Citation: | REN Weijie, CEN Lifang, ZOU Yi. Research progress of Bruton's tyrosine kinase (BTK) inhibitors in the treatment of inflammatory and immune-mediated diseases[J]. J China Pharm Univ, 2024, 55(1): 63 − 72. DOI: 10.11665/j.issn.1000-5048.2023121103 |
Bruton’s tyrosine kinase (BTK), a cytoplasmic tyrosine kinase, plays a central role in the activation of B cells and granulocytes, operating downstream of B cell and Fcγ receptors, and is considered an attractive target for treating autoimmune diseases. Preclinical investigations have demonstrated that inhibition of BTK activity holds promise as a potential therapeutic strategy for inflammatory immune responses such as autoimmune diseases and allergies. This review provides an overview of the mechanisms by which BTK contributes to immune-related diseases and summarizes current research on the development of BTK inhibitors for treating these conditions, aiming to offer novel insights into non-oncology applications for BTK inhibitors.
[1] |
Netea MG, Balkwill F, Chonchol M, et al. A guiding map for inflammation[J]. Nat Immunol, 2017, 18(8): 826-831. doi: 10.1038/ni.3790
|
[2] |
Megha KB, Joseph X, Akhil V, et al. Cascade of immune mechanism and consequences of inflammatory disorders[J]. Phytomedicine, 2021, 91: 153712. doi: 10.1016/j.phymed.2021.153712
|
[3] |
Satterthwaite AB, Witte ON. The role of Bruton’s tyrosine kinase in B-cell development and function: a genetic perspective[J]. Immunol Rev, 2000, 175: 120-127. doi: 10.1111/j.1600-065X.2000.imr017504.x
|
[4] |
Bruton OC. Agammaglobulinemia[J]. Pediatrics, 1952, 9(6): 722-728. doi: 10.1542/peds.9.6.722
|
[5] |
Conley ME, Brown P, Pickard AR, et al. Expression of the gene defect in X-linked agammaglobulinemia[J]. N Engl J Med, 1986, 315(9): 564-567. doi: 10.1056/NEJM198608283150907
|
[6] |
Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton’s tyrosine kinase in B cells and malignancies[J]. Mol Cancer, 2018, 17(1): 57. doi: 10.1186/s12943-018-0779-z
|
[7] |
Rawlings DJ, Scharenberg AM, Park H, et al. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases[J]. Science, 1996, 271(5250): 822-825. doi: 10.1126/science.271.5250.822
|
[8] |
Baba Y, Hashimoto S, Matsushita M, et al. BLNK mediates Syk-dependent Btk activation[J]. Proc Natl Acad Sci U S A, 2001, 98(5): 2582-2586. doi: 10.1073/pnas.051626198
|
[9] |
Middendorp S, Dingjan GM, Maas A, et al. Function of Bruton’s tyrosine kinase during B cell development is partially independent of its catalytic activity[J]. J Immunol, 2003, 171(11): 5988-5996. doi: 10.4049/jimmunol.171.11.5988
|
[10] |
Corneth OBJ, Klein Wolterink RGJ, Hendriks RW. BTK signaling in B cell differentiation and autoimmunity[J]. Curr Top Microbiol Immunol, 2016, 393: 67-105.
|
[11] |
Petro JB, Khan WN. Phospholipase C-gamma 2 couples Bruton’s tyrosine kinase to the NF-kappaB signaling pathway in B lymphocytes[J]. J Biol Chem, 2001, 276(3): 1715-1719. doi: 10.1074/jbc.M009137200
|
[12] |
Hashimoto A, Okada H, Jiang A, et al. Involvement of guanosine triphosphatases and phospholipase C-gamma2 in extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase activation by the B cell antigen receptor[J]. J Exp Med, 1998, 188(7): 1287-1295. doi: 10.1084/jem.188.7.1287
|
[13] |
Whang JA, Chang BY. Bruton’s tyrosine kinase inhibitors for the treatment of rheumatoid arthritis[J]. Drug Discov Today, 2014, 19(8): 1200-1204. doi: 10.1016/j.drudis.2014.03.028
|
[14] |
Kambayashi T, Koretzky GA. Proximal signaling events in Fc epsilon RI-mediated mast cell activation[J]. J Allergy Clin Immunol, 2007, 119(3): 544-552;quiz 553-554.
