Citation: | CHANG Yuan, MAGETA Mageta Samwel, LI Nibowen, et al. Research advances in modulating microglia for intervening in Alzheimer’s disease[J]. J China Pharm Univ, 2024, 55(5): 603 − 612. DOI: 10.11665/j.issn.1000-5048.2024030201 |
Alzheimer’s disease (AD) is the most common neurodegenerative disease in the world with dementia as its main manifestation. The pathological regulation strategies based on microglia in immune cells have shown their unique advantages in treating AD by preventing the pathological progression of AD at an early stage. This paper firstly introduces the role of microglia in the pathogenesis of AD, then summarizes the relationship between microglia and the common key pathologies of Aβ, tau proteins, neuroinflammation, and impaired energy metabolism in AD, and finally reviews feasible microglia-targeted intervention strategies against AD with some discussion about some current issues for improvement in each study, in the hope of deepening the understanding of strategies that regulate microglia to block AD pathology and providing some new ideas for the early intervention and treatment of AD patients in the future.
[1] |
Knopman DS, Amieva H, Petersen RC, et al. Alzheimer disease[J]. Nat Rev Dis Primers, 2021, 7(1): 33. doi: 10.1038/s41572-021-00269-y
|
[2] |
Huang LK, Kuan YC, Lin HW, et al. Clinical trials of new drugs for Alzheimer disease: a 2020-2023 update[J]. J Biomed Sci, 2023, 30(1): 83. doi: 10.1186/s12929-023-00976-6
|
[3] |
Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies[J]. Cell, 2019, 179(2): 312-339. doi: 10.1016/j.cell.2019.09.001
|
[4] |
Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission[J]. Lancet, 2020, 396(10248): 413-446. doi: 10.1016/S0140-6736(20)30367-6
|
[5] |
Leng FD, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here[J]? Nat Rev Neurol, 2021, 17(3): 157-172. doi: 10.1038/s41582-020-00435-y
|
[6] |
Cummings J, Feldman HH, Scheltens P. The “rights” of precision drug development for Alzheimer’s disease[J]. Alzheimers Res Ther, 2019, 11(1): 76. doi: 10.1186/s13195-019-0529-5
|
[7] |
Salter MW, Stevens B. Microglia emerge as central players in brain disease[J]. Nat Med, 2017, 23(9): 1018-1027. doi: 10.1038/nm.4397
|
[8] |
Askew K, Li KZ, Olmos-Alonso A, et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain[J]. Cell Rep, 2017, 18(2): 391-405. doi: 10.1016/j.celrep.2016.12.041
|
[9] |
Hickman S, Izzy S, Sen P, et al. Microglia in neurodegeneration[J]. Nat Neurosci, 2018, 21(10): 1359-1369. doi: 10.1038/s41593-018-0242-x
|
[10] |
Lauro C, Limatola C. Metabolic reprograming of microglia in the regulation of the innate inflammatory response[J]. Front Immunol, 2020, 11: 493. doi: 10.3389/fimmu.2020.00493
|
[11] |
Chen GF, Xu TH, Yan Y, et al. Amyloid beta: structure, biology and structure-based therapeutic development[J]. Acta Pharmacol Sin, 2017, 38(9): 1205-1235. doi: 10.1038/aps.2017.28
|
[12] |
Griciuc A, Patel S, Federico AN, et al. TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer’s disease[J]. Neuron, 2019, 103(5): 820-835. e7. doi: 10.1016/j.neuron.2019.06.010
|
[13] |
Pankiewicz JE, Diaz JR, Martá-Ariza M, et al. Peroxiredoxin 6 mediates protective function of astrocytes in Aβ proteostasis[J]. Mol Neurodegener, 2020, 15(1): 50. doi: 10.1186/s13024-020-00401-8
|
[14] |
Quick JD, Silva C, Wong JH, et al. Lysosomal acidification dysfunction in microglia: an emerging pathogenic mechanism of neuroinflammation and neurodegeneration[J]. J Neuroinflammation, 2023, 20(1): 185. doi: 10.1186/s12974-023-02866-y
|
[15] |
Mustaly-Kalimi S, Gallegos W, Marr RA, et al. Protein mishandling and impaired lysosomal proteolysis generated through calcium dysregulation in Alzheimer’s disease[J]. Proc Natl Acad Sci U S A, 2022, 119(49): e2211999119. doi: 10.1073/pnas.2211999119
|
[16] |
