• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
LOU Fangning, ZHENG Mingyue, CHEN Kaixian, et al. Research progress of cGAS-STING signaling pathway modulators in immunotherapy[J]. J China Pharm Univ, 2024, 55(1): 15 − 25. DOI: 10.11665/j.issn.1000-5048.2023112402
Citation: LOU Fangning, ZHENG Mingyue, CHEN Kaixian, et al. Research progress of cGAS-STING signaling pathway modulators in immunotherapy[J]. J China Pharm Univ, 2024, 55(1): 15 − 25. DOI: 10.11665/j.issn.1000-5048.2023112402

Research progress of cGAS-STING signaling pathway modulators in immunotherapy

Funds: This study was supported by the National Natural Science Foundation of China (No. T2225002, No.82273855); the National Key Research and Development Program of China (No. 2022YFC3400504); CAS Youth Innovation Promotion Association (No. 2023296); and the Natural Science Foundation of Shanghai (No. 22ZR1474300)
More Information
  • Received Date: November 23, 2023
  • Available Online: March 05, 2024
  • Upon monitoring cytoplasmic aberrant double-stranded DNA, cGAS-STING signaling pathway induces the expression of type I interferons and pro-inflammatory cytokines, which activates the host immune response and enhances anti-tumor immune response and resistance to pathogen infection. However, sustained activation of the cGAS-STING signaling pathway drives diseases such as autoimmune diseases, aging-associated inflammation, and neurodegenerative pathologies. Herein, we describe the mechanism by which cGAS-STING signaling pathway participates in regulating the development of various immune-related diseases, with a particular review of the research and development progress of STING agonists, cGAS inhibitors, and STING inhibitors, aiming to provide some theoretical reference for the future development of cGAS-STING modulators.

  • [1]
    Mei JH, Hong Z, Wang C. Advances of drugs in targeting cGAS-STING signaling pathway[J]. J China Pharm Univ (中国药科大学学报), 2020, 51(3): 249-259. doi: 10.11665/j.issn.1000-5048.20200301
    [2]
    O’Neill LAJ. DNA makes RNA makes innate immunity[J]. Cell, 2009, 138(3): 428-430. doi: 10.1016/j.cell.2009.07.021
    [3]
    Zhong B, Yang Y, Li S, et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation[J]. Immunity, 2008, 29(4): 538-550. doi: 10.1016/j.immuni.2008.09.003
    [4]
    Sun WX, Li Y, Chen L, et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization[J]. Proc Natl Acad Sci USA, 2009, 106(21): 8653-8658.
    [5]
    Jin L, Waterman PM, Jonscher KR, et al. MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class Ⅱ and mediates transduction of apoptotic signals[J]. Mol Cell Biol, 2008, 28(16): 5014-5026. doi: 10.1128/MCB.00640-08
    [6]
    Cheng ZL, Dai T, He XL, et al. The interactions between cGAS-STING pathway and pathogens[J]. Signal Transduct Target Ther, 2020, 5(1): 91. doi: 10.1038/s41392-020-0198-7
    [7]
    Fuertes MB, Kacha AK, Kline J, et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+dendritic cells[J]. J Exp Med, 2011, 208(10): 2005-2016. doi: 10.1084/jem.20101159
    [8]
    Mullard A. Biotechs step on cGAS for autoimmune diseases[J]. Nat Rev Drug Discov, 2023, 22(12): 939-941. doi: 10.1038/d41573-023-00185-8
    [9]
    Corrales L, Glickman LH, McWhirter SM, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity[J]. Cell Rep, 2015, 11(7): 1018-1030. doi: 10.1016/j.celrep.2015.04.031
    [10]
    Ramanjulu JM, Pesiridis GS, Yang JS, et al. Design of amidobenzimidazole STING receptor agonists with systemic activity[J]. Nature, 2018, 564(7736): 439-443. doi: 10.1038/s41586-018-0705-y
    [11]
    Woo SR, Fuertes MB, Corrales L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors[J]. Immunity, 2014, 41(5): 830-842. doi: 10.1016/j.immuni.2014.10.017
    [12]
    Lu L, Yang C, Zhou XY, et al. STING signaling promotes NK cell antitumor immunity and maintains a reservoir of TCF-1+ NK cells[J]. Cell Rep, 2023, 42(9): 113108. doi: 10.1016/j.celrep.2023.113108
    [13]
    Yan XW, Yao C, Fang C, et al. Rocaglamide promotes the infiltration and antitumor immunity of NK cells by activating cGAS-STING signaling in non-small cell lung cancer[J]. Int J Biol Sci, 2022, 18(2): 585-598. doi: 10.7150/ijbs.65019
    [14]
    Bakhoum SF, Ngo B, Laughney AM, et al. Chromosomal instability drives metastasis through a cytosolic DNA response[J]. Nature, 2018, 553(7689): 467-472. doi: 10.1038/nature25432
    [15]
    Li J, Hubisz MJ, Earlie EM, et al. Non-cell-autonomous cancer progression from chromosomal instability[J]. Nature, 2023, 620(7976): 1080-1088. doi: 10.1038/s41586-023-06464-z
    [16]