|
[15] |
Rip J, de Bruijn MJW, Appelman MK, et al. Toll-like receptor signaling drives btk-mediated autoimmune disease[J]. Front Immunol, 2019, 10: 95. doi: 10.3389/fimmu.2019.00095
|
[16] |
Liubchenko GA, Appleberry HC, Striebich CC, et al. Rheumatoid arthritis is associated with signaling alterations in naturally occurring autoreactive B-lymphocytes[J]. J Autoimmun, 2013, 40: 111-121. doi: 10.1016/j.jaut.2012.09.001
|
[17] |
Iwata S, Tanaka Y. B-cell subsets, signaling and their roles in secretion of autoantibodies[J]. Lupus, 2016, 25(8): 850-856. doi: 10.1177/0961203316643172
|
[18] |
Crofford LJ, Nyhoff LE, Sheehan JH, et al. The role of Bruton’s tyrosine kinase in autoimmunity and implications for therapy[J]. Expert Rev Clin Immunol, 2016, 12(7): 763-773. doi: 10.1586/1744666X.2016.1152888
|
[19] |
Leandro MJ. B-cell subpopulations in humans and their differential susceptibility to depletion with anti-CD20 monoclonal antibodies[J]. Arthritis Res Ther, 2013, 15(Suppl 1): S3. doi: 10.1186/ar3908
|
[20] |
Dispenza MC. The use of Bruton’s tyrosine kinase inhibitors to treat allergic disorders[J]. Curr Treat Options Allergy, 2021, 8(3): 261-273. doi: 10.1007/s40521-021-00286-y
|
[21] |
MacGlashan D Jr, Honigberg LA, Smith A, et al. Inhibition of IgE-mediated secretion from human basophils with a highly selective Bruton’s tyrosine kinase, Btk, inhibitor[J]. Int Immunopharmacol, 2011, 11(4): 475-479. doi: 10.1016/j.intimp.2010.12.018
|
[22] |
Weber ANR. Targeting the NLRP3 inflammasome via BTK[J]. Front Cell Dev Biol, 2021, 9: 630479. doi: 10.3389/fcell.2021.630479
|
[23] |
Liu X, Pichulik T, Wolz OO, et al. Human NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome activity is regulated by and potentially targetable through Bruton tyrosine kinase[J]. J Allergy Clin Immunol, 2017, 140(4): 1054-1067. e10.
|
[24] |
Bittner ZA, Liu X, Mateo Tortola M, et al. BTK operates a phospho-tyrosine switch to regulate NLRP3 inflammasome activity[J]. J Exp Med, 2021, 218(11): e20201656. doi: 10.1084/jem.20201656
|
[25] |
Zarrin AA, Bao K, Lupardus P, et al. Kinase inhibition in autoimmunity and inflammation[J]. Nat Rev Drug Discov, 2021, 20(1): 39-63. doi: 10.1038/s41573-020-0082-8
|
[26] |
Ringheim GE, Wampole M, Oberoi K. Bruton’s tyrosine kinase (BTK) inhibitors and autoimmune diseases: making sense of BTK inhibitor specificity profiles and recent clinical trial successes and failures[J]. Front Immunol, 2021, 12: 662223. doi: 10.3389/fimmu.2021.662223
|
[27] |
McDonald C, Xanthopoulos C, Kostareli E. The role of Bruton’s tyrosine kinase in the immune system and disease[J]. Immunology, 2021, 164(4): 722-736. doi: 10.1111/imm.13416
|
[28] |
Brullo C, Villa C, Tasso B, et al. Btk inhibitors: a medicinal chemistry and drug delivery perspective[J]. Int J Mol Sci, 2021, 22(14): 7641. doi: 10.3390/ijms22147641
|
[29] |
