Citation: | LOU Fangning, ZHENG Mingyue, CHEN Kaixian, et al. Research progress of cGAS-STING signaling pathway modulators in immunotherapy[J]. J China Pharm Univ, 2024, 55(1): 15 − 25. DOI: 10.11665/j.issn.1000-5048.2023112402 |
Upon monitoring cytoplasmic aberrant double-stranded DNA, cGAS-STING signaling pathway induces the expression of type I interferons and pro-inflammatory cytokines, which activates the host immune response and enhances anti-tumor immune response and resistance to pathogen infection. However, sustained activation of the cGAS-STING signaling pathway drives diseases such as autoimmune diseases, aging-associated inflammation, and neurodegenerative pathologies. Herein, we describe the mechanism by which cGAS-STING signaling pathway participates in regulating the development of various immune-related diseases, with a particular review of the research and development progress of STING agonists, cGAS inhibitors, and STING inhibitors, aiming to provide some theoretical reference for the future development of cGAS-STING modulators.
[1] |
Mei JH, Hong Z, Wang C. Advances of drugs in targeting cGAS-STING signaling pathway[J]. J China Pharm Univ (中国药科大学学报), 2020, 51(3): 249-259. doi: 10.11665/j.issn.1000-5048.20200301
|
[2] |
O’Neill LAJ. DNA makes RNA makes innate immunity[J]. Cell, 2009, 138(3): 428-430. doi: 10.1016/j.cell.2009.07.021
|
[3] |
Zhong B, Yang Y, Li S, et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation[J]. Immunity, 2008, 29(4): 538-550. doi: 10.1016/j.immuni.2008.09.003
|
[4] |
Sun WX, Li Y, Chen L, et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization[J]. Proc Natl Acad Sci USA, 2009, 106(21): 8653-8658.
|
[5] |
Jin L, Waterman PM, Jonscher KR, et al. MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class Ⅱ and mediates transduction of apoptotic signals[J]. Mol Cell Biol, 2008, 28(16): 5014-5026. doi: 10.1128/MCB.00640-08
|
[6] |
Cheng ZL, Dai T, He XL, et al. The interactions between cGAS-STING pathway and pathogens[J]. Signal Transduct Target Ther, 2020, 5(1): 91. doi: 10.1038/s41392-020-0198-7
|
[7] |
Fuertes MB, Kacha AK, Kline J, et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+dendritic cells[J]. J Exp Med, 2011, 208(10): 2005-2016. doi: 10.1084/jem.20101159
|
[8] |
Mullard A. Biotechs step on cGAS for autoimmune diseases[J]. Nat Rev Drug Discov, 2023, 22(12): 939-941. doi: 10.1038/d41573-023-00185-8
|
[9] |
Corrales L, Glickman LH, McWhirter SM, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity[J]. Cell Rep, 2015, 11(7): 1018-1030. doi: 10.1016/j.celrep.2015.04.031
|
[10] |
Ramanjulu JM, Pesiridis GS, Yang JS, et al. Design of amidobenzimidazole STING receptor agonists with systemic activity[J]. Nature, 2018, 564(7736): 439-443. doi: 10.1038/s41586-018-0705-y
|
[11] |
Woo SR, Fuertes MB, Corrales L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors[J]. Immunity, 2014, 41(5): 830-842. doi: 10.1016/j.immuni.2014.10.017
|
[12] |
Lu L, Yang C, Zhou XY, et al. STING signaling promotes NK cell antitumor immunity and maintains a reservoir of TCF-1+ NK cells[J]. Cell Rep, 2023, 42(9): 113108. doi: 10.1016/j.celrep.2023.113108
|
[13] |
Yan XW, Yao C, Fang C, et al. Rocaglamide promotes the infiltration and antitumor immunity of NK cells by activating cGAS-STING signaling in non-small cell lung cancer[J]. Int J Biol Sci, 2022, 18(2): 585-598. doi: 10.7150/ijbs.65019
|
[14] |
Bakhoum SF, Ngo B, Laughney AM, et al. Chromosomal instability drives metastasis through a cytosolic DNA response[J]. Nature, 2018, 553(7689): 467-472. doi: 10.1038/nature25432
|
[15] |
Li J, Hubisz MJ, Earlie EM, et al. Non-cell-autonomous cancer progression from chromosomal instability[J]. Nature, 2023, 620(7976): 1080-1088. doi: 10.1038/s41586-023-06464-z
|
[16] |
Chang JH, Guo JT. Treatment of chronic hepatitis B with pattern recognition receptor agonists: current status and potential for a cure[J]. Antiviral Res, 2015, 121: 152-159. doi: 10.1016/j.antiviral.2015.07.006
|
[17] |
Cerón S, North BJ, Taylor SA, et al. The STING agonist 5, 6-dimethylxanthenone-4-acetic acid (DMXAA) stimulates an antiviral state and protects mice against herpes simplex virus-induced neurological disease[J]. Virology, 2019, 529: 23-28. doi: 10.1016/j.virol.2019.01.006
|
[18] |
Domizio JD, Gulen MF, Saidoune F, et al. The cGAS-STING pathway drives type Ⅰ IFN immunopathology in COVID-19[J]. Nature, 2022, 603(7899): 145-151. doi: 10.1038/s41586-022-04421-w
|
[19] |
Xiao RX, Zhang A. Involvement of the STING signaling in COVID-19[J]. Front Immunol, 2022, 13: 1006395. doi: 10.3389/fimmu.2022.1006395
|
[20] |
Liu NX, Pang XX, Zhang H, et al. The cGAS-STING pathway in bacterial infection and bacterial immunity[J]. Front Immunol, 2021, 12: 814709.