    Chang JH, Guo JT. Treatment of chronic hepatitis B with pattern recognition receptor agonists: current status and potential for a cure[J]. Antiviral Res, 2015, 121: 152-159. doi: 10.1016/j.antiviral.2015.07.006
    [17]
    Cerón S, North BJ, Taylor SA, et al. The STING agonist 5, 6-dimethylxanthenone-4-acetic acid (DMXAA) stimulates an antiviral state and protects mice against herpes simplex virus-induced neurological disease[J]. Virology, 2019, 529: 23-28. doi: 10.1016/j.virol.2019.01.006
    [18]
    Domizio JD, Gulen MF, Saidoune F, et al. The cGAS-STING pathway drives type Ⅰ IFN immunopathology in COVID-19[J]. Nature, 2022, 603(7899): 145-151. doi: 10.1038/s41586-022-04421-w
    [19]
    Xiao RX, Zhang A. Involvement of the STING signaling in COVID-19[J]. Front Immunol, 2022, 13: 1006395. doi: 10.3389/fimmu.2022.1006395
    [20]
    Liu NX, Pang XX, Zhang H, et al. The cGAS-STING pathway in bacterial infection and bacterial immunity[J]. Front Immunol, 2021, 12: 814709.
    [21]
    Zhu LF, Xu L, Wang CG, et al. T6SS translocates a micropeptide to suppress STING-mediated innate immunity by sequestering manganese[J]. Proc Natl Acad Sci U S A, 2021, 118(42): e2103526118. doi: 10.1073/pnas.2103526118
    [22]
    Chen T, Feng YT, Sun WW, et al. The nucleotide receptor STING translocates to the phagosomes to negatively regulate anti-fungal immunity[J]. Immunity, 2023, 56(8): 1727-1742. e6.
    [23]
    Hansen AL, Mukai K, Schopfer FJ, et al. STING palmitoylation as a therapeutic target[J]. Cell Mol Immunol, 2019, 16(3): 236-241. doi: 10.1038/s41423-019-0205-5
    [24]
    Miner JJ, Fitzgerald KA. A path towards personalized medicine for autoinflammatory and related diseases[J]. Nat Rev Rheumatol, 2023, 19(3): 182-189. doi: 10.1038/s41584-022-00904-2
    [25]
    Gray EE, Treuting PM, Woodward JJ, et al. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of aicardi-goutières syndrome[J]. J Immunol, 2015, 195(5): 1939-1943. doi: 10.4049/jimmunol.1500969
    [26]
    Rodero MP, Tesser A, Bartok E, et al. Type Ⅰ interferon-mediated autoinflammation due to DNase Ⅱ deficiency[J]. Nat Commun, 2017, 8(1): 2176. doi: 10.1038/s41467-017-01932-3
    [27]
    Tansakul M, Thim-Uam A, Saethang T, et al. Deficiency of STING promotes collagen-specific antibody production and B cell survival in collagen-induced arthritis[J]. Front Immunol, 2020, 11: 1101. doi: 10.3389/fimmu.2020.01101
    [28]
    Mukai K, Ogawa E, Uematsu R, et al. Homeostatic regulation of STING by retrograde membrane traffic to the ER[J]. Nat Commun, 2021, 12(1): 61. doi: 10.1038/s41467-020-20234-9
    [29]
    Kato Y, Park J, Takamatsu H, et al. Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type Ⅰ IFN production in systemic lupus erythematosus[J]. Ann Rheum Dis, 2018, 77(10): 1507-1515. doi: 10.1136/annrheumdis-2018-212988
    [30]
    Cheng FR, Su T, Liu Y, et al. Targeting lymph nodes for systemic immunosuppression using cell-free-DNA-scavenging and cGAS-inhibiting nanomedicine-In-hydrogel for rheumatoid arthritis immunotherapy[J]. Adv Sci, 2023, 10(26): e2302575. doi: 10.1002/advs.202302575
    [31]
    Glück S, Guey B, Gulen MF, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence[J]. Nat Cell Biol, 2017, 19(9): 1061-1070. doi: 10.1038/ncb3586
    [32]
    Gulen MF, Samson N, Keller A, et al. cGAS-STING drives ageing-related inflammation and neurodegeneration[J]. Nature, 2023, 620(7973): 374-380. doi: 10.1038/s41586-023-06373-1
    [33]
    Yu QJ, Katlinskaya YV, Carbone CJ, et al. DNA-damage-induced type Ⅰ interferon promotes senescence and inhibits stem cell function[J]. Cell Rep, 2015, 11(5): 785-797. doi: 10.1016/j.celrep.2015.03.069
    [34]
    Taylor JM, Moore Z, Minter MR, et al. Type- Ⅰ interferon pathway in neuroinflammation and neurodegeneration: focus on Alzheimer’s disease[J]. J Neural Transm, 2018, 125(5): 797-807. doi: 10.1007/s00702-017-1745-4
    [35]
    Jauhari A, Baranov SV, Suofu Y, et al. Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration[J]. J Clin Invest, 2021, 131(9): e150328. doi: 10.1172/JCI150328
    [36]
    Hinkle JT, Patel J, Panicker N, et al. STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy[J]. Proc Natl Acad Sci U S A, 2022, 119(15): e2118819119. doi: 10.1073/pnas.2118819119
    [37]
    Zaki-Dizaji M, Akrami SM, Azizi G, et al. Inflammation, a significant player of Ataxia-Telangiectasia pathogenesis[J]? Inflamm Res, 2018, 67(7): 559-570. doi: 10.1007/s00011-018-1142-y
    [38]
    Ergun SL, Fernandez D, Weiss TM, et al. STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition[J]. Cell, 2019, 178(2): 290-301. e10.