Robak T, Witkowska M, Smolewski P. The role of bruton’s kinase inhibitors in chronic lymphocytic leukemia: current status and future directions[J]. Cancers, 2022, 14(3): 771. doi: 10.3390/cancers14030771
|
[30] |
Robak E, Robak T. Bruton’s kinase inhibitors for the treatment of immunological diseases: current status and perspectives[J]. J Clin Med, 2022, 11(10): 2807. doi: 10.3390/jcm11102807
|
[31] |
Liu LC, Halladay JS, Shin Y, et al. Significant species difference in amide hydrolysis of GDC-0834, a novel potent and selective Bruton’s tyrosine kinase inhibitor[J]. Drug Metab Dispos, 2011, 39(10): 1840-1849. doi: 10.1124/dmd.111.040840
|
[32] |
Liu LC, di Paolo J, Barbosa J, et al. Antiarthritis effect of a novel Bruton’s tyrosine kinase (BTK) inhibitor in rat collagen-induced arthritis and mechanism-based pharmacokinetic/pharmacodynamic modeling: relationships between inhibition of BTK phosphorylation and efficacy[J]. J Pharmacol Exp Ther, 2011, 338(1): 154-163. doi: 10.1124/jpet.111.181545
|
[33] |
Crawford JJ, Johnson AR, Misner DL, et al. Discovery of GDC-0853: a potent, selective, and noncovalent bruton’s tyrosine kinase inhibitor in early clinical development[J]. J Med Chem, 2018, 61(6): 2227-2245. doi: 10.1021/acs.jmedchem.7b01712
|
[34] |
Cohen S, Tuckwell K, Katsumoto TR, et al. Fenebrutinib versus placebo or adalimumab in rheumatoid arthritis: a randomized, double-blind, phase II trial ( ANDES study)[J]. Arthritis Rheumatol, 2020, 72(9): 1435-1446. doi: 10.1002/art.41275
|
[35] |
Isenberg D, Furie R, Jones NS, et al. Efficacy, safety, and pharmacodynamic effects of the bruton’s tyrosine kinase inhibitor fenebrutinib (GDC-0853) in systemic lupus erythematosus: results of a phase II, randomized, double-blind, placebo-controlled trial[J]. Arthritis Rheumatol, 2021, 73(10): 1835-1846. doi: 10.1002/art.41811
|
[36] |
Chan P, Yu J, Chinn L, et al. Population pharmacokinetics, efficacy exposure-response analysis, and model-based meta-analysis of fenebrutinib in subjects with rheumatoid arthritis[J]. Pharm Res, 2020, 37(2): 25. doi: 10.1007/s11095-019-2752-y
|
[37] |
Geladaris A, Torke S, Weber MS. Bruton’s tyrosine kinase inhibitors in multiple sclerosis: pioneering the path towards treatment of progression [J]? CNS Drugs, 2022, 36(10): 1019-1030.
|
[38] |
Liu QS, Sabnis Y, Zhao Z, et al. Developing irreversible inhibitors of the protein kinase cysteinome[J]. Chem Biol, 2013, 20(2): 146-159. doi: 10.1016/j.chembiol.2012.12.006
|
[39] |
Xing L, Huang A. Bruton’s TK inhibitors: structural insights and evolution of clinical candidates[J]. Future Med Chem, 2014, 6(6): 675-695. doi: 10.4155/fmc.14.24
|
[40] |
Leproult E, Barluenga S, Moras D, et al. Cysteine mapping in conformationally distinct kinase nucleotide binding sites: application to the design of selective covalent inhibitors[J]. J Med Chem, 2011, 54(5): 1347-1355. doi: 10.1021/jm101396q
|
[41] |
Schwarzbich MA, Witzens-Harig M. Ibrutinib[J]. Recent Results Cancer Res, 2014, 201: 259-267.