|
[21] |
Zhu LF, Xu L, Wang CG, et al. T6SS translocates a micropeptide to suppress STING-mediated innate immunity by sequestering manganese[J]. Proc Natl Acad Sci U S A, 2021, 118(42): e2103526118. doi: 10.1073/pnas.2103526118
|
[22] |
Chen T, Feng YT, Sun WW, et al. The nucleotide receptor STING translocates to the phagosomes to negatively regulate anti-fungal immunity[J]. Immunity, 2023, 56(8): 1727-1742. e6.
|
[23] |
Hansen AL, Mukai K, Schopfer FJ, et al. STING palmitoylation as a therapeutic target[J]. Cell Mol Immunol, 2019, 16(3): 236-241. doi: 10.1038/s41423-019-0205-5
|
[24] |
Miner JJ, Fitzgerald KA. A path towards personalized medicine for autoinflammatory and related diseases[J]. Nat Rev Rheumatol, 2023, 19(3): 182-189. doi: 10.1038/s41584-022-00904-2
|
[25] |
Gray EE, Treuting PM, Woodward JJ, et al. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of aicardi-goutières syndrome[J]. J Immunol, 2015, 195(5): 1939-1943. doi: 10.4049/jimmunol.1500969
|
[26] |
Rodero MP, Tesser A, Bartok E, et al. Type Ⅰ interferon-mediated autoinflammation due to DNase Ⅱ deficiency[J]. Nat Commun, 2017, 8(1): 2176. doi: 10.1038/s41467-017-01932-3
|
[27] |
Tansakul M, Thim-Uam A, Saethang T, et al. Deficiency of STING promotes collagen-specific antibody production and B cell survival in collagen-induced arthritis[J]. Front Immunol, 2020, 11: 1101. doi: 10.3389/fimmu.2020.01101
|
[28] |
Mukai K, Ogawa E, Uematsu R, et al. Homeostatic regulation of STING by retrograde membrane traffic to the ER[J]. Nat Commun, 2021, 12(1): 61. doi: 10.1038/s41467-020-20234-9
|
[29] |
Kato Y, Park J, Takamatsu H, et al. Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type Ⅰ IFN production in systemic lupus erythematosus[J]. Ann Rheum Dis, 2018, 77(10): 1507-1515. doi: 10.1136/annrheumdis-2018-212988
|
[30] |
Cheng FR, Su T, Liu Y, et al. Targeting lymph nodes for systemic immunosuppression using cell-free-DNA-scavenging and cGAS-inhibiting nanomedicine-In-hydrogel for rheumatoid arthritis immunotherapy[J]. Adv Sci, 2023, 10(26): e2302575. doi: 10.1002/advs.202302575
|
[31] |
Glück S, Guey B, Gulen MF, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence[J]. Nat Cell Biol, 2017, 19(9): 1061-1070. doi: 10.1038/ncb3586
|
[32] |
Gulen MF, Samson N, Keller A, et al. cGAS-STING drives ageing-related inflammation and neurodegeneration[J]. Nature, 2023, 620(7973): 374-380. doi: 10.1038/s41586-023-06373-1
|
[33] |
Yu QJ, Katlinskaya YV, Carbone CJ, et al. DNA-damage-induced type Ⅰ interferon promotes senescence and inhibits stem cell function[J]. Cell Rep, 2015, 11(5): 785-797. doi: 10.1016/j.celrep.2015.03.069
|
[34] |
Taylor JM, Moore Z, Minter MR, et al. Type- Ⅰ interferon pathway in neuroinflammation and neurodegeneration: focus on Alzheimer’s disease[J]. J Neural Transm, 2018, 125(5): 797-807. doi: 10.1007/s00702-017-1745-4
|
[35] |
Jauhari A, Baranov SV, Suofu Y, et al. Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration[J]. J Clin Invest, 2021, 131(9): e150328. doi: 10.1172/JCI150328
|
[36] |
Hinkle JT, Patel J, Panicker N, et al. STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy[J]. Proc Natl Acad Sci U S A, 2022, 119(15): e2118819119. doi: 10.1073/pnas.2118819119
|
[37] |
Zaki-Dizaji M, Akrami SM, Azizi G, et al. Inflammation, a significant player of Ataxia-Telangiectasia pathogenesis[J]? Inflamm Res, 2018, 67(7): 559-570. doi: 10.1007/s00011-018-1142-y
|
[38] |
Ergun SL, Fernandez D, Weiss TM, et al. STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition[J]. Cell, 2019, 178(2): 290-301. e10.