    [39]
    Zhou C, Chen X, Planells-Cases R, et al. Transfer of cGAMP into bystander cells via LRRC8 volume-regulated anion channels augments STING-mediated interferon responses and anti-viral immunity[J]. Immunity, 2020, 52(5): 767-781. e6.
    [40]
    Zhao KX, Huang JJ, Zhao Y, et al. Targeting STING in cancer: challenges and emerging opportunities[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(6): 188983. doi: 10.1016/j.bbcan.2023.188983
    [41]
    Chin EN, Yu CG, Vartabedian VF, et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic[J]. Science, 2020, 369(6506): 993-999. doi: 10.1126/science.abb4255
    [42]
    Pan BS, Perera SA, Piesvaux JA, et al. An orally available non-nucleotide STING agonist with antitumor activity[J]. Science, 2020, 369(6506): eaba6098. doi: 10.1126/science.aba6098
    [43]
    Hall J, Brault A, Vincent F, et al. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay[J]. PLoS One, 2017, 12(9): e0184843. doi: 10.1371/journal.pone.0184843
    [44]
    Padilla-Salinas R, Sun LJ, Anderson R, et al. Discovery of small-molecule cyclic GMP-AMP synthase inhibitors[J]. J Org Chem, 2020, 85(3): 1579-1600. doi: 10.1021/acs.joc.9b02666
    [45]
    Vincent J, Adura C, Gao P, et al. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice[J]. Nat Commun, 2017, 8(1): 750. doi: 10.1038/s41467-017-00833-9
    [46]
    Lama L, Adura C, Xie W, et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression[J]. Nat Commun, 2019, 10(1): 2261. doi: 10.1038/s41467-019-08620-4
    [47]
    Chu L, Li CH, Li YX, et al. Perillaldehyde inhibition of cGAS reduces dsDNA-induced interferon response[J]. Front Immunol, 2021, 12: 655637. doi: 10.3389/fimmu.2021.655637
    [48]
    An J, Woodward JJ, Sasaki T, et al. Cutting edge: Antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction[J]. J Immunol, 2015, 194(9): 4089-4093. doi: 10.4049/jimmunol.1402793
    [49]
    Wang MD, Sooreshjani MA, Mikek C, et al. Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-β levels[J]. Future Med Chem, 2018, 10(11): 1301-1317. doi: 10.4155/fmc-2017-0322
    [50]
    Mukai K, Konno H, Akiba T, et al. Activation of STING requires palmitoylation at the Golgi[J]. Nat Commun, 2016, 7: 11932. doi: 10.1038/ncomms11932
    [51]
    Haag SM, Gulen MF, Reymond L, et al. Targeting STING with covalent small-molecule inhibitors[J]. Nature, 2018, 559(7713): 269-273. doi: 10.1038/s41586-018-0287-8
    [52]
    Hansen AL, Buchan GJ, Rühl M, et al. Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling[J]. Proc Natl Acad Sci U S A, 2018, 115(33): E7768-E7775.
    [53]
    Su CF, Cheng T, Huang J, et al. 4-Octyl itaconate restricts STING activation by blocking its palmitoylation[J]. Cell Rep, 2023, 42(9): 113040. doi: 10.1016/j.celrep.2023.113040
    [54]
    Humphries F, Shmuel-Galia L, Jiang ZZ, et al. Targeting STING oligomerization with small-molecule inhibitors[J]. Proc Natl Acad Sci U S A, 2023, 120(33): e2305420120. doi: 10.1073/pnas.2305420120
    [55]
    Barasa L, Chaudhuri S, Zhou JY, et al. Development of LB244, an irreversible STING antagonist[J]. J Am Chem Soc, 2023, 145(37): 20273-20288. doi: 10.1021/jacs.3c03637
    [56]
    Li SL, Hong Z, Wang Z, et al. The cyclopeptide astin C specifically inhibits the innate immune CDN sensor STING[J]. Cell Rep, 2018, 25(12): 3405-3421. e7.