Hao YN, Su C, Liu XT, et al. Bioengineered microglia-targeted exosomes facilitate Aβ clearance via enhancing activity of microglial lysosome for promoting cognitive recovery in Alzheimer’s disease[J]. Biomater Adv, 2022, 136: 212770. doi: 10.1016/j.bioadv.2022.212770
|
[17] |
Sjölin K, Kultima K, Larsson A, et al. Distribution of five clinically important neuroglial proteins in the human brain[J]. Mol Brain, 2022, 15(1): 52. doi: 10.1186/s13041-022-00935-6
|
[18] |
Moloney CM, Lowe VJ, Murray ME. Visualization of neurofibrillary tangle maturity in Alzheimer’s disease: a clinicopathologic perspective for biomarker research[J]. Alzheimers Dement, 2021, 17(9): 1554-1574. doi: 10.1002/alz.12321
|
[19] |
Brunello CA, Merezhko M, Uronen RL, et al. Mechanisms of secretion and spreading of pathological tau protein[J]. Cell Mol Life Sci, 2020, 77(9): 1721-1744. doi: 10.1007/s00018-019-03349-1
|
[20] |
Hopp SC, Lin Y, Oakley D, et al. The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease[J]. J Neuroinflammation, 2018, 15(1): 269. doi: 10.1186/s12974-018-1309-z
|
[21] |
Ising C, Venegas C, Zhang SS, et al. NLRP3 inflammasome activation drives tau pathology[J]. Nature, 2019, 575(7784): 669-673. doi: 10.1038/s41586-019-1769-z
|
[22] |
Busche MA, Hyman BT. Synergy between amyloid-β and tau in Alzheimer’s disease[J]. Nat Neurosci, 2020, 23(10): 1183-1193. doi: 10.1038/s41593-020-0687-6
|
[23] |
Pascoal TA, Benedet al, Ashton NJ, et al. Microglial activation and tau propagate jointly across Braak stages[J]. Nat Med, 2021, 27(9): 1592-1599. doi: 10.1038/s41591-021-01456-w
|
[24] |
Congdon EE, Ji CY, Tetlow AM, et al. Tau-targeting therapies for Alzheimer disease: current status and future directions[J]. Nat Rev Neurol, 2023, 19(12): 715-736. doi: 10.1038/s41582-023-00883-2
|
[25] |
Wang CC, Zong S, Cui XL, et al. The effects of microglia-associated neuroinflammation on Alzheimer’s disease[J]. Front Immunol, 2023, 14: 1117172. doi: 10.3389/fimmu.2023.1117172
|
[26] |
Zhang WF, Xiao D, Mao QW, et al. Role of neuroinflammation in neurodegeneration development[J]. Signal Transduct Target Ther, 2023, 8(1): 267. doi: 10.1038/s41392-023-01486-5
|
[27] |
Dhapola R, Hota SS, Sarma P, et al. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease[J]. Inflammopharmacology, 2021, 29(6): 1669-1681. doi: 10.1007/s10787-021-00889-6
|
[28] |
Thawkar BS, Kaur G. Inhibitors of NF-κB and P2X7/NLRP3/Caspase 1 pathway in microglia: novel therapeutic opportunities in neuroinflammation induced early-stage Alzheimer’s disease[J]. J Neuroimmunol, 2019, 326: 62-74. doi: 10.1016/j.jneuroim.2018.11.010
|
[29] |
Bairamian D, Sha S, Rolhion N, et al. Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer’s disease[J]. Mol Neurodegener, 2022, 17(1): 19. doi: 10.1186/s13024-022-00522-2
|
[30] |
Cunnane SC, Trushina E, Morland C, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing[J]. Nat Rev Drug Discov, 2020, 19(9): 609-633. doi: 10.1038/s41573-020-0072-x
|
[31] |
Li Y, Xia XH, Wang Y, et al. Mitochondrial dysfunction in microglia: a novel perspective for pathogenesis of Alzheimer’s disease[J]. J Neuroinflammation, 2022, 19(1): 248. doi: 10.1186/s12974-022-02613-9
|
[32] |
Baik SH, Kang S, Lee W, et al. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease[J]. Cell Metab, 2019, 30(3): 493-507. e6. doi: 10.1016/j.cmet.2019.06.005
|
[33] |
Hu YL, Mai WH, Chen LH, et al. mTOR-mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and ATP[J]. Glia, 2020, 68(5): 1031-1045. doi: 10.1002/glia.23760
|
[34] |
Toledo JB, Arnold M, Kastenmüller G, et al. Metabolic network failures in Alzheimer’s disease: a biochemical roadmap[J]. Alzheimers Dement, 2017, 13(9): 965-984. doi: 10.1016/j.jalz.2017.01.020
|
[35] |
Lemere CA. Immunotherapy for Alzheimer’s disease: hoops and hurdles[J]. Mol Neurodegener, 2013, 8: 36. doi: 10.1186/1750-1326-8-36
|
[36] |
Solito E, Sastre M. Microglia function in Alzheimer’s disease[J]. Front Pharmacol, 2012, 3: 14.