|
[39] |
Zhou C, Chen X, Planells-Cases R, et al. Transfer of cGAMP into bystander cells via LRRC8 volume-regulated anion channels augments STING-mediated interferon responses and anti-viral immunity[J]. Immunity, 2020, 52(5): 767-781. e6.
|
[40] |
Zhao KX, Huang JJ, Zhao Y, et al. Targeting STING in cancer: challenges and emerging opportunities[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(6): 188983. doi: 10.1016/j.bbcan.2023.188983
|
[41] |
Chin EN, Yu CG, Vartabedian VF, et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic[J]. Science, 2020, 369(6506): 993-999. doi: 10.1126/science.abb4255
|
[42] |
Pan BS, Perera SA, Piesvaux JA, et al. An orally available non-nucleotide STING agonist with antitumor activity[J]. Science, 2020, 369(6506): eaba6098. doi: 10.1126/science.aba6098
|
[43] |
Hall J, Brault A, Vincent F, et al. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay[J]. PLoS One, 2017, 12(9): e0184843. doi: 10.1371/journal.pone.0184843
|
[44] |
Padilla-Salinas R, Sun LJ, Anderson R, et al. Discovery of small-molecule cyclic GMP-AMP synthase inhibitors[J]. J Org Chem, 2020, 85(3): 1579-1600. doi: 10.1021/acs.joc.9b02666
|
[45] |
Vincent J, Adura C, Gao P, et al. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice[J]. Nat Commun, 2017, 8(1): 750. doi: 10.1038/s41467-017-00833-9
|
[46] |
Lama L, Adura C, Xie W, et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression[J]. Nat Commun, 2019, 10(1): 2261. doi: 10.1038/s41467-019-08620-4
|
[47] |
Chu L, Li CH, Li YX, et al. Perillaldehyde inhibition of cGAS reduces dsDNA-induced interferon response[J]. Front Immunol, 2021, 12: 655637. doi: 10.3389/fimmu.2021.655637
|
[48] |
An J, Woodward JJ, Sasaki T, et al. Cutting edge: Antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction[J]. J Immunol, 2015, 194(9): 4089-4093. doi: 10.4049/jimmunol.1402793
|
[49] |
Wang MD, Sooreshjani MA, Mikek C, et al. Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-β levels[J]. Future Med Chem, 2018, 10(11): 1301-1317. doi: 10.4155/fmc-2017-0322
|
[50] |
Mukai K, Konno H, Akiba T, et al. Activation of STING requires palmitoylation at the Golgi[J]. Nat Commun, 2016, 7: 11932. doi: 10.1038/ncomms11932
|
[51] |
Haag SM, Gulen MF, Reymond L, et al. Targeting STING with covalent small-molecule inhibitors[J]. Nature, 2018, 559(7713): 269-273. doi: 10.1038/s41586-018-0287-8
|
[52] |
Hansen AL, Buchan GJ, Rühl M, et al. Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling[J]. Proc Natl Acad Sci U S A, 2018, 115(33): E7768-E7775.
|
[53] |
Su CF, Cheng T, Huang J, et al. 4-Octyl itaconate restricts STING activation by blocking its palmitoylation[J]. Cell Rep, 2023, 42(9): 113040. doi: 10.1016/j.celrep.2023.113040
|
[54] |
Humphries F, Shmuel-Galia L, Jiang ZZ, et al. Targeting STING oligomerization with small-molecule inhibitors[J]. Proc Natl Acad Sci U S A, 2023, 120(33): e2305420120. doi: 10.1073/pnas.2305420120
|
[55] |
Barasa L, Chaudhuri S, Zhou JY, et al. Development of LB244, an irreversible STING antagonist[J]. J Am Chem Soc, 2023, 145(37): 20273-20288. doi: 10.1021/jacs.3c03637
|
[56] |
Li SL, Hong Z, Wang Z, et al. The cyclopeptide astin C specifically inhibits the innate immune CDN sensor STING[J]. Cell Rep, 2018, 25(12): 3405-3421. e7.