    [57]
    Siu T, Altman MD, Baltus GA, et al. Discovery of a novel cGAMP competitive ligand of the inactive form of STING[J]. ACS Med Chem Lett, 2019, 10(1): 92-97. doi: 10.1021/acsmedchemlett.8b00466
    [58]
    Hong Z, Mei JH, Li CH, et al. STING inhibitors target the cyclic dinucleotide binding pocket[J]. Proc Natl Acad Sci U S A, 2021, 118(24): e2105465118. doi: 10.1073/pnas.2105465118
    [59]
    Feng MX, Kong DP, Guo H, et al. Gelsevirine improves age-related and surgically induced osteoarthritis in mice by reducing STING availability and local inflammation[J]. Biochem Pharmacol, 2022, 198: 114975. doi: 10.1016/j.bcp.2022.114975
  • Related Articles

    [1]ZHANG Zhixing, DENG Hua, TANG Yun. Applications and challenges of artificial intelligence in the development of anticancer peptides[J]. Journal of China Pharmaceutical University, 2024, 55(3): 347-356. DOI: 10.11665/j.issn.1000-5048.2024040201
    [2]HU Zi’ang, GAO Liming, YU Wenying. Advances in the application of artificial intelligence in nucleic acid drug development[J]. Journal of China Pharmaceutical University, 2024, 55(3): 335-346. DOI: 10.11665/j.issn.1000-5048.2024033101
    [3]ZENG Hao, WU Guozhen, ZOU Wuxin, WANG Zhe, SONG Jianfei, SHI Hui, WANG Xiaojian, HOU Tingjun, DENG Yafeng. Optimization of Menin inhibitors based on artificial intelligence-driven molecular factory technology[J]. Journal of China Pharmaceutical University, 2024, 55(3): 326-334. DOI: 10.11665/j.issn.1000-5048.2024040904
    [4]TANG qian, CHEN Roufen, SHEN Zheyuan, CHI Xinglong, CHE Jinxin, DONG Xiaowu. Research progress of artificial intelligence-based small molecule generation models in drug discovery[J]. Journal of China Pharmaceutical University, 2024, 55(3): 295-305. DOI: 10.11665/j.issn.1000-5048.2024031501
    [5]XUE Feng, FENG Shuo, LI Jing. Application and prospect of artificial intelligence in antimicrobial peptides screening[J]. Journal of China Pharmaceutical University, 2023, 54(3): 314-322. DOI: 10.11665/j.issn.1000-5048.2023030901
    [6]GU Zhihao, GUO Wenhao, YAO Hequan, LI Xuanyi, LIN Kejiang. Research progress of the screening and generation of lead compounds based on artificial intelligence model[J]. Journal of China Pharmaceutical University, 2023, 54(3): 294-304. DOI: 10.11665/j.issn.1000-5048.2023042201
    [7]YU Zehao, ZHANG Leiming, ZHANG Mengna, DAI Zhiqi, PENG Chengbin, ZHENG Siming. Artificial intelligence-based drug development: current progress and future challenges[J]. Journal of China Pharmaceutical University, 2023, 54(3): 282-293. DOI: 10.11665/j.issn.1000-5048.2023041003
    [8]WANG Chao, XIAO Fu, LI Miaozhu, PAN Ying, DING Xiao, REN Feng, ZHAVORONKOV Alex, WANG Yazhou. Application progress of artificial intelligence in the screening and identification of drug targets[J]. Journal of China Pharmaceutical University, 2023, 54(3): 269-281. DOI: 10.11665/j.issn.1000-5048.2023041102
    [9]YAN Fangrong. Application and advance of artificial intelligence in biomedical field[J]. Journal of China Pharmaceutical University, 2023, 54(3): 263-268. DOI: 10.11665/j.issn.1000-5048.2023030304
    [10]Zhang Zunjian, Yu Shuqin, Xiang Bingren, An Dengkui. A New Artificial Neural Network Model:Combined Counter-Back Propagation and its Application[J]. Journal of China Pharmaceutical University, 1996, (11).
  • Cited by

    Periodical cited type(1)

    1. 赵倩,魏宇,郭凯敏,王文佳,周水平,孙鹤,方坚松,胡蕴慧. 人工智能结合生物网络对“养血清脑制剂”和“逍遥丸”组方的优化及验证. 中药药理与临床. 2024(04): 27-33 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return