|
[37] |
Hu J, Chen Q, Zhu HR, et al. Microglial Piezo1 senses Aβ fibril stiffness to restrict Alzheimer’s disease[J]. Neuron, 2023, 111(1): 15-29. e8. doi: 10.1016/j.neuron.2022.10.021
|
[38] |
Adolfsson O, Pihlgren M, Toni N, et al. An effector-reduced anti-β-amyloid (Aβ) antibody with unique aβ binding properties promotes neuroprotection and glial engulfment of Aβ[J]. J Neurosci, 2012, 32(28): 9677-9689. doi: 10.1523/JNEUROSCI.4742-11.2012
|
[39] |
Morgan D. Mechanisms of Aβ plaque clearance following passive Aβ immunization[J]. Neurodegener Dis, 2005, 2(5): 261-266. doi: 10.1159/000090366
|
[40] |
Jucker M, Walker LC. Alzheimer’s disease: from immunotherapy to immunoprevention[J]. Cell, 2023, 186(20): 4260-4270. doi: 10.1016/j.cell.2023.08.021
|
[41] |
Wang QQ, Yao HM, Liu WY, et al. Microglia polarization in Alzheimer’s disease: mechanisms and a potential therapeutic target[J]. Front Aging Neurosci, 2021, 13: 772717. doi: 10.3389/fnagi.2021.772717
|
[42] |
Ren CX, Li DD, Zhou QX, et al. Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer’s disease model[J]. Biomaterials, 2020, 232: 119752. doi: 10.1016/j.biomaterials.2019.119752
|
[43] |
Liu PX, Zhang TY, Chen QJ, et al. Biomimetic dendrimer-peptide conjugates for early multi-target therapy of Alzheimer’s disease by inflammatory microenvironment modulation[J]. Adv Mater, 2021, 33(26): e2100746. doi: 10.1002/adma.202100746
|
[44] |
Daniel Lee CYD, Daggett A, Gu XF, et al. Elevated TREM2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in Alzheimer’s disease models[J]. Neuron, 2018, 97(5): 1032-1048. e5.
|
[45] |
Jiang T, Tan L, Zhu XC, et al. Upregulation of TREM2 ameliorates neuropathology and rescues spatial cognitive impairment in a transgenic mouse model of Alzheimer’s disease[J]. Neuropsychopharmacology, 2014, 39(13): 2949-2962. doi: 10.1038/npp.2014.164
|
[46] |
Wang CF, Huang W, Lu J, et al. TRPV1-mediated microglial autophagy attenuates Alzheimer’s disease-associated pathology and cognitive decline[J]. Front Pharmacol, 2021, 12: 763866.
|
[47] |
Kim SR, Kim SU, Oh U, et al. Transient receptor potential vanilloid subtype 1 mediates microglial cell death in vivo and in vitro via Ca2+-mediated mitochondrial damage and cytochrome c release[J]. J Immunol, 2006, 177(7): 4322-4329. doi: 10.4049/jimmunol.177.7.4322
|
[48] |
Linnartz-Gerlach B, Mathews M, Neumann H. Sensing the neuronal glycocalyx by glial sialic acid binding immunoglobulin-like lectins[J]. Neuroscience, 2014, 275: 113-124. doi: 10.1016/j.neuroscience.2014.05.061
|
[49] |
Griciuc A, Serrano-Pozo A, Parrado AR, et al. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta[J]. Neuron, 2013, 78(4): 631-643. doi: 10.1016/j.neuron.2013.04.014
|
[50] |
Lanier LL. DAP10- and DAP12-associated receptors in innate immunity[J]. Immunol Rev, 2009, 227(1): 150-160. doi: 10.1111/j.1600-065X.2008.00720.x
|
[51] |
Reed-Geaghan EG, Savage JC, Hise AG, et al. CD14 and toll-like receptors 2 and 4 are required for fibrillar Aβ-stimulated microglial activation[J]. J Neurosci, 2009, 29(38): 11982-11992. doi: 10.1523/JNEUROSCI.3158-09.2009
|
[52] |
Gay NJ, Symmons MF, Gangloff M, et al. Assembly and localization of Toll-like receptor signalling complexes[J]. Nat Rev Immunol, 2014, 14(8): 546-558. doi: 10.1038/nri3713
|
[53] |
Brandao-Burch A, Key ML, Patel JJ, et al. The P2X7 receptor is an important regulator of extracellular ATP levels[J]. Front Endocrinol, 2012, 3: 41.