|
[57] |
Siu T, Altman MD, Baltus GA, et al. Discovery of a novel cGAMP competitive ligand of the inactive form of STING[J]. ACS Med Chem Lett, 2019, 10(1): 92-97. doi: 10.1021/acsmedchemlett.8b00466
|
[58] |
Hong Z, Mei JH, Li CH, et al. STING inhibitors target the cyclic dinucleotide binding pocket[J]. Proc Natl Acad Sci U S A, 2021, 118(24): e2105465118. doi: 10.1073/pnas.2105465118
|
[59] |
Feng MX, Kong DP, Guo H, et al. Gelsevirine improves age-related and surgically induced osteoarthritis in mice by reducing STING availability and local inflammation[J]. Biochem Pharmacol, 2022, 198: 114975. doi: 10.1016/j.bcp.2022.114975
|
[1] | ZHANG Zhixing, DENG Hua, TANG Yun. Applications and challenges of artificial intelligence in the development of anticancer peptides[J]. Journal of China Pharmaceutical University, 2024, 55(3): 347-356. DOI: 10.11665/j.issn.1000-5048.2024040201 |
[2] | HU Zi’ang, GAO Liming, YU Wenying. Advances in the application of artificial intelligence in nucleic acid drug development[J]. Journal of China Pharmaceutical University, 2024, 55(3): 335-346. DOI: 10.11665/j.issn.1000-5048.2024033101 |
[3] | ZENG Hao, WU Guozhen, ZOU Wuxin, WANG Zhe, SONG Jianfei, SHI Hui, WANG Xiaojian, HOU Tingjun, DENG Yafeng. Optimization of Menin inhibitors based on artificial intelligence-driven molecular factory technology[J]. Journal of China Pharmaceutical University, 2024, 55(3): 326-334. DOI: 10.11665/j.issn.1000-5048.2024040904 |
[4] | TANG qian, CHEN Roufen, SHEN Zheyuan, CHI Xinglong, CHE Jinxin, DONG Xiaowu. Research progress of artificial intelligence-based small molecule generation models in drug discovery[J]. Journal of China Pharmaceutical University, 2024, 55(3): 295-305. DOI: 10.11665/j.issn.1000-5048.2024031501 |
[5] | XUE Feng, FENG Shuo, LI Jing. Application and prospect of artificial intelligence in antimicrobial peptides screening[J]. Journal of China Pharmaceutical University, 2023, 54(3): 314-322. DOI: 10.11665/j.issn.1000-5048.2023030901 |
[6] | GU Zhihao, GUO Wenhao, YAO Hequan, LI Xuanyi, LIN Kejiang. Research progress of the screening and generation of lead compounds based on artificial intelligence model[J]. Journal of China Pharmaceutical University, 2023, 54(3): 294-304. DOI: 10.11665/j.issn.1000-5048.2023042201 |
[7] | YU Zehao, ZHANG Leiming, ZHANG Mengna, DAI Zhiqi, PENG Chengbin, ZHENG Siming. Artificial intelligence-based drug development: current progress and future challenges[J]. Journal of China Pharmaceutical University, 2023, 54(3): 282-293. DOI: 10.11665/j.issn.1000-5048.2023041003 |
[8] | WANG Chao, XIAO Fu, LI Miaozhu, PAN Ying, DING Xiao, REN Feng, ZHAVORONKOV Alex, WANG Yazhou. Application progress of artificial intelligence in the screening and identification of drug targets[J]. Journal of China Pharmaceutical University, 2023, 54(3): 269-281. DOI: 10.11665/j.issn.1000-5048.2023041102 |
[9] | YAN Fangrong. Application and advance of artificial intelligence in biomedical field[J]. Journal of China Pharmaceutical University, 2023, 54(3): 263-268. DOI: 10.11665/j.issn.1000-5048.2023030304 |
[10] | Zhang Zunjian, Yu Shuqin, Xiang Bingren, An Dengkui. A New Artificial Neural Network Model:Combined Counter-Back Propagation and its Application[J]. Journal of China Pharmaceutical University, 1996, (11). |
1. |
赵倩,魏宇,郭凯敏,王文佳,周水平,孙鹤,方坚松,胡蕴慧. 人工智能结合生物网络对“养血清脑制剂”和“逍遥丸”组方的优化及验证. 中药药理与临床. 2024(04): 27-33 .
![]() |