometry imaging[J]. Sci Rep, 2016, 6: 23749.
|
[55] |
Moraleja I, Esteban-Fernández D, Lázaro A, et al. Printing metal-spiked inks for LA-ICP-MS bioimaging internal standardization: comparison of the different nephrotoxic behavior of cisplatin, carboplatin, and oxaliplatin[J]. Anal Bioanal Chem, 2016, 408(9): 2309-2318.
|
[56] |
Ding YX, Xu YJ, Yang WZ, et al. Investigating the EPR effect of nanomedicines in human renal tumors via ex vivo perfusion strategy[J]. Nano Today, 2020, 35: 100970.
|
[57] |
Ryu S, Ohuchi M, Yagishita S, et al. Visualization of the distribution of nanoparticle-formulated AZD2811 in mouse tumor model using matrix-assisted laser desorption ionization mass spectrometry imaging[J]. Sci Rep, 2020, 10(1): 15535.
|
[58] |
Xue JJ, Liu HH, Chen SM, et al. Mass spectrometry imaging of the in situ drug release from nanocarriers[J]. Sci Adv, 2018, 4(10):
|
[59] |
Strittmatter N, Moss JI, Race AM, et al. Multi-modal molecular imaging maps the correlation between tumor microenvironments and nanomedicine distribution[J]. Theranostics, 2022, 12(5): 2162-2174.
|
[60] |
Meng YF, Cheng XL, Wang TT, et al. Micro-lensed fiber laser desorption mass spectrometry imaging reveals subcellular distribution of drugs within single cells[J]. Angew Chem Int Ed Engl, 2020, 59(41): 17864-17871.
|
[61] |
Pena-Rodríguez E, García-Berrocoso T, Fernández EV, et al. Monitoring dexamethasone skin biodistribution with ex vivo MALDI-TOF mass spectrometry imaging and confocal Raman microscopy[J]. Int J Pharm, 2023, 636: 122808.
|
[62] |
Sun SP, Tang WW, Li B. Authentication of single herbal powders enabled by microscopy-guided in situ auto-sampling combined with matrix-assisted laser desorption/ionization mass spectrometry[J]. Anal Chem, 2023, 95(19): 7512-7518.
|
[63] |
Tang WW, Shi JJ, Liu W, et al. MALDI imaging assisted discovery of a di-O-glycosyltransferase from Platycodon grandiflorum root[J]. Angew Chem Int Ed Engl, 2023, 62(19):
|
[64] |
Bai HR, Wang SJ, Liu JJ, et al. Localization of ginsenosides in Panax ginseng with different age by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry imaging[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2016, 1026: 263-271.
|
[65] |
Yang YG, Yang YB, Qiu H, et al. Localization of constituents for determining the age and parts of ginseng through ultraperfomance liquid chromatography quadrupole/time of flight-mass spectrometry combined with desorption electrospray ionization mass spectrometry imaging[J]. J Pharm Biomed Anal, 2021, 193: 113722.
|
[66] |
Li B, Ge JY, Liu W, et al. Unveiling spatial metabolome of Paeonia suffruticosa and Paeonia lactiflora roots using MALDI MS imaging[J]. New Phytol, 2021, 231(2): 892-902.
|
[67] |
Yamamoto K, Takahashi K, Caputi L, et al. The complexity of intercellular localisation of alkaloids revealed by single-cell metabolomics[J]. New Phytol, 2019, 224(2): 848-859.
|
[68] |
Li B, Bhandari DR, Janfelt C, et al. Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging[J]. Plant J, 2014, 80(1): 161-171.
|
[69] |
Li B, Neumann EK, Ge JY, et al. Interrogation of spatial metabolome of Ginkgo biloba with high-resolution matrix-assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging[J]. Plant Cell Environ, 2018, 41(11): 2693-2703.
|
[70] |
Meng XY, Fu WQ, Huo ML, et al. In situ label-free visualization of tissue distributions of salidroside in multiple mouse organs by MALDI-MS imaging[J]. Int J Mass Spectrom, 2020, 453: 116347.
|
[71] |
Tang WW, Chen J, Zhou J, et al. Quantitative MALDI imaging of spatial distributions and dynamic changes of tetrandrine in multiple organs of rats[J]. Theranostics, 2019, 9(4): 932-944.
|
[72] |
Jiang HY, Gao HY, Li J, et al. Integrated spatially resolved metabolomics and network toxicology to investigate the hepatotoxicity mechanisms of component D of Polygonum multiflorum Thunb[J]. J Ethnopharmacol, 2022, 298: 115630.
|