|
[54] |
Martínez-Frailes C, di Lauro C, Bianchi C, et al. Amyloid peptide induced neuroinflammation increases the P2X7 receptor expression in microglial cells, impacting on its functionality[J]. Front Cell Neurosci, 2019, 13: 143.
|
[55] |
Ruan Z, Delpech JC, Venkatesan Kalavai S, et al. P2RX7 inhibitor suppresses exosome secretion and disease phenotype in P301S tau transgenic mice[J]. Mol Neurodegener, 2020, 15(1): 47. doi: 10.1186/s13024-020-00396-2
|
[56] |
Sbai O, Djelloul M, Auletta A, et al. AGE-TXNIP axis drives inflammation in Alzheimer’s by targeting Aβ to mitochondria in microglia[J]. Cell Death Dis, 2022, 13(4): 302. doi: 10.1038/s41419-022-04758-0
|
[57] |
Criscuolo C, Fontebasso V, Middei S, et al. Entorhinal Cortex dysfunction can be rescued by inhibition of microglial RAGE in an Alzheimer’s disease mouse model[J]. Sci Rep, 2017, 7: 42370. doi: 10.1038/srep42370
|
[58] |
Rajendran L, Honsho M, Zahn TR, et al. Alzheimer’s disease β-amyloid peptides are released in association with exosomes[J]. Proc Natl Acad Sci U S A, 2006, 103(30): 11172-11177. doi: 10.1073/pnas.0603838103
|
[59] |
Yuyama K, Sun H, Sakai S, et al. Decreased amyloid-β pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice[J]. J Biol Chem, 2014, 289(35): 24488-24498. doi: 10.1074/jbc.M114.577213
|
[60] |
Polanco JC, Scicluna BJ, Hill AF, et al. Extracellular vesicles isolated from the brains of rTg4510 mice seed tau protein aggregation in a threshold-dependent manner[J]. J Biol Chem, 2016, 291(24): 12445-12466. doi: 10.1074/jbc.M115.709485
|
[61] |
Elsherbini A, Kirov AS, Dinkins MB, et al. Association of aβ with ceramide-enriched astrosomes mediates aβ neurotoxicity[J]. Acta Neuropathol Commun, 2020, 8(1): 60. doi: 10.1186/s40478-020-00931-8
|
[62] |
Wang GH, Dinkins M, He Q, et al. Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD)[J]. J Biol Chem, 2012, 287(25): 21384-21395. doi: 10.1074/jbc.M112.340513
|
[63] |
Dinkins MB, Dasgupta S, Wang GH, et al. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease[J]. Neurobiol Aging, 2014, 35(8): 1792-1800. doi: 10.1016/j.neurobiolaging.2014.02.012
|
[64] |
Asai H, Ikezu S, Tsunoda S, et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation[J]. Nat Neurosci, 2015, 18(11): 1584-1593. doi: 10.1038/nn.4132
|
[65] |
Zhu B, Liu Y, Hwang S, et al. Trem2 deletion enhances tau dispersion and pathology through microglia exosomes[J]. Mol Neurodegener, 2022, 17(1): 58. doi: 10.1186/s13024-022-00562-8
|
[66] |
Philippens IH, Ormel PR, Baarends G, et al. Acceleration of amyloidosis by inflammation in the amyloid-beta marmoset monkey model of Alzheimer’s disease[J]. J Alzheimers Dis, 2017, 55(1): 101-113.