|
[42] |
Sakkas LI, Bogdanos DP. Systemic sclerosis: new evidence re-enforces the role of B cells[J]. Autoimmun Rev, 2016, 15(2): 155-161. doi: 10.1016/j.autrev.2015.10.005
|
[43] |
Einhaus J, Pecher AC, Asteriti E, et al. Inhibition of effector B cells by ibrutinib in systemic sclerosis[J]. Arthritis Res Ther, 2020, 22(1): 66. doi: 10.1186/s13075-020-02153-8
|
[44] |
Cavazzini F, Lista E, Quaglia FM, et al. Response to ibrutinib of refractory life-threatening autoimmune hemolytic anemia occurring in a relapsed chronic lymphocytic leukemia patient with 17p deletion[J]. Leuk Lymphoma, 2016, 57(11): 2685-2688. doi: 10.3109/10428194.2016.1154955
|
[45] |
Evans EK, Tester R, Aslanian S, et al. Inhibition of Btk with CC-292 provides early pharmacodynamic assessment of activity in mice and humans[J]. J Pharmacol Exp Ther, 2013, 346(2): 219-228. doi: 10.1124/jpet.113.203489
|
[46] |
Gehringer M, Laufer SA. Emerging and re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology[J]. J Med Chem, 2019, 62(12): 5673-5724. doi: 10.1021/acs.jmedchem.8b01153
|
[47] |
Tam C, Grigg AP, Opat S, et al. The BTK inhibitor, bgb-3111, is safe, tolerable, and highly active in patients with relapsed/refractory B-cell malignancies: initial report of a phase 1 first-in-human trial[J]. Blood, 2015, 126(23): 832. doi: 10.1182/blood.V126.23.832.832
|
[48] |
Tian DC, Li ZX, Yuan M, et al. Incidence of neuromyelitis optica spectrum disorder (NMOSD) in China: a national population-based study[J]. Lancet Reg Health West Pac, 2020, 2: 100021. doi: 10.1016/j.lanwpc.2020.100021
|
[49] |
Bennett JL, O’Connor KC, Bar-Or A, et al. B lymphocytes in neuromyelitis optica[J]. Neurol Neuroimmunol Neuroinflamm, 2015, 2(3): e104. doi: 10.1212/NXI.0000000000000104
|
[50] |
Zhang B, Zhao RB, Liang RX, et al. Abstract CT132: Orelabrutinib, a potent and selective Bruton’s tyrosine kinase inhibitor with superior safety profile and excellent PK/PD properties[J]. Cancer Res, 2020, 80(16_Supplement): CT132. doi: 10.1158/1538-7445.AM2020-CT132
|
[51] |
Bernstein JA, Maurer M, Saini SS. BTK signaling - a crucial link in the pathophysiology of chronic spontaneous urticaria[J]. J Allergy Clin Immunol, 2023, S0091-S6749(23): 02460-0.
|
[52] |
Angst D, Gessier F, Janser P, et al. Discovery of LOU064 (remibrutinib), a potent and highly selective covalent inhibitor of Bruton’s tyrosine kinase[J]. J Med Chem, 2020, 63(10): 5102-5118. doi: 10.1021/acs.jmedchem.9b01916
|
[53] |
Hill RJ, Bradshaw JM, Bisconte A, et al. Preclinical characterization of PRN1008, a novel reversible covalent inhibitor of BTK that shows efficacy in a RAT model of collagen-induced arthritis[J]. Ann Rheum Dis, 2015, 74(Suppl 2): 216-217. doi: 10.1136/annrheumdis-2015-eular.6774
|
[54] |
Cooper N, Ghanima W. Immune thrombocytopenia[J]. N Engl J Med, 2019, 381(10): 945-955. doi: 10.1056/NEJMcp1810479
|
[55] |
Efficace F, Mandelli F, Fazi, et al. Health-related quality of life and burden of fatigue in patients with primary immune thrombocytopenia by phase of disease[J]. Am J Hematol, 2016, 91(10): 995-1001. doi: 10.1002/ajh.24463
|
[56] |
Langrish CL, Bradshaw JM, Francesco MR, et al. Preclinical efficacy and anti-inflammatory mechanisms of action of the bruton tyrosine kinase inhibitor rilzabrutinib for immune-mediated disease[J]. J Immunol, 2021, 206(7): 1454-1468. doi: 10.4049/jimmunol.2001130
|
[57] |
Murrell DF, Patsatsi A, Stavropoulos P, et al. Proof of concept for the clinical effects of oral rilzabrutinib, the first Bruton tyrosine kinase inhibitor for pemphigus vulgaris: the phase II BELIEVE study[J]. Br J Dermatol, 2021, 185(4): 745-755. doi: 10.1111/bjd.20431
|
[58] |
Drucker AM, Shear NH. Bruton tyrosine kinase inhibition warrants further study for pemphigus[J]. Br J Dermatol, 2021, 185(4): 691-692. doi: 10.1111/bjd.20623
|
[59] |
Owens TD, Smith PF, Redfern A, et al. Phase 1 clinical trial evaluating safety, exposure and pharmacodynamics of BTK inhibitor tolebrutinib (PRN2246, SAR442168)[J]. Clin Transl Sci, 2022, 15(2): 442-450. doi: 10.1111/cts.13162
|
[60] |
Reich DS, Arnold DL, Vermersch P, et al. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial[J]. Lancet Neurol, 2021, 20(9): 729-738. doi: 10.1016/S1474-4422(21)00237-4
|