|
[67] |
Yao J, Wang Z, Song WH, et al. Targeting NLRP3 inflammasome for neurodegenerative disorders[J]. Mol Psychiatry, 2023, 28(11): 4512-4527. doi: 10.1038/s41380-023-02239-0
|
[68] |
Venegas C, Kumar S, Franklin BS, et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease[J]. Nature, 2017, 552(7685): 355-361. doi: 10.1038/nature25158
|
[69] |
Park MH, Lee MS, Nam G, et al. N, N'-Diacetyl-p-phenylenediamine restores microglial phagocytosis and improves cognitive defects in Alzheimer’s disease transgenic mice[J]. Proc Natl Acad Sci U S A, 2019, 116(47): 23426-23436. doi: 10.1073/pnas.1916318116
|
[70] |
Pan RY, Ma J, Kong XX, et al. Sodium rutin ameliorates Alzheimer’s disease-like pathology by enhancing microglial amyloid-β clearance[J]. Sci Adv, 2019, 5(2): eaau6328. doi: 10.1126/sciadv.aau6328
|
[71] |
Zhang MR, Chen HQ, Zhang WL, et al. Biomimetic remodeling of microglial riboflavin metabolism ameliorates cognitive impairment by modulating neuroinflammation[J]. Adv Sci, 2023, 10(12): e2300180. doi: 10.1002/advs.202300180
|
[72] |
Yang F, Zhao DJ, Cheng M, et al. mTOR-mediated immunometabolic reprogramming nanomodulators enable sensitive switching of energy deprivation-induced microglial polarization for Alzheimer’s disease management[J]. ACS Nano, 2023, 17(16): 15724-15741. doi: 10.1021/acsnano.3c03232
|
[73] |
van Lengerich B, Zhan LH, Xia D, et al. A TREM2-activating antibody with a blood-brain barrier transport vehicle enhances microglial metabolism in Alzheimer’s disease models[J]. Nat Neurosci, 2023, 26(3): 416-429.
|
[74] |
Shan C, Zhang D, Ma DN, et al. Osteocalcin ameliorates cognitive dysfunctions in a mouse model of Alzheimer’s Disease by reducing amyloid β burden and upregulating glycolysis in neuroglia[J]. Cell Death Discov, 2023, 9(1): 46. doi: 10.1038/s41420-023-01343-y
|
[75] |
Fairley LH, Lai KO, Wong JH, et al. Mitochondrial control of microglial phagocytosis by the translocator protein and hexokinase 2 in Alzheimer’s disease[J]. Proc Natl Acad Sci U S A, 2023, 120(8): e2209177120. doi: 10.1073/pnas.2209177120
|
[76] |
Leng LG, Yuan ZQ, Pan RY, et al. Microglial hexokinase 2 deficiency increases ATP generation through lipid metabolism leading to β-amyloid clearance[J]. Nat Metab, 2022, 4(10): 1287-1305. doi: 10.1038/s42255-022-00643-4
|
[77] |
Claes C, Danhash EP, Hasselmann J, et al. Plaque-associated human microglia accumulate lipid droplets in a chimeric model of Alzheimer’s disease[J]. Mol Neurodegener, 2021, 16(1): 50. doi: 10.1186/s13024-021-00473-0
|
[78] |
Victor MB, Leary N, Luna X, et al. Lipid accumulation induced by APOE4 impairs microglial surveillance of neuronal-network activity[J]. Cell Stem Cell, 2022, 29(8): 1197-1212. e8.
|
[79] |
Bordone MP, Salman MM, Titus HE, et al. The energetic brain–A review from students to students[J]. J Neurochem, 2019, 151(2): 139-165. doi: 10.1111/jnc.14829
|
[80] |
Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α[J]. Nature, 2013, 496(7444): 238-242. doi: 10.1038/nature11986
|
[81] |
Czapski GA, Strosznajder JB. Glutamate and GABA in microglia-neuron cross-talk in Alzheimer’s disease[J]. Int J Mol Sci, 2021, 22(21): 11677. doi: 10.3390/ijms222111677
|
[82] |
Chen HL, Guo ZC, Sun YX, et al. The immunometabolic reprogramming of microglia in Alzheimer’s disease[J]. Neurochem Int, 2023, 171: 105614. doi: 10.1016/j.neuint.2023.105614
|
[83] |
Yang S, Qin C, Hu ZW, et al. Microglia reprogram metabolic profiles for phenotype and function changes in central nervous system[J]. Neurobiol Dis, 2021, 152: 105290. doi: 10.1016/j.nbd.2021.105290
|
[84] |
Pan RY, He L, Zhang J, et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease[J]. Cell Metab, 2022, 34(4): 634-648. e6